A Bird in the Hand is Worth Two in the Grave
Risk Aversion and Life-Cycle Savings

Antoine Bommiera, Daniel Harenberga,
François Le Grandb, a

aETH Zurich \quad bEMLyon Business School

QSPS, 2016 Summer Workshop
Jon M. Huntsman School of Business, Utah State University
Logan, Utah, May 2016
Question: How does risk aversion impact life-cycle saving and portfolio choice?

First answer: Depends on the risks considered

- Labor income risk: ↑
- Financial return risk: depends on IES
- Mortality risk: ↓

With multiple risks: ambiguous

⇒ Need quantitative analysis

Focus on risk aversion + income, financial and mortality risks
Modelling approach

- Kreps-Porteus recursive preferences:
 - Epstein-Zin (1989)
 - Risk-sensitive: Hansen and Sargent (1995) in their work on robustness
 - Allow us to vary risk aversion without changing IES
- Quantitative life-cycle model with incomplete markets
- Partial equilibrium analysis
- Calibrated to U.S. data
- ... and in particular to value of a statistical life: Viscusi and Aldy (2003) for a review
Main results

- Higher risk aversion
 - Decreases life-cycle savings
 - Decreases participation in the stock market
 - Decreases the conditional share in stock
- With mortality risk, give up homotheticity of Epstein-Zin
 \[\rightarrow \text{intuition: we cannot "scale" death.} \]
- Risk-sensitive and Epstein-Zin qualitatively similar and quantitatively close
Literature

<table>
<thead>
<tr>
<th>Risk aversion</th>
<th>... increases savings</th>
<th>... decreases savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income risk</td>
<td>e.g., BCL</td>
<td></td>
</tr>
<tr>
<td>Investment risk</td>
<td>Kihlstrom and Mirman (1974) and BCL if IES < 1</td>
<td>Kihlstrom and Mirman (1974) and BCL if IES > 1</td>
</tr>
<tr>
<td>Mortality risk</td>
<td>HPSA if IES < 1</td>
<td>Bommier (2006, 2013), BCL, Drouhin (2015), HPSA if IES > 1</td>
</tr>
<tr>
<td>All three risks</td>
<td>Gomes and Michaelides (2005, 2008)</td>
<td>This paper</td>
</tr>
</tbody>
</table>

- BCL: Bommier, Chassagnon, and LeGrand (2012)
Relationship between risk aversion and savings (1/2)

Simple framework (see Bommier, Chassagnon, LeGrand, 2012)

- Consumption-saving problem with 2 periods: 0 and 1; 2 states in period 1: G and B
- Saving s_B (resp. s_G) if B (resp. G) for sure
- Saving s^* if uncertain future (B or G)

Role of risk aversion:

- $s^* = \text{convex combination of } s_B \text{ and } s_G$
- Weight on s_B increases with risk aversion
 \Rightarrow the more risk averse, the more important bad state realizations
Relationship between risk aversion and savings (2/2)

- Income risk
 - Bad state = low income
 - $s_B > s_G$
 - Risk aversion *increases* savings.

- Mortality risk
 - Bad state = living for one period only
 - saving = bet on living 2 periods
 - $s_B < s_G$
 - Risk aversion *decreases* savings.

- Investment risk: depends on IES

⇒ All three risks, ambiguous relationship → quantitative exercise
Back of the envelope calculation (1/2)

Magnitudes of income vs. mortality risks?

- Income risk from a lifecycle perspective
 - Lifecycle labor income = per period labor incomes discounted to age 20 at the risk-free rate
 - With our calibration, average lifetime labor income of $1.1 million with a standard deviation of $0.8 million
 - Income risk \approx 0.8 million
Magnitudes of income vs. mortality risks?

- Mortality risk.
 - Life expectancy at age 20 = 58.5 years with a standard deviation of 14.5 years.
 - Mortality risk ≈ 14.5 years.
 - Using the value of a statistical life, one year alive ≈ $186k
 (VSL = $6.5m at 45).
 - Mortality risk ≈ $2.7 millions.

⇒ Back of the envelope calculation: Mortality risk ≫ income risk
⇒ Impact of risk aversion should be dominated by mortality risk
1 Motivation and mechanisms

2 Model

3 Computation and calibration

4 Results

5 Conclusion and outlook
Endowments

- Working age $t = 1$, retirement age $t = T_R$, max age $t = T_M$
- Mortality risk: survival probabilities $(p_{t+1|t})_t$
- Labor income $(1 \leq t < T_R)$

$$y^L_t = y_0 \exp(\mu_t + \pi_t + \varepsilon^y_t)$$

$$\pi_t = \rho \pi_{t-1} + \varepsilon^\pi_t$$

$$\varepsilon^y_t \sim \mathcal{N}(0, \sigma^2_y), \quad \varepsilon^\pi_t \sim \mathcal{N}(0, \sigma^2_\pi)$$

- Social security pension income $(T_R \leq t \leq T_M)$, y^R_t
Asset markets

- Bond: risk-free gross return R^f

- Stock: risky gross return
 \[
 \ln R^s_t = \ln (R^f_t + \nu) + \varepsilon^R_t, \quad \varepsilon^R_t \overset{iid}{\sim} \mathcal{N}(0, \sigma^2_R)
 \]
 \[
 \varepsilon^R_t \text{ correlated with both labor income shocks with } \kappa_{R,y} \text{ and } \kappa_{R,\pi}
 \]

- No short-selling

- Stock-market participation cost, $F \geq 0$, paid once in life
Choices and constraints

- **Choices** $\{c_t, s_t, b_t, \eta_t\}$

- **Constraints**

 \[
 c_t + b_t + s_t + F1_{\eta_t=1}1_{\eta_{t-1}=0} = y_t + R^f b_{t-1} + R^s_t s_{t-1},
 \]

 \[
 y_t = \begin{cases}
 y^L_t & \text{if } t < t_R, \\
 y^R_t & \text{else},
 \end{cases}
 \]

 \[s_t = 0 \text{ if } \eta_t = 0,\]

 \[c_t > 0, \quad b_t \geq 0, \quad s_t \geq 0.\]

 and bequests are $w_t = R^f b_{t-1} + R^s_t s_{t-1}$.

Risk Aversion and Life-Cycle Savings
Preferences (1/2)

- Felicity (alive) from consumption: \(u(c) = \frac{c^{1-\sigma}-1}{1-\sigma} \)

- Felicity (dead) from bequests:

\[
v(w) = -v_0 + \frac{\theta}{1-\sigma} \left[(\hat{w} + w)^{1-\sigma} - \hat{w}^{1-\sigma} \right]
\]

- Kreps-Porteus recursive preferences

\[
U_t^A = (1 - \beta)u(c_t) + \beta \Phi^{-1} \left(p_{t+1|t} \mathbb{E}_t \left[\Phi \left(U_{t+1}^A \right) \right] + (1 - p_{t+1|t}) \mathbb{E}_t \left[\Phi \left(U_{t+1}^D \right) \right] \right)
\]

\[
U_t^D = (1 - \beta) v(w_t) + \beta v(0)
\]
Preferences (2/2)

Why is v_0 important?

- difference between being alive consuming 1 unit and being dead without leaving bequest
- strongly connected to the value of life
- cannot be set to zero without a loss of generality (and a strong constraint on value of life)
- does not “go away” with non-additive preferences
- (does not affect choices in case of additive preferences)

$$U_t^A = (1 - \beta) u(c_t) + \beta p_{t+1|t} \mathbb{E}_t \left[U_{t+1}^A \right] - \beta (1 - p_{t+1|t}) v_0$$

$$+ (1 - p_{t+1|t}) \beta \mathbb{E}_t [(1 - \beta) \frac{\theta}{1 - \sigma} \left((\hat{w} + w)^{1-\sigma} - \hat{w}^{1-\sigma} \right)]$$
Epstein-Zin and risk-sensitive preferences (1/2)

- Both Kreps-Porteus
- Epstein-Zin preferences (EZ)
 \[\Phi(u) = \frac{1}{1 - \gamma} \left(1 + (1 - \sigma)u \right)^{\frac{1 - \gamma}{1 - \sigma}} - \frac{1}{1 - \gamma}, \text{ if } \gamma, \sigma \neq 1 \]
- Risk-sensitive preferences (RS)
 \[\Phi(u) = -\frac{1}{k} \left(\exp(-ku) - 1 \right), \text{ if } k \neq 0 \]
- Limit cases \((k = 0, \gamma = 1, \sigma = 1)\) by continuity
- Coincide if
 - \(\gamma = \sigma\) and \(k = 0\) \(\Rightarrow\) additively separable case
 - \(\sigma = 1\)
Epstein-Zin and risk-sensitive preferences (2/2)

- EZ: homothetic but not monotone (with respect to FSD)
- RS: non-homothetic but monotone.

⇒ Not monotone, what does that mean?

- RS: the only KP preferences that are monotone and disentangle risk aversion from IES

In our setting:

- Homotheticity has to be given up, because of value of life.
- Non-monotonicity little impact
Value of a statistical life

- Standard definition (see Johansson 2002): Marginal rate of substitution between survival rate and consumption

\[
VSL_t = \frac{\partial U_t^A}{\partial p_{t+1|t}} - \frac{\partial U_t^A}{\partial c_t}
\]

⇒ how much consumption to give up for increasing the likelihood to live one more year

- Viscusi and Aldy (2003) for empirical estimates
Computation

- Reformulate model
 - Cash-at-hand, $x_t = R^f b_{t-1} + R^s_t s_{t-1} + y_t$
 - Total savings, a_t, and share in stock $\alpha \in [0, 1]$
- Persistent productivity, π_t: continuous state variable
- State space (x_t, π_t, η_t, t)
- Not differentiable
- Standard VFI very long \rightarrow calibration hardly feasible.
 \Rightarrow Refinement of VFI
 \Rightarrow Use 3D cubic B-spline to interpolate expected continuation value
- Calibration: consider 3 agents: add, EZ, RS
Calibration of preferences

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source/ counterpart/ target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse IES, σ</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Exog. endowment, $\hat{\bar{w}}$</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Discount factor, β</td>
<td>0.96</td>
<td>Assets_{45}^{add} = US$ 100'000</td>
</tr>
<tr>
<td>Life-death gap, v_0</td>
<td>30.0</td>
<td>VSL_{45}^{add} = US$ 6.5m</td>
</tr>
<tr>
<td>Bequest motive, θ</td>
<td>20.0</td>
<td>Bequests_{85}^{add}</td>
</tr>
<tr>
<td>Risk aversion, EZ, γ</td>
<td>3.0</td>
<td>Assets_{45}^{RS} = Assets_{45}^{EZ}</td>
</tr>
<tr>
<td>Risk aversion, RS, k</td>
<td>0.08</td>
<td></td>
</tr>
</tbody>
</table>
Parameterization of endowments and asset markets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source/ counterpart/ target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working age, retirement age, maximum age</td>
<td>21, 65, 100</td>
<td></td>
</tr>
<tr>
<td>Survival rates, (p_{t+1</td>
<td>t})</td>
<td>({p_{t+1</td>
</tr>
<tr>
<td>Age productivity, (\mu_t)</td>
<td>({\mu_t}^T_1)</td>
<td>Earnings profiles 2007, PSID</td>
</tr>
<tr>
<td>Average wage, (y_0)</td>
<td>21 756 USD</td>
<td>Net compensation 2007, SSA</td>
</tr>
<tr>
<td>Pensions, (y_R)</td>
<td>0.3</td>
<td>Replacement rate, preliminary</td>
</tr>
<tr>
<td>Autocorrelation, (\rho)</td>
<td>0.95</td>
<td>Storesletten, et al. (2004)</td>
</tr>
<tr>
<td>Var. persistent shocks, (\sigma^2_\pi)</td>
<td>0.03</td>
<td>Storesletten, et al. (2004)</td>
</tr>
<tr>
<td>Correlation with stock, (\kappa_{R,\pi})</td>
<td>0.15</td>
<td>Gomes and Michaelides (2005)</td>
</tr>
<tr>
<td>Var. transitory shocks, (\sigma^2_y)</td>
<td>0.00</td>
<td>Preliminary</td>
</tr>
<tr>
<td>Inheritance, (w_0)</td>
<td>0.0</td>
<td>Preliminary</td>
</tr>
<tr>
<td>Gross risk-free return, (R^f)</td>
<td>1.01</td>
<td>Bond return, Shiller data</td>
</tr>
<tr>
<td>Equity premium, (\nu)</td>
<td>0.02</td>
<td>Preliminary</td>
</tr>
<tr>
<td>Stock volatility, (\sigma_R)</td>
<td>0.18</td>
<td>Shiller data</td>
</tr>
<tr>
<td>Participation cost, (F)</td>
<td>0.2</td>
<td>Preliminary</td>
</tr>
</tbody>
</table>
Lifecycle profiles *without* mortality risk

- Only labor income and asset return risks

Total savings

- **Additive**: $EZ, \gamma > \sigma$
- **EZ, \gamma > \sigma**: $RS, k > 0$

Stock market participation

- **Additive**: $EZ, \gamma > \sigma$
- **EZ, \gamma > \sigma**: $RS, k > 0$
Lifecycle profiles with mortality risk (1/3)

- Baseline with all risks

- Total savings
- Stock market participation

Risk Aversion and Life-Cycle Savings 22/28
Lifecycle profiles *with* mortality risk (2/3)

- Baseline with all risks

![Graph of total savings and conditional share in stock](image)

Total savings
- additive
- EZ, $\gamma > \sigma$
- RS, $k > 0$

Conditional Share in Stock
- additive
- EZ, $\gamma > \sigma$
- RS, $k > 0$
Lifecycle profiles with Mortality risk (3/3)

- Baseline with all risks

![Graphs of Consumption and Value of a Statistical Life](image)

Risk Aversion and Life-Cycle Savings
Typical Epstein-Zin specification

- Many different variants, e.g. [GM 2005]. See [Literature Overview].

\[\Omega_t = \left((1 - \beta) c_t^{1-\sigma} + \beta \left(\mathbb{E}_t \left[p_{t+1|t} \Omega_{t+1}^{1-\gamma} + (1 - p_{t+1|t}) \theta w_{t+1}^{1-\gamma} \right] \right) \frac{1-\sigma}{1-\gamma} \right) \frac{1}{1-\sigma} \]

- Bequests explicit and homothetic,

- ...but VSL not necessarily > 0

- In our framework, set \(v_0 = -\theta \hat{\omega}^{1-\sigma} \) (and \(\hat{\omega} = 0.0 \))

- In addition, if no bequests: \(\theta = 0 \)

 If \(\gamma > 1 \): \(\frac{\partial \Omega_t}{\partial p_{t+1|t}} < 0 \) \(\Rightarrow \) VSL < 0. The term
 \[+(1 - p_{t+1|t})(\infty)^{1-\gamma} \]
 can be added in the recursion, where
 \(\infty = \text{utility of death} \).
Typical Epstein-Zin specification, $\theta = 0$ (1/2)

- Like baseline with all risks

![Graph showing total savings and stock market participation over age]

Total savings
- additive
- $\text{EZ, } \gamma > \sigma$

Stock market participation
- additive
- $\text{EZ, } \gamma > \sigma$
Typical Epstein-Zin specification, $\theta = 0$ (2/2)

Consumption

Value of a Statistical Life
Conclusion

- Mortality = main risk in life
 - importance of value of life
 - saving = risk-taking behavior
 - Higher risk aversion decreases lifecycle savings

- EZ vs. RS
 - EZ can accommodate positive VSL, but lose homotheticity
 - Typical EZ implementation may yield negative VSL

- Observed low levels of saving may be rational and explained by higher risk-aversion. Alternative explanation to time-inconsistency (e.g., Caliendo and Findley, 2013)

- In paper, also explain the different results of Hugonnier, Pelgrin, and Saint-Amour (2012)
Thank you!
Appendix Table of Contents

6 Appendix
Literature

- Epstein-Zin preferences:

- Risk aversion and savings:

- Value of a statistical life:
 Kaplow (2005), Viscusi and Aldy (2003), Bommier and Villeneuve (2010), Cordoba and Ripoll (2013)
Investment risk

- Bad state = low rate of return
- If IES < 1
 - Income effect dominates
 - $s_B > s_G$
 - Risk aversion increases savings
- Else if IES > 1
 - Substitution effect dominates
 - $s_B < s_G$
 - Risk aversion decreases savings
General Kreps-Porteous Recursion

\[U_t = (1 - \beta) u_t + \beta \Phi^{-1} \left(\mathbb{E}^{F \times G}_t [\Phi(U_{t+1})] \right), \]

with \[u_t = \begin{cases}
 u(c_t) & \text{if alive at } t \\
 v(w_t) & \text{if dead at } t
\end{cases} \]
Numerical Example of Non-Monotonic Preferences

- Consider EZ utility: \(V(c_0, \tilde{c}_1) = c_0^\frac{1}{2} + (\mathbb{E}[\tilde{c}_1^\frac{1}{2}])^{-1} \).

- Lotteries \(i = \ell_1, \ell_2 \) paying off \((c_0^i, c_d^i)\) or \((c_0^i, c_u^i)\) (50%–50%):

<table>
<thead>
<tr>
<th>Lottery</th>
<th>(c_0^i)</th>
<th>(c_d^i)</th>
<th>(c_u^i)</th>
<th>(V(c_0^i, c_d^i))</th>
<th>(V(c_0^i, c_u^i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i = \ell_1)</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>9.00</td>
<td>21.58</td>
</tr>
<tr>
<td>(i = \ell_2)</td>
<td>2</td>
<td>2.5</td>
<td>9</td>
<td>8.97</td>
<td>19.49</td>
</tr>
</tbody>
</table>

\(\Rightarrow \) \(\ell_1 \) always pays off more than \(\ell_2 \).

- BUT, ex ante, \(V(c_0^{\ell_1}, \tilde{c}_1^{\ell_1}) = 11.91 < 12.15 = V(c_0^{\ell_2}, \tilde{c}_1^{\ell_2})! \)
Implications for consumption-saving problems

- Two states B, G, two periods, constant rate R
- $y_B < y_G$ and $s_B > s_G$
- With monotone preferences: $s_B > s^*_m > s_G$
- With EZ preferences, it may be the case that: $s^*_{EZ} > s_B > s_G$, while saving s_B offers a greater lifetime utility in both states B and G.
Re-calibration Without Mortality

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source/ counterpart/ target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse IES, σ</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Exog. endowment, \hat{w}</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Discount factor, β</td>
<td>$0.96 \rightarrow 0.95$</td>
<td>$\text{Assets}_{45}^{add} = \text{US$ 100'000}$</td>
</tr>
<tr>
<td>Life-death gap, v_0</td>
<td>$30.0 \rightarrow 30.3$</td>
<td>$\text{VSL}_{45}^{add} = \text{US$ 6.5m}$</td>
</tr>
<tr>
<td>Bequest motive, θ</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>Risk aversion, EZ, γ</td>
<td>$3.0 \rightarrow 7.0$</td>
<td></td>
</tr>
<tr>
<td>Risk aversion, RS, k</td>
<td>$0.08 \rightarrow 0.58$</td>
<td>$\text{Assets}{45}^{RS} = \text{Assets}{45}^{EZ}$</td>
</tr>
</tbody>
</table>
\[V_t = \left((1 - \beta p_t) c_t^{1-\frac{1}{\varepsilon}} + \beta E_t \left(p_t V_{t+1}^{1-\rho} + (1 - p_t) b \frac{(X_{t+1}/b)^{1-\rho}}{1-\rho} \right)^{\frac{1-\frac{1}{\varepsilon}}{1-\rho}} \right)^{\frac{1}{1-\frac{1}{\varepsilon}}} \]

- Derivative ambiguous if \(\rho > 1 \) and \(\varepsilon < 1 \)
Re-calibration for ‘typical’ EZ Specification

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source/ counterpart/ target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse IES, σ</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Exog. endowment, $\hat{\hat{w}}$</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Discount factor, β</td>
<td>0.96</td>
<td>$Assets_{45}^{add} = \text{US$ 100'000}$</td>
</tr>
<tr>
<td>Life-death gap, v_0</td>
<td>30.0 \rightarrow 0.0</td>
<td>not targeted</td>
</tr>
<tr>
<td>Bequest motive, θ</td>
<td>20.0 \rightarrow 0.0</td>
<td>exogenous</td>
</tr>
<tr>
<td>Risk aversion, EZ, γ</td>
<td>3.0 \rightarrow 7.0</td>
<td></td>
</tr>
<tr>
<td>Risk aversion, RS, k</td>
<td>0.08 \rightarrow 0.71</td>
<td>$Assets_{45}^{RS} = Assets_{45}^{EZ}$</td>
</tr>
</tbody>
</table>

