Home production as a substitute to market consumption? Estimating the elasticity using houseprice shocks from the Great Recession

Jim Been1, Susann Rohwedder2, Michael Hurd3

1Department of Economics, Leiden University and Netspar
2RAND Corporation, Santa Monica, CA, USA, MEA and Netspar
3RAND Corporation, Santa Monica, CA, USA, NBER, MEA and Netspar

May 19-21, 2016, QSPS, Utah State University
Analyses of well-being have relied on measures of income and spending.

- ‘Time’ can be used to increase consumption beyond market spending (Aguiar & Hurst 2005).
- ‘Time’ can be a considerable endowment in low-income households.
- Becker’s 1965 theory of the allocation of time.
A theory of the allocation of time (Becker 1965)

- Consumption ‘produced’ by two inputs
 - Market expenditures.
 - Time.
- *Money-intensive* versus *Time-intensive goods*.
- Composition of consumption bundle depends on *relative price of time*.
- Shift in composition when the price of time changes.
Augmenting the standard classical model (Gronau, 1977)

$$\max_{c_{mt}, h_{mt}, h_{nt}} u(c_m, c_n(h_n), l)$$

with home production function

$$c_n(h_n) = g(h_n)$$

subject to a time- and monetary budget

$$H = h_m + h_n + l$$

$$c_m = w \cdot (H - l - h_n) + b$$
Shocks and Home Production

Home production can smooth consumption in response to shocks in income (Hicks 2015):

- Home production and retirement (e.g. Aguiar & Hurst 2005).
- Home production and unemployed households (e.g. Guler & Taskin 2013).
- Home production and health (e.g. Halliday & Podor 2012).
- Home production and wealth (e.g. Kuehn 2015).
Identification strategies

- Transitory shocks in income.
 - Monetary- and Time-budget: substitution or time-endowment?
- Disputable instruments: lagged consumption (Rupert et al. 1995).
- Very specific subsample: EITC and single women (Gelber & Mitchell 2009).
- Permanent shocks in income: permanent income (Hicks 2015).
 - Identification from cross-sectional differences between poorer and richer persons.
Intratemporal elasticity from within-person variation.

- Causal identification:
 - Wealth-shocks only influence monetary-budget.
 - Large exogenous shock: *houseprices* in the Great Recession.
 - Consumption (Angrisani et al. 2015).
 - Home production (Kuehn 2015).
Panel data with detailed consumption spending and time-use information of persons in US households (HRS/CAMS).

- Consumption: *Retirement-Consumption "Puzzle"* literature.
- Time-use: Burda & Hamermesh (2010); Aguiar et al. (2013).
HRS/CAMS

Health and Retirement Survey
- Representative 50+ population of the US.
- Longitudinal: 12 waves.
- 20,000 persons every two years (one wave).
- Detailed information on demographics, economic status, etc.

Consumption and Activities Mail Survey
- Supplementary study to HRS.
- Survey to subset of HRS respondents.
- 37 time-use categories, 39 spending categories.
- Information on both spouses within a household.
Definition of home production

Following Aguiar et al. (2013):

- House cleaning
- Washing, ironing or mending clothes (Laundry)
- Yard work or gardening (Gardening)
- Shopping or running errands (Shopping)
-Preparing meals and cleaning up afterwards (Cooking)
- Taking care of finances or investments, such as banking, paying bills, balancing the checkbook, doing taxes, etc. (Financial Management)
- Doing home improvements, including painting, redecorating, or making home repairs (Home maintenance)
- Working on, maintaining, or cleaning car(s) and vehicle(s) (Vehicle maintenance)
What can home production substitute?

"Home Production Substitutable Consumption":

- House cleaning \iff Housekeeping services
- Laundry \iff Housekeeping services, Washing/Drying machine
- Gardening \iff Gardening services
- Shopping \iff n.a.
- Cooking \iff Dining out, Dishwasher
- Financial Management \iff n.a.
- Home maintenance \iff Homerepair services
- Vehicle maintenance \iff Vehicle maintenance services
Consumption spending across Time ($/y)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>Dining out</td>
<td>1,795</td>
<td>1,761</td>
<td>1,472</td>
<td>1,683</td>
</tr>
<tr>
<td>Housekeeping services</td>
<td>432</td>
<td>390</td>
<td>291</td>
<td>296</td>
</tr>
<tr>
<td>Gardening services</td>
<td>486</td>
<td>429</td>
<td>348</td>
<td>363</td>
</tr>
<tr>
<td>Homerepair services</td>
<td>1,403</td>
<td>1,412</td>
<td>1,176</td>
<td>1,059</td>
</tr>
<tr>
<td>Vehicle maintenance</td>
<td>632</td>
<td>558</td>
<td>556</td>
<td>545</td>
</tr>
<tr>
<td>Dishwasher</td>
<td>21</td>
<td>82</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Washing/Drying machine</td>
<td>71</td>
<td>82</td>
<td>69</td>
<td>45</td>
</tr>
<tr>
<td>Substitutable consumption</td>
<td>4,841</td>
<td>4,656</td>
<td>3,930</td>
<td>4,009</td>
</tr>
<tr>
<td>Substitutable consumption excl. durables</td>
<td>4,749</td>
<td>4,549</td>
<td>3,843</td>
<td>3,946</td>
</tr>
<tr>
<td>Substitutable consumption incl. suppl. mat.</td>
<td>6,540</td>
<td>6,266</td>
<td>5,320</td>
<td>5,402</td>
</tr>
<tr>
<td>Total consumption</td>
<td>40,120</td>
<td>38,856</td>
<td>36,122</td>
<td>35,348</td>
</tr>
</tbody>
</table>
Home Production across Time (h/w)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>House cleaning</td>
<td>4.5</td>
<td>5.2</td>
<td>5.0</td>
<td>4.8</td>
</tr>
<tr>
<td>Laundry</td>
<td>2.7</td>
<td>2.6</td>
<td>2.8</td>
<td>2.6</td>
</tr>
<tr>
<td>Gardening</td>
<td>2.7</td>
<td>3.0</td>
<td>2.9</td>
<td>3.0</td>
</tr>
<tr>
<td>Shopping</td>
<td>4.1</td>
<td>3.9</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Cooking</td>
<td>7.0</td>
<td>7.0</td>
<td>6.8</td>
<td>7.1</td>
</tr>
<tr>
<td>Financial management</td>
<td>0.9</td>
<td>1.0</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Home maintenance</td>
<td>1.0</td>
<td>0.9</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Vehicle maintenance</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Home production</td>
<td>23.1</td>
<td>23.9</td>
<td>23.4</td>
<td>23.3</td>
</tr>
</tbody>
</table>
Life-Cycle Model with Home Production and Wealth Shocks

\[U_{\tau} = \max_{c_{mt}, h_{mt}, h_{nt}} \mathbb{E}_{\tau} \left[\sum_{t=\tau}^{T} (1 + \delta)^{\tau-t} u(c_{mt}, c_{nt}(h_{nt}), l_t)\psi(v_t) \right] \]

with

\[c_{nt}(h_{nt}) = g_t(h_{nt}) \]

\[c_{mt} = \{c^{s}_{mt}, c^{ns}_{mt}\} \]

subject to

\[h_{nt} = H - h_{mt} - l_t \]

\[A_{t+1} = (1 + r)(\mathbb{E}_t[A_t] + (w_t \cdot (H - l_t - h_{nt})) + b_t - c_{mt}) \]

\[\mathbb{E}_t[A_t] = A_t + \xi_t \]
Theoretical predictions

\[u_{cmt}(c_{mt}, c_{nt}(h_{nt}), l_t)\psi(v_t) = \left(\frac{1 + r}{1 + \delta} \right) \mathbb{E}_t \left[u_{cmt+1}(c_{mt+1}, c_{nt+1}(h_{nt+1}), l_{t+1})\psi(v_{t+1}) \right] \] (11)

\[u_{hmt}(c_{mt}, c_{nt}(h_{nt}), l_t)\psi(v_t) = -w_t \left(\frac{1 + r}{1 + \delta} \right) \mathbb{E}_t \left[u_{hmt+1}(c_{mt+1}, c_{nt+1}(h_{nt+1}), l_{t+1})\psi(v_{t+1}) \right] \] (12)

\[u_{hnt}(c_{mt}, c_{nt}(h_{nt}), l_t)\psi(v_t) = w_t \left(\frac{1 + r}{1 + \delta} \right) \mathbb{E}_t \left[u_{hnt+1}(c_{mt+1}, c_{nt+1}(h_{nt+1}), l_{t+1})\psi(v_{t+1}) \right] \] (13)
Empirical model

Estimating the elasticity:

\[\Delta \ln(h_{int+1}) = \Delta X_{it+1} \beta_n + \Delta \ln(c_{smt+1}^s) \beta_n + \varepsilon_{int+1} \]

(14)

where \(\beta_n = \frac{\Delta h_{nt+1}}{\Delta c_{smt+1}^s} \), using

\[\Delta \ln(c_{smt+1}^s) = \Delta X_{it+1}\beta_{c1} + D_{GR} \Delta \ln(W_{it}) \beta_{c2} + \varepsilon_{ict+1} \]

(15)

Keeping \((w_t \cdot (H - l_t - h_{nt})) + b_t\) constant.
Identification: House price changes

![Graph showing mean reported house price change (1,000's of U.S. dollars) from 2003 to 2011. The graph indicates a peak in 2007 followed by a sharp decline in 2009, with a slight recovery by 2011.]
Instrument: Validity & Relevance

Validity:

\[h_{nt} = H - h_{mt} - l_t \]

(16)

\[A_{t+1} = (1 + r)(E_t[A_t] + (w_t \cdot (H - l_t - h_{nt})) + b_t - c_{mt}) \]

(17)

Relevance:

- General: Case et al. (2005; 2013), Carroll et al. (2011).
Results

<table>
<thead>
<tr>
<th></th>
<th>(\Delta \ln(h_{int+1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second-stage</td>
<td>Coeff.</td>
</tr>
<tr>
<td>Elasticity</td>
<td></td>
</tr>
<tr>
<td>(\Delta \ln(c_{imt+1}^s))</td>
<td>-0.65*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(\Delta \ln(c_{imt+1}^s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-stage</td>
<td>Coeff.</td>
</tr>
<tr>
<td>Instrument</td>
<td></td>
</tr>
<tr>
<td>(D_{GR} \Delta \ln(W_{it}))</td>
<td>0.14**</td>
</tr>
</tbody>
</table>

F-statistic 5.6

Observations (\(N \times T \)) 2,500

Jim Been, Susann Rohwedder, Michael Hurd

Home production as a substitute to market consumption
Interpretation

- $\beta_{n2} = \frac{\Delta \ln(h_{int+1})}{\Delta \ln(c_{int+1})} = -0.65$.
- Less than perfect substitute.
- Bigger than elasticity found by Hicks (2015): -0.03 (endogeneity/food).
- Average effect: drop in consumption of 40 dollars (p/y) increases home production by about 7.6 hours (p/y): shadow wage 5.30.
- Reasonably lower than minimum wage in retirement (Ghez & Becker 1975).
Robustness to different definitions

<table>
<thead>
<tr>
<th>Definition</th>
<th>First-stage</th>
<th></th>
<th>Second-stage</th>
<th></th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β_{c2}</td>
<td>$\sigma^2_{\beta_{c2}}$</td>
<td>β_{n2}</td>
<td>$\sigma^2_{\beta_{n2}}$</td>
<td></td>
</tr>
<tr>
<td>$\ln(c_{imt+1}^s)$</td>
<td>0.14**</td>
<td>0.06</td>
<td>-0.65*</td>
<td>0.37</td>
<td>2,500</td>
</tr>
<tr>
<td>$\ln(c_{imt+1}^s)$ excl. durables</td>
<td>0.12**</td>
<td>0.06</td>
<td>-0.71*</td>
<td>0.44</td>
<td>2,500</td>
</tr>
<tr>
<td>$\ln(c_{imt+1}^s)$ incl. suppl. material</td>
<td>0.14**</td>
<td>0.06</td>
<td>-0.61**</td>
<td>0.31</td>
<td>2,504</td>
</tr>
<tr>
<td>$\ln(c_{imt+1}^s)$ dining out only</td>
<td>0.30***</td>
<td>0.11</td>
<td>-0.29*</td>
<td>0.17</td>
<td>2,489</td>
</tr>
<tr>
<td>$\ln(c_{imt+1}^s)$ excl. homerepair services</td>
<td>0.12**</td>
<td>0.06</td>
<td>-0.74*</td>
<td>0.45</td>
<td>2,491</td>
</tr>
<tr>
<td>$\ln(c_{imt+1}^s)$ excl. homerepair/gardening services</td>
<td>0.12**</td>
<td>0.06</td>
<td>-0.74*</td>
<td>0.45</td>
<td>2,490</td>
</tr>
</tbody>
</table>
Heterogeneous elasticities

Elasticity primarily determined by:

- Drop in houseprice value.
- Relatively low houseprice value (absolute).
- Mortgage-free.
- Medium household income.
- **Relatively high substitutable spending.**
- **Relatively low home production level.**

Not by:

- Financial wealth.
- Indebtedness.
Lower bound

<table>
<thead>
<tr>
<th></th>
<th>h_n</th>
<th></th>
<th>c^s_m</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>S.E.</td>
<td>Mean</td>
<td>S.E.</td>
</tr>
<tr>
<td>Non-retired</td>
<td>19.8</td>
<td>0.26</td>
<td>5,177.5</td>
<td>103.4</td>
</tr>
<tr>
<td>Retired</td>
<td>23.2</td>
<td>0.23</td>
<td>3,747.8</td>
<td>64.0</td>
</tr>
<tr>
<td>Δ</td>
<td>3.4***</td>
<td>0.35</td>
<td>-1,429.7***</td>
<td>115.3</td>
</tr>
<tr>
<td>Non-retired men</td>
<td>16.1</td>
<td>0.29</td>
<td>6,013.6</td>
<td>175.9</td>
</tr>
<tr>
<td>Retired men</td>
<td>19.1</td>
<td>0.23</td>
<td>3,992.8</td>
<td>96.3</td>
</tr>
<tr>
<td>Δ</td>
<td>3.0***</td>
<td>0.50</td>
<td>-2,020.7***</td>
<td>194.9</td>
</tr>
<tr>
<td>Non-retired women</td>
<td>22.6</td>
<td>0.39</td>
<td>4,540.6</td>
<td>122.1</td>
</tr>
<tr>
<td>Retired women</td>
<td>25.2</td>
<td>0.28</td>
<td>3,624.5</td>
<td>83.0</td>
</tr>
<tr>
<td>Δ</td>
<td>2.6***</td>
<td>0.47</td>
<td>-916.0***</td>
<td>143.1</td>
</tr>
<tr>
<td>Non-retired < 65</td>
<td>19.4</td>
<td>0.27</td>
<td>5,247.1</td>
<td>133.6</td>
</tr>
<tr>
<td>Retired < 65</td>
<td>23.6</td>
<td>0.47</td>
<td>3,766.0</td>
<td>126.9</td>
</tr>
<tr>
<td>Δ</td>
<td>4.2***</td>
<td>0.51</td>
<td>-1,481.1***</td>
<td>199.2</td>
</tr>
<tr>
<td>Non-retired 65+</td>
<td>20.6</td>
<td>0.55</td>
<td>5,029.1</td>
<td>153.8</td>
</tr>
<tr>
<td>Retired 65+</td>
<td>23.0</td>
<td>0.27</td>
<td>3,740.8</td>
<td>73.9</td>
</tr>
<tr>
<td>Δ</td>
<td>2.4***</td>
<td>0.58</td>
<td>-1,288.3***</td>
<td>158.6</td>
</tr>
</tbody>
</table>
Conclusion

- 'Small' substitution effects \(\frac{\Delta \ln(h_{int+1})}{\Delta \ln(c_{smt+1}^s)} = -0.65 \).
- Small scope for substituting \(c_{smt}^s \) (≈ 12%).
- High substitutability assumed in theoretical (macro) models (Campbell & Ludvigson 2001).
- Estimates are credible lower bound.
Importance for pensions

- Income and spending drop at retirement (*Retirement-Consumption Puzzle* literature).
- Drop in well-being likely to be smaller:
 - Substitute c_{mt}^s for c_{nt}.
 - Considerably more non-work time available ($h_{mt} = 0$).
- Need for Pension Adequacy measures that go beyond income and spending.