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Abstract

We estimate the distribution of well-being among the U.S. elderly using an
expected utility framework that incorporates differences in consumption, leisure,
health, and mortality. We find large disparities in welfare that have increased
over time. Incorporating the cost of living with poor health into elderly wel-
fare substantially increases the overall inequality. Disparity measures based on
cross-sectional income or consumption underestimate aggregate welfare inequal-
ity. Moreover, health is a better indicator of an individual’s relative welfare
position than income or consumption.
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1 Introduction
Inequality has been a subject of great interest to researchers and policymakers on
grounds of both fairness and potential consequences.1 However, the most widely used
disparity measures are often based on either income or consumption which provide
an incomplete metric of social welfare inequality. Leisure, health, social interactions,
political and natural environments, and other factors have all been linked to individ-
ual well-being. Moreover, strong socioeconomic gradients have been found in related
metrics such as life expectancy (e.g. Kitagawa and Hauser, 1973; Chetty et al., 2016).
Given the potential correlation across these factors, a more comprehensive understand-
ing of social welfare and its distribution has significant implications for policy evaluation
and prioritization.

We provide a framework to understand how economic circumstances, health, and
mortality jointly influence the dispersion of welfare in a given population. Using stan-
dard expected utility theory and microsimulations from a forecasting model of life-cycle
dynamics, we construct a measure of well-being at the individual level—measured as
an ex-ante consumption equivalent. This allows us to analyze the entire distribution of
welfare. Our measure is based on comparing expected lifetime utility across individuals
of a given age. We incorporate differences in the uncertain evolution of consumption,
leisure, health, and mortality over remaining life, providing a more complete measure
of well-being than consumption or life expectancy alone.

We apply our methods to estimate the welfare distribution among sixty year olds in
the U.S. using data from the Heath and Retirement Study (HRS). As our measure at
sixty incorporates individual expectations about outcomes over the entirety of remain-
ing life, it provides a useful single metric of ex-ante elderly well-being. For example, we
intend to understand questions such as: how much better do we expect remaining life
to be for the median sixty year old in the U.S., compared to the sixty year old who is
the worst off? Moreover, how much of the difference in well-being is driven by expected
gaps in consumption versus gaps in leisure or health? With these questions in mind,
we refer to our measure of well-being as elderly welfare, though strictly speaking we
are referring to ex-ante welfare at age sixty.

We conduct our analysis on multiple cohorts in the HRS to examine how the dis-
tribution of elderly welfare has changed over time. While income and consumption
inequality have increased in the United States over the past three decades, the im-
plications for the distribution of individual welfare are unclear.2 Growing economic
inequality may overstate welfare disparities if, for example, some of the effects are mit-

1Fairness is tied to the importance of luck in determining well-being (see Rawls (1971); Dworkin
(1985); Roemer (1998)). Inequality has been directly tied to a wide range of outcomes including educa-
tion, crime, economic growth and mobility, civic engagement, and political influence and polarization.
See Kenworthy (2008) for a comprehensive literature review.

2See Piketty and Saez (2014); Heathcote et al. (2010); Autor et al. (2008); Katz et al. (1999);
Gottschalk et al. (1994) for evidence on income inequality and Attanasio and Pistaferri (2014); At-
tanasio et al. (2014, 2010); Cutler and Katz (1992) for consumption.
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igated through improvements in public health and health equity. The opposite may be
true if health gains accrue disproportionately to the financially well-off, making changes
in welfare inequality larger than what would be suggested by economic variables alone.

The influence of health on welfare inequality is particularly relevant among the
elderly where most health differences are concentrated (Deaton and Paxson, 1998).
Compression of morbidity in the elderly U.S. population (Cutler et al., 2013) has been
accompanied by evidence of a strong socioeconomic gradient in disability incidence
rates in later life (Minkler et al., 2006). More generally, recent evidence suggests that
there has been a widening gap in life expectancy and an increase in the socioeconomic
gradient of mortality rates.3 Our focus on the elderly is further motivated by the rapid
aging of the U.S. population—more than 20% of people are estimated to be aged 65
and older by 2050 (Colby et al., 2015).

Our approach to welfare analysis can be summarized in three broad steps. First, we
propose a welfare model for evaluating individual well-being using expected utility the-
ory. We extend the standard theory to allow for the importance of health by borrowing
from the literature on quality-adjusted life years (QALYs). This framework accounts
for the impact of consumption, leisure, health, and mortality on well-being and pro-
vides a simple analytic decomposition of the contribution of each channel. Next, we
use HRS data to estimate a forecasting model of the joint evolution of outcomes over
the elderly life-cycle. This forecasting model can be conceptualized as a panel vector
autoregression (VAR). While the panel VAR falls short of a fully specified structural
model, the equations can be viewed as approximations of the underlying decision rules
mapping state variables to individual choices. Finally, using the forecasting model and
data from HRS respondents as initial conditions, we repeatedly simulate potential out-
come paths. These paths are embedded in the welfare model to compute an ex-ante
measure of well-being for each individual in our sample at age sixty.

We measure welfare of a given individual in consumption equivalents; how much
consumption would have to increase/decrease across the remaining lifetime of a refer-
ence person to yield the same expected level of utility as that obtained by the current
and potential future outcome bundles of the given individual. In our empirical appli-
cation, we compare consumption equivalents computed for each individual at the age
of sixty using the individual with the median utility ranking as our reference person.
This measure incorporates all expected inequalities in outcomes across individuals over
their remaining lives. It also accounts for welfare costs of uncertainty in outcomes after
sixty, providing a useful metric of ex-ante elderly welfare.

The most salient findings of our analysis can be summarized as follows:

1. There is substantial variation in the ex-ante welfare of individuals at age sixty.
The Gini coefficient for consumption-equivalent welfare in our benchmark cohort
is 0.54. Those at the ninetieth percentile of the welfare distribution have 16 times
higher welfare than those at the tenth percentile.

3See, for example, Chetty et al. 2016; Currie and Schwandt 2016; National Academies of Sciences,
Engineering, and Medicine 2015; Pijoan-Mas and Ríos-Rull 2014; Meara et al. 2008
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2. The largest drivers of elderly welfare inequality are health and mortality gaps
followed by gaps in consumption. Differences in leisure play a comparatively
minor role.

3. Welfare inequality among the elderly has increased over time. Compared to the
cohort of individuals reaching age sixty between 1992-96, the welfare Gini rose
11% for those reaching sixty between 1997-2001, 18% for 2002-07, and 23% for
2008-13.

4. Ignoring dynamic uncertainty and the persistence in outcomes over the life-cycle
greatly underestimates welfare inequality. The Gini of age sixty flow utility is
only 43% of that based on our dynamic welfare measure.

A key implication of our results is that cross-sectional distributions of income and
consumption underestimate aggregate welfare inequality at age sixty. This occurs for
two primary reasons. First, cross-sectional measures ignore dynamic uncertainty and
the persistence of inequality over remaining life. Second, there is a positive correlation
between health and consumption, implying those with high consumption also enjoy
better health and longer lives on average. However, even in cases where economic out-
comes provide a reasonable approximation to aggregate welfare inequality, our results
suggest they may still provide a poor ranking of individual well-being. For example,
the rank correlation between consumption and welfare is a relatively modest 0.57 for
our benchmark cohort. Moreover, we find cross-sectional health utility at age sixty
to be a better predictor of remaining lifetime welfare rank, despite the fact that it
drastically underestimates aggregate welfare inequality.

Our paper builds on a large body of work attempting to extend measures of welfare
beyond income (see Fleurbaey (2009) for an extensive review). Recent examples include
Becker et al. (2005) who combine national income and expected longevity in a utility
framework to examine the changes in cross-country inequality over time. Fleurbaey
and Gaulier (2009) extend this work by examining level differences across countries and
incorporating leisure, health-adjusted life expectancy, and aggregate inequality. Our
welfare framework builds on recent work by Jones and Klenow (2016) who construct
an alternate cross-country measure of economic well-being. Our work is different from
these papers along many dimensions. Most notably, by using longitudinal data and
estimating the joint dynamic process of outcomes, we are able to construct welfare at
the individual as opposed to aggregate level. Moreover, we explicitly allow for health
to affect individual welfare by mapping subjective and objective measures directly into
utility. We also focus on the U.S. elderly and examine inequality evolution over birth
cohorts as opposed to cross-sectional changes over time.

Our paper is also more broadly tied to the literature measuring economic inequality
at older ages. Using HRS data, Hurd and Rohwedder (2007) find that income based
poverty rates underestimate economic well-being of the elderly compared to consump-
tion based measures. Crystal and Shea (1990) argue that despite the increased presence
of social safety nets at older ages, economic inequalities are exacerbated with aging due
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to the accumulation of “economic advantages and disadvantages” over the entire life-
course. Using longitudinal data, Crystal and Waehrer (1996) likewise find that income
inequality rises within cohorts as they age, but also document considerable mobility
in relative income position. More recently, Bosworth et al. (2016) document that in-
come inequality has increased for the elderly over the past three decades, though more
slowly than among the non-elderly perhaps due to wider availability of social safety
nets at older ages. Finally, in Miller et al. (2019), we use a simplified version of our
panel VAR model to estimate the education gradient in elderly lifetime consumption
and document the importance of health and educational differences in explaining over-
all consumption inequality. In that paper we estimate that 11-12% of the education
gradient in remaining lifetime consumption at age sixty could be closed by eliminat-
ing elderly health differences. This paper further contributes to this line of research
by providing estimates of elderly welfare that incorporates consumption, leisure, and
health into a single measure rooted in economic and public health theory.

Several limitations to our approach warrant mentioning at the outset. First, we do
not explicitly account for morbidity spillover effects such as the cost of caregiver time
and the numerous costs associated with the loss of a spouse. Likewise, we abstract
from other potentially important inputs into elderly welfare such as social interac-
tions, bequests, and end-of-life care. Second, we estimate welfare based on common
preferences. Considering heterogeneity across individuals’ preferences could reduce the
welfare costs of inequality along some components. Finally, we assume institutions and
relevant policies remain fixed moving forward and past trends in elderly health, retire-
ment, and consumption continue into the future. For example, significant anticipated
changes to Social Security or Medicare programs or exponential advances in medicine
could alter our welfare measure, particularly for the younger cohorts we study.

The remainder of the paper is organized as follows. Section 2 outlines our welfare
model while Section 3 provides details of the data and empirical methods used in
our analysis. Section 4 discusses our welfare results including robustness to alternate
modeling assumptions. Finally, section 5 provides concluding remarks.

2 Welfare model
Our welfare concept aims to compare well-being across individuals of a given age j.
These individuals may differ along many dimensions due to their childhood environ-
ment, education, occupation, previous health behaviors, and numerous other factors.
We define individual welfare based on observed outcomes at age j and the potential
realization of outcomes in the future based on these multi-dimensional differences. Al-
though individuals are heterogeneous, we make welfare comparisons through a common
preference specification. These preferences are defined by an expected lifetime utility
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at age j for individual i given by:

E

 J∑
a=j

ψiaβ
a−ju (cia, lia, hia)


where c is consumption, l leisure, h health, and ψ is a survival indicator. Expectations
are taken with respect to the uncertainty in the evolution of consumption, leisure,
health, and mortality after age j.

We use a consumption-equivalent variation (EV) measure to quantify welfare dif-
ferences across individuals. This approach requires choosing a reference person as the
basis for our welfare comparisons. Welfare λij is then the proportion of the reference
individual’s consumption that must be maintained at every age starting from j (in
all possible realizations of the world and holding health and leisure fixed) that would
make them indifferent to facing the current and potential future outcome bundles of
individual i. For example, if person i is relatively poor and unhealthy, we may have
a welfare measure λij = 0.3. This implies the reference individual would be ex-ante
indifferent between maintaining 30% of their own consumption every period from age
j or receiving the outcome bundle of person i at age j and facing person i’s stochastic
evolution of consumption, leisure, health, and mortality profiles moving forward. As
this measure is based on potential outcomes over the remaining life, it encompasses the
cross-sectional inequality in outcomes at age j as well as the likelihood of persistence
and emergence of inequalities in future outcomes.

Let Uij (λ) denote the expected lifetime utility at age j from the outcome bundles
of individual i if consumption is multiplied by a factor λ at each age and realization of
the world:

Uij (λ) = E

 J∑
a=j

ψiaβ
a−ju (λcia, lia, hia)

 .
The consumption-equivalent variation measure of welfare for individual i, λij, is derived
through the condition:

Umj (λij) = Uij (1) (1)

where Umj refers to the expected lifetime utility from the outcome bundles of the
reference individual (m).

In our benchmark model we assume that preferences are additively separable be-
tween consumption and leisure and non-separable between health and the consumption-
leisure composite. The flow utility takes the following form:

u (c, l, h) = φ (h) [ū+ log (c) + ν (l)] . (2)

The additive separability between consumption and leisure allows for a simple decom-
position of welfare effects but we check the robustness of our results to more general
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preferences. Our treatment of health in the utility function follows from a large liter-
ature on quality-adjusted life years (QALYs) going back to the works of Klarman and
Rosenthal (1968); Fanshel and Bush (1970); Torrance et al. (1972); and Zeckhauser
and Shepard (1976). The central assumption is that health utility is a function of both
the length and quality of life. The QALY literature provides a framework to combine
these two aspects of health in a single index. Accordingly, preferences over health are
chosen such that period utility from whatever is regarded as the best possible health
state or “full health” equals one. In our framework, health function φ (h) ∈ [0, 1] scales
the utility from consumption and leisure such that φ (h) = 1 represents utility in the
perfect health state and φ (h) = 0 represents the dead state. At the same time, ψφ (h)
represents a measure of QALYs. For instance, ψφ (h) = 1 represents a year of life with
no morbidity; a single QALY.

Under preferences given in (2), welfare condition (1) may be rewritten:

log (λij) = ψ̃ (Uij (1)− Umj (1)) (3)

where ψ̃ is the reciprocal of discounted quality-adjusted life expectancy (QALE) of the
reference individual:

ψ̃ = 1
E
[∑J

a=j ψmaβ
a−jφ (hma)

] .
Let uia denote flow utility unadjusted for health at age a given outcome bundles i:
uia = ū+ log (cia)+ν (lia). Moreover, denote the expected value conditional on survival
with subscript ψ: Eψ [uia] = E [uia | ψia = 1]. Adding and subtracting

ψ̃
J∑
a=j

βa−j [E [ψiaφ (hia)]Eψ [uia] + E [ψmaφ (hma)] (Eψ [uia]− Eψ [uma])]

from the right-hand side of (3) and rearranging terms yields the following additive
decomposition of welfare:

log (λij) =ψ̃
J∑
a=j

βa−j [(E [ψiaφ (hia)]− E [ψmaφ (hma)])Eψ [uia] + Φ] QALE (4)

+ ψ̃
J∑
a=j

βa−jE [ψmaφ (hma)] (Eψ [log (cia)]− Eψ [log (cma)]) Cons. (5)

+ ψ̃
J∑
a=j

βa−jE [ψmaφ (hma)] (Eψ [ν (lia)]− Eψ [ν (lma)]) . Leisure (6)

where

Φ = (E [ψiaφ (hia)uia]− E [ψiaφ (hia)]Eψ [uia])
− (E [ψmaφ (hma)uma]− E [ψmaφ (hma)]Eψ [uma]) .

7



The first term in (4) is the the difference in quality-adjusted life expectancy weighted
by how much a healthy life year is worth—the expected flow utility from outcome
bundles of individual i. The Φ term is an adjustment for the uncertainty of health and
mortality over the life-cycle. Combined these provide the approximate contribution
to welfare of health and mortality relative to the reference individual. The final two
terms give the expected utility difference in consumption (5) and leisure (6) weighted
by the quality-adjusted life expectancy of the reference individual. These provide the
approximate contributions of consumption and leisure to welfare.

3 Data and methods
This section details the data used in our analysis, the dynamic forecasting model used
to simulate outcomes, and calibration of parameters used in the welfare model.

3.1 Data
The HRS is a longitudinal panel study surveying individuals in the U.S. over the age
of fifty and their spouses on a biennial basis. The study consists of seven primary
birth cohorts—the early HRS cohort (born 1931-1936), late HRS cohort (born 1937-
1941), AHEAD cohort (born before 1924), Children of Depression (born 1924-1930),
War Babies (born 1942-1947), early Baby Boomers (born 1948-1953), and mid-Baby
Boomers (born 1954-1959). The core survey was conducted for the early and late HRS
cohorts every other year starting from 1992 with the other cohorts added periodically
over subsequent waves of the survey. As such, a model period corresponds to two
calendar years and individuals are grouped in two-year age intervals. To be clear, our
welfare measure is constructed for each individual at age sixty or sixty-one, though our
model makes no distinction between the two and for brevity we refer to this as welfare
at age sixty.

3.1.1 Health outcomes, labor supply, and other characteristics

We use the RAND HRS data file (v.P), available through the HRS website, to ob-
tain data on labor supply, health, and mortality from 1992 to 2014.4 We also utilize
other individual characteristics including age, education, gender, race, birth cohort,
region, and occupation. We define leisure as time not spent in the labor market. As
our empirical focus is on individuals nearing the end of working life, we limit labor
considerations to the extensive margin by assuming an absorbing retirement decision.5

4Data available at http://hrsonline.isr.umich.edu.
5An extended model may include the intensive margin, partial retirement, and/or reentry into the

workforce but this comes with additional model complexity. Moreover, we find relatively small effects
of leisure on welfare in our empirical analysis and retirement is likely to be the first-order leisure effect
for this age group.
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We define retired individuals as those reporting less than 500 annual hours of work in
the current or any previous survey wave.6

We measure health h as a vector of objective morbidity indicators and a subjective
health assessment. Our primary morbidity measures include eight binary indicators
for ever having been diagnosed by a doctor with the following health problems—(1)
high blood pressure or hypertension; (2) diabetes or high blood sugar; (3) cancer or
a malignant tumor of any kind except skin cancer; (4) chronic lung disease except
asthma such as chronic bronchitis or emphysema; (5) heart attack, coronary heart dis-
ease, angina, congestive heart failure, or other heart problems; (6) stroke or transient
ischemic attack (TIA); (7) emotional, nervous, or psychiatric problems; and (8) arthri-
tis or rheumatism. We also include an indicator for ever reported difficulty with any
activity of daily living (ADL). Difficulty with ADLs are a commonly used health metric
among the elderly and include activities such as walking across the room, bathing, and
getting dressed.

As a final health measure we include self-rated health status reported on a five-
point scale from poor (one) to excellent (five). Self-rated health has been shown to
be predictive of mortality in the HRS and other datasets, even after controlling for
other health conditions, health behavior, and socioeconomic characteristics (Idler and
Benyamini, 1997; Stenholm et al., 2014). We hypothesize that people have private
information about their health over and above disease diagnosis. This may reflect the
severity of the disease or additional information on other health conditions. Finally,
mortality data is also available from the HRS, with participants’ death dates either
reported by spouses or coming from an exit interview.

3.1.2 Health utility

We use the Health Utilities Index Mark 3 (HUI3) instrument as the conceptual basis of
our health utility function φ (h) (see Horsman et al. (2003) for a detailed discussion on
the HUI3). This choice is motivated by two main features of the HUI3. First, it provides
a comprehensive description of health status that has been shown to be responsive to
changes in health over time (Barr et al., 1997; Furlong et al., 2001; Blanchard et al.,
2003). Second, it provides a direct estimate of QALYs which is our preferred measure
of health in this analysis.

The HUI3 questionnaire was included as a module for a subset of approximately
1,200 of the participants in the 2000 wave of the HRS with the associated utility scores
available through the HRS website.7 We use the HUI multi-attribute utility score
(hui3ou) in our analysis (see Furlong et al. (1998); Feeny et al. (2002) for details on
construction). It is a health related quality of life measure where death is defined by a
score of zero and perfect health by a score of one.8

6 We combine data on weekly hours worked and weeks worked per year to estimate annual hours
worked.

7Researcher contribution file HUI3 (v.1.0).
8Negative scores are possible and represent health states that are worse than death.
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3.1.3 Consumption

Consumption data comes from the Consumption and Activities Mail Survey (CAMS).
Starting in 2001, the CAMS was sent to a random sub-sample of HRS participants
during off years of the core survey. The CAMS collected household spending data
on durables, nondurables, transportation, and housing. We use cleaned RAND 2015
CAMS data file (v.2), which contains a constructed estimate of total household con-
sumption derived from the available spending data from 2001-2013.9 Broadly, house-
hold consumption was derived by estimating the per-period “usage” from consumer
durables, automobiles, and housing expenditures using a similar method as proposed
by Hurd and Rohwedder (2007).10 We subtract out-of-pocket health spending to cre-
ate an adjusted measure of household consumption.11 We use this adjusted household
consumption divided by the number of household members as our individual consump-
tion measure. As consumption data is only available between the core HRS waves, we
merge each CAMS wave with the HRS core data from the previous wave.12

A serious challenge in our analysis is missing consumption data. CAMS data is
only available for approximately 20% of HRS participants for the years 2000-2012.
However, closely related data is available across all survey waves including detailed
measures of wealth and income. We use this additional information to address missing
consumption data by using the multiple imputation method proposed by Honaker and
King (2010) for cross-sectional time-series data (see appendix A for details). We also
conduct robustness tests on our welfare results limiting the amount of imputed data
used.

3.2 Forecasting outcomes
Our expected lifetime utility approach to welfare requires the knowledge of all possi-
ble life-cycle path realizations for an individual. As only the realized outcome path is
observable in any longitudinal data set, we estimate a dynamic forecasting model to ap-
proximate the joint evolutionary process of consumption, leisure, health, and mortality
over time. Our forecasting model can be conceptualized as a panel vector autoregres-
sion (VAR) of order p. In our application to the U.S. elderly population, we use the
model to repeatedly simulate potential outcome paths for each individual, given a set
of initial (age sixty) conditions. Here we discuss the primary features of the forecasting

9Data and consumption construction details available at http://hrsonline.isr.umich.edu.
10The annual service flow for durables was roughly estimated as C×p where C was the total cost and

p the probability of purchase. Adjustments for interest payments, depreciation, and insurance costs
were done for estimating transportation consumption. The consumption of housing was estimated as
the sum of the rental equivalent of the owned house, property tax, homeowners insurance, and any
additional rent payments.

11Health spending includes health insurance, medication, health services, and medial supplies. We
use the CPI-U to convert all waves to 2010 dollars.

12This is the recommended procedure for use of the RAND CAMS data file and is also consistent
with the time structure of our dynamic forecasting model.
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VAR model and identifying assumptions. Appendix B lays out all specification and
estimation details.

Our basic forecasting model of health, labor, and consumption is illustrated in
Figure 1. At the beginning of each time period, morbidity status is updated based
on (correlated) random shocks and exogenous characteristics of an individual. Given
these morbidity conditions (and other exogenous characteristics), an individual then
updates their self-rated health status. Morbidities and self-rated health then affect
current period labor supply (i.e. the retirement decision). Finally, health outcomes
and labor supply impact current period consumption. This specification is consistent
with evidence that health affects the retirement decision (Currie and Madrian, 1999),
that consumption declines with retirement (Hall, 2009), and that health impacts eco-
nomic outcomes, particularly at older ages (Smith, 1999).13 Note that we posit each
of the morbidity states to contemporaneously influence labor supply and consumption
both directly and through changes in self-rated health. For example, diabetes may
affect an individual’s self-rated health status which in turn may lower contemporane-
ous consumption. However, diabetes may also influence consumption independently of
changes in self-rated health (e.g. due to higher anticipated future medical costs). Sim-
ilarly, self-rated health may influence consumption directly or indirectly by impacting
labor supply.

Labor supply and all health outcomes are permitted to influence the probability
of survival to the following period of life. Moreover, we allow current outcomes to
influence the evolution of outcomes moving forward (conditional on survival) through
the inclusion of general lagged effects. For example, retirement today may influence
self-rated health the following period. Moreover, lagged effects allow, for example, the
recent onset of heart disease to alter consumption more than if an individual has been
living with a heart disease diagnosis for an extended period of time.

It is important to recognize that we have opted to model life-cycle dynamics as
a statistical process to be estimated directly from the data. Alternatively, modeling
explicit dynamic maximization of lifetime utility would allow for a richer set of counter-
factual policy analyses when outcomes are endogenous. The major difficulty with the
latter approach arises from specifying and solving an intertemporal structural model of
endogenous savings, labor supply, and multivariate health behaviors and investments.
Convincingly mapping behaviors and investments to the endogenous and stochastic
evolution of health and labor productivity is particularly challenging. Given our focus
on inequality, incorporating sufficient heterogeneity across individuals is also of first or-
der importance and can be limited by computational concerns in a structural approach.
As our goal is to construct a welfare measure broadly reflective of observed data, we
believe a statistical forecasting approach is appropriate. In contrast, counterfactual
policy experiments (e.g. Medicare reform) would likely require a credible estimation of
underlying structural parameters. So while our model is not a fully specified structural

13In contrast, the effects of economic status on health appear concentrated during childhood and
young adulthood when health trajectories are being established (Smith, 1999).
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Figure 1: Forecasting model with one period lag

model, it can be viewed as approximating the underlying decision rules mapping state
variables to individual choices under a realized policy regime.

3.2.1 Simulations

Equipped with our forecasting model, our empirical analysis involves three steps.

1. We use data from the HRS to estimate the parameters of the forecasting model.
Here we use data on all individuals aged fifty and older from all available waves
of the HRS from 1992-2014. See appendix B.2 for details.

2. Using the parameter estimates and age sixty data as initial conditions, we repeat-
edly simulate remaining life-cycle paths for mortality, health, consumption, and
leisure for a sub-sample of the HRS respondents. This simulation sample includes
all individuals with age sixty data and requisite lagged data for simulations. See
appendix B.3 for details.

3. We embed the simulated data within our expected utility framework to construct
a measure of ex-ante welfare at age sixty for each individual in our simulation
sample.
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Our choice of age sixty for welfare comparisons is primarily driven by empirical consid-
erations. It provides a large enough sub-sample for analysis across four birth cohorts
included in the HRS (the EHRS, LHRS, War Babies, and early Baby Boomers.) af-
ter accounting for the sampling design of the survey and lagged data requirements of
our dynamic model. We compute the distribution of elderly welfare within a birth
cohort as well as compare welfare distributions across cohorts to examine how it has
changed over time. It is important to highlight that welfare differences across cohorts
will arise for two reasons. First, the distribution of age sixty initial conditions will
differ across cohorts. Second, the forecasting model includes a linear calendar year
trend and independent cohort effects on all outcomes.

3.3 Calibration of welfare model
Analysis using our welfare model requires calibration of preference parameters. These
include parameters of the functions φ (h) and ν (l) mapping health states and leisure
into flow utility. Additional parameters include the discount rate β and flow intercept
ū. Here we detail our calibration strategy and estimates.

We assume health utility depends linearly on our health state vector: φ (ht) = γht.
However, we bound φ (ht) ∈ [0, 1] to be consistent with our QALY framework. The
vector of utility weights γ is estimated by regressing the HUI3 utility score on self-rated
health and all morbidity indicators. Table 1 provides the linear regression results.14
Self-rated health has a strong and highly significant positive association with utility.
For example, moving from poor health (the reference category) to fair health improves
flow utility by 22.6 percentage points. Moving from very good to excellent health
increases utility only 1.8 percentage points. Conditions such as hypertension, diabetes,
and cancer have little independent effect on health utility after controlling for their
association with self-rated health and other co-morbidities. Other morbidities such
as stroke and arthritis have larger (and statistically significant) independent negative
effects. The most influential morbidity indicator is difficulty with ADLs, which lowers
utility an estimated 16.1 percentage points.

Leisure is normalized to one for retired individuals. We assume workers supply 2,000
annual hours to the labor market and set associated leisure to 0.66 = 1− (2000/5, 840)
where 5,840 = 16 hours a day × 365 days. Preferences over leisure are defined by ν (l) =
− θε

1+ε (1− l)
1+ε
ε , where ε is a constant Frisch elasticity of labor supply (the elasticity of

labor supply with respect to wage, holding the marginal utility of consumption fixed).
Empirical studies of the Frisch elasticity vary considerably, with estimates ranging
from 0.5 to nearly 2 (Chetty, 2012; Hall, 2009). We follow Jones and Klenow (2016)
and choose a benchmark value of ε = 1 while testing the sensitivity of our results to
alternate values. Likewise, we choose a discount factor β = 0.98 corresponding to an
annual discounting of one percent. Note that there is additional implicit discounting
in the expected utility framework due to mortality.

14Results are insensitive to use of a Tobit regression.
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Table 1: Estimated health utility weights (γ)

Measure Weight SE

Self-rated health
Fair 0.226 0.026
Good 0.313 0.026
Very good 0.403 0.027
Excellent 0.421 0.031

Hypertension 0.003 0.012
Diabetes -0.001 0.018
Cancer 0.010 0.017
Lung disease -0.020 0.022
Heart disease -0.032 0.015
Stroke -0.076 0.022
Psych problem -0.073 0.020
Arthritis -0.062 0.012
Diff with ADL -0.161 0.016
Constant 0.517 0.028
Notes: Results from regression of HUI3 score on self-rated
health and morbidities. SE denotes standard error. R2 = 0.48.
N = 1,089.

The standard first-order condition for the labor-leisure decision equates the marginal
cost and benefit of leisure: ul = w (1− τ)uc, where w is the wage rate and τ is the
marginal tax rate. Given our functional forms, the implied disutility weight on labor
supply θ = w (1− τ) (1− l)−1/ε /c. Using earnings and hours worked data from the
HRS and a marginal tax rate of 0.38 from 2002 (Barro and Redlick, 2011), we calculate
the implied θ for each working sixty year old in the sample. Selecting the median of
these values yields our benchmark θ = 8.37.15

Finally, we set the intercept in flow utility ū so that the median value of remaining
life for sixty year olds in our simulation sample is $50,000 per QALY.16 In a review of the
literature, Ryen and Svensson (2015) estimate mean and median values across studies
of approximately $98,000 and $32,000. Traditional values in the U.S. often range from
$50,000 to $100,000 (Kaplan and Bush, 1982). Using $50,000 as our benchmark and
normalizing consumption to thousands of 2010 dollars gives ū = −0.34.17

15As noted by Jones and Klenow (2016), this calibration strategy implicitly invokes wedges (i.e.
labor market frictions) to explain individual deviations from the static first-order condition. Note also
that each imputed data set was calibrated separately and received unique values for θ and ū. The
values reported here are the average across the imputed data sets.

16The value of life per QALY at age j is given by V OLj/E
[∑J

a=j ψaβ
a−jφ (ha)

]
where V OLj =

Uij (1) cj .
17With log consumption utility, it is possible for an individual to obtain negative expected remaining

lifetime utility in this framework but this occurs for less than 0.4% of our sample. Welfare results are
qualitatively insensitive to excluding these individuals.
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4 Welfare results
Our simulation sample for welfare analysis includes four birth cohorts—early HRS
(EHRS), late HRS (LHRS), War Babies, and Baby Boomers. We use the EHRS cohort
as our benchmark group as it is the earliest of the four and contains the longest panel
of available data. The reference person for all welfare calculations is the individual
with the age sixty initial conditions that yield the median expected lifetime utility
within the EHRS cohort. The same reference person is used to calculate welfare for
the later LHRS, War Babies, and Baby Boomers cohorts. This approach allows for
direct comparison of welfare across cohorts as the reference person is held fixed. At the
end of this section, we check robustness of welfare estimates to the choice of reference
individual as well as other modeling assumptions.

4.1 Elderly welfare inequality
We begin by examining the distribution of our consumption-equivalent measure of
welfare across the sample of sixty year olds from the EHRS cohort. The first row in
Table 2 provides different summary measures of welfare inequality in our fully specified
“benchmark” model. In order to assess the importance of poor health on our welfare
calculations, we also provide measures where we exclude the utility cost of less than
perfect health from preferences (i.e. φ (h) = 1 ∀h). The results from this model are
labeled as “no health” in the table.

Table 2: Summary measures of welfare inequality at age sixty for initial HRS cohort

Measure Gini 10/50 ratio 90/50 ratio ρ

Benchmark λ 0.544 0.234 3.774
No health λ (φ (h) = 1) 0.453 0.335 2.831 0.972
Notes: Estimates use base year respondent analysis weights. No health measure removes health from flow utility.
Spearman’s rank correlation between the two welfare measures denoted by ρ.

There is substantial variation in welfare across individuals—the benchmark Gini
coefficient is 0.544. Moreover, welfare at the tenth percentile of the distribution is only
23% of the median welfare while that of the ninetieth percentile is over 3.7 times higher
than the median. Ignoring the utility costs of poor health largely preserves the rank
ordering of welfare (ρ = 0.972) but significantly under-estimates the inequality—the
Gini coefficient is under-estimated by about 17%. Moreover, this morbidity bias occurs
at both ends of the distribution. For example, relative to our benchmark measure,
welfare at the tenth percentile increases to 33% of the median while that at the ninetieth
falls to under three fold.

The difference in welfare measures between the two models suggests substantial
and varied individual utility costs of living with poor health and morbidities among
the elderly. Figure 2 plots remaining life expectancy at age sixty against the ratio
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of QALE to life expectancy for each individual in the EHRS cohort.18 The positive
correlation implies those with higher life expectancy also expect better health over
remaining life. For example, those with a remaining life expectancy of 30 years have
a quality-adjusted life expectancy of about 24 healthy life years—or about 80%. In
contrast, those at the bottom end of the distribution expect greater utility losses from
poor health (with considerably more variability). For example, those with a remaining
life expectancy of 10 years expect anywhere from about 3 to 7 quality-adjusted life
years.
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Figure 2: Life expectancy and quality-adjusted life expectancy (QALE) at age sixty

We turn now to the welfare impact of QALE relative to consumption and leisure.
Table 3 shows welfare and its decomposition averaged within each decile of the welfare
distribution. Consumption and QALE are the largest source of welfare loss for those in
the bottom of the distribution. Low consumption and quality-adjusted life expectancy
costs the bottom decile an average of 81.8 and 106.9 log points in welfare relative to
the median individual. Higher leisure adds a comparatively modest 6.7 log points to
welfare. In contrast, the top of the distribution experiences the highest consumption
and quality-adjusted life expectancy, though marginally less leisure.

Recall that welfare for each individual is estimated using potential outcome bundles
of a reference person. While the reference individual has the median expected lifetime
utility by definition, their expected levels of consumption, leisure, and quality-adjusted
life expectancy could be somewhat arbitrary. Comparing average log point gaps across
deciles provides a more robust examination of the strength of the relative components
across the welfare distribution. For example, the log point gap in consumption between

18Life expectancy at age j defined by E
[∑J

a=j ψa

]
and QALE as E

[∑J
a=j ψaφ (ha)

]
.
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the highest and lowest decile is 169.6 = 87.8 + 81.8. The analogous gap for QALE
is 198.6 (and −7.2 for leisure). In other words, compared to consumption, QALE
differences explain about 17% more of the welfare gap between the highest and lower
deciles. Overall, decomposition results suggest the strongest driver of welfare inequality
are differences in health and mortality followed by consumption differences.

Table 3: Mean welfare by decile of distribution

Decomposition

Welfare Decile Mean λ Mean log λ Consumption Leisure QALE

Lowest 0.171 -1.820 -0.818 0.067 -1.069
2nd 0.300 -1.227 -0.469 0.039 -0.797
3rd 0.458 -0.792 -0.310 0.027 -0.509
4th 0.647 -0.441 -0.184 0.013 -0.270
5th 0.871 -0.142 -0.060 0.005 -0.087
6th 1.158 0.143 0.053 0.001 0.089
7th 1.544 0.429 0.185 0.003 0.241
8th 2.085 0.727 0.312 -0.002 0.417
9th 3.026 1.090 0.468 -0.004 0.626
Highest 7.248 1.789 0.878 -0.005 0.917

Notes: Estimates use base year respondent analysis weights.

In order to see the pattern of health and consumption driving the welfare gaps,
Figure 3 plots quality-adjusted life expectancy against annual consumption at age sixty
for individuals in the top and bottom deciles of the welfare distribution. A majority
of sixty year olds in the highest decile had a QALE of over 20 years. There was more
substantial variation in annual consumption in the group with values ranging from
around $20,000 to more than $100,000. This suggests health as the major driver of
welfare at the top end of the distribution. A majority of individuals in the lowest decile
had annual consumption under $30,000 and a QALE of less than 10 years. However,
some had relatively higher QALE but low welfare due to very low consumption.19

Finally, Figure 4 plots average expected life-cycle profiles for select welfare deciles to
gain a sense of the differences across individuals. Consumption, leisure, and health gaps
are largest at age sixty and gradually decline as individuals age. However, substantial
gaps remain for consumption and health even among individuals who survive into
their late nineties. Over the entire remaining life-cycle, the gaps in consumption are
relatively small between the first and fifth deciles compared to the much higher average
consumption in the top decile. In contrast, the health and leisure gaps are substantially
larger between the bottom and middle deciles with a smaller difference between the
middle and the top.

19To be clear, there is a strong positive correlation overall between consumption and QALE. The
negative relationship within deciles in Figure 3 is due to restricting to a given decile of the welfare
distribution. For example, one only remains in the lowest decile with high QALE if consumption is
very low.
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Figure 3: Age sixty consumption and QALE by decile of welfare distribution
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4.2 Welfare over cohorts
We next examine how welfare has changed across time by comparing individuals in the
EHRS cohort (reaching age sixty between 1992-1996) to the LHRS (1997-2001), War
Babies (2002-2007), and Baby Boomers (2008-2013). Recall that aggregate welfare
differences across cohorts stem from two sources—the distribution of age sixty initial
conditions, and a time trend and cohort specific intercept in all modeled outcome
forecasts.

Table 4 provides summary welfare measures for each cohort. There was an increase
in both median and mean welfare over the first three cohorts. However, while mean
welfare also increased betweenWar Babies and Baby Boomers, median welfare declined,
suggesting an unequal shift in the welfare distribution. The reported disparity measures
provide further evidence of a sustained increase in welfare inequality over all four
cohorts. Relative to the EHRS, the welfare Gini rose 11.4% for LHRS, 18.2% for War
Babies, and 23.9% for Baby Boomers.20 At the bottom end of the distribution, the
welfare of the tenth percentile declined from 23.4% of the median in the EHRS to
19.6% among Baby Boomers. The welfare at the top also pulled further away from
the center—the 90/50 ratio increased more than 50% between the EHRS and Baby
Boomers.

Table 4: Summary welfare measures by cohort

Cohort Median λ Mean λ Gini 10/50 ratio 90/50 ratio

EHRS 1.000 1.750 0.544 0.234 3.774
LHRS 1.067 2.283 0.606 0.210 4.667
War Babies 1.122 2.688 0.643 0.196 5.159
Baby Boomers 0.991 2.799 0.674 0.196 5.727
Notes: Estimates use base year respondent analysis weights.

Table 5 provides the decomposition of mean log welfare for each of the four co-
horts. The gain in mean welfare for the LHRS over the EHRS cohort was driven
by an average increase of 4.5 log points from consumption (5.0 − 0.5) and 5.0 log
points from quality-adjusted life expectancy (4.4 + 0.6). There was also a 0.2 log
point decline in average welfare due to delayed retirement and consequently less leisure
(1.4 − 1.2). Significant improvements in health and longevity increased mean welfare
for War Babies over the LHRS cohort despite a small decline from consumption. Com-
paring Baby Boomers to War Babies, the decomposition reveals that while health and
longevity continued to improve—average QALE contribution to welfare rose one log
point (9.6− 8.6)—consumption declines cost average welfare 9.7 log points (7.7 + 2.0).
The consumption decline is presumably driven by the timing of the 2008 recession,
which hit when Baby Boomers were in their late fifties. Moreover, as we will show
below, while the average log consumption declined for Baby Boomers (and to a lesser

20The pattern of increased inequality over time also holds when examining two-year birth cohorts
(see appendix Figure 18).
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extent War Babies), this was entirely due to losses at the bottom end of consumption
distribution.

Table 5: Welfare decomposition by cohort

Decomposition

Cohort Mean log λ Consumption Leisure QALE

EHRS -0.025 0.005 0.014 -0.044
LHRS 0.068 0.050 0.012 0.006
War Babies 0.115 0.020 0.009 0.086
Baby Boomers 0.022 -0.077 0.003 0.096
Notes: Estimates use base year respondent analysis weights.

Figure 5 provides the distribution of log welfare, expected remaining lifetime con-
sumption, life expectancy, and QALE at age sixty across cohorts for closer examination.
The welfare distribution became flatter and more skewed over time demonstrating the
rise in welfare inequality. Compared to the EHRS cohort, welfare improved for the top
end of the LHRS and War Babies distributions but declined slightly for the bottom
end. The distribution of welfare for Baby Boomers was similar to War Babies at the
top but a fatter left tail implies a more substantial welfare decline for the bottom end.
Expected remaining lifetime consumption follows a similar pattern as the welfare dis-
tribution with initial gains concentrated at the top end for the LHRS and War Babies
followed by some declines concentrated in the bottom end for Baby Boomers.

While life expectancy has shown broad improvements over time, the distribution
has increased in skewness. This implies mortality gains have disproportionately bene-
fited those in the top of the distribution. This is consistent with the existing evidence
of increasing socioeconomic gradients in mortality. When adjusting life expectancy
for quality of health, the distribution becomes more disperse. The fattening left tail
in QALE relative to previous cohorts shows that life expectancy gains are even out-
weighed by health losses at the bottom end of the distribution. Overall, cohort results
demonstrate an increase in welfare inequality driven primarily by a combination of
increasing gaps in consumption and quality-adjusted life expectancy.

4.3 Comparison with other measures of well-being
Our welfare measure incorporates inequality of various components of well-being into a
single metric. Moreover, our measure captures the static welfare effect of each compo-
nent at age sixty as well as their expected joint dynamic influence throughout remaining
life. As a comparison, Table 6 provides inequality statistics across alternate measures
of well-being for the age sixty population in the EHRS cohort. The final column pro-
vides Spearman’s rank correlation coefficient between our welfare measure and each
alternative measure.

Cross-sectional income inequality is lower than welfare inequality, though income
does well predicting welfare at the bottom end of the distribution—the 10/50 ratio is
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Figure 5: Distribution of welfare, consumption, and life expectancy over cohorts

Table 6: Comparing measures of inequality at age sixty

Measure Gini 10/50 ratio 90/50 ratio ρ

Welfare (λ) 0.544 0.234 3.774
Income 0.492 0.225 2.788 0.508
Consumption 0.424 0.359 2.652 0.573
Health utility 0.109 0.628 1.126 0.745
Flow utility 0.235 0.433 1.533 0.767
Life expectancy 0.132 0.630 1.231 0.818
QALE 0.176 0.483 1.271 0.872
Expected lifetime consumption 0.364 0.383 2.125 0.921
Notes: Estimates for EHRS cohort using base year respondent analysis weights. Income, consumption, and health
utility are cross-sectional measures at age sixty. Flow utility is calculated using cross-sectional consumption, leisure,
and health along with our benchmark preferences. Spearman’s rank correlation between λ and each measure denoted
by ρ.

similar in the two measures. However, the rank correlation of 0.50 between welfare and
income is quite low. So while income may provide a reasonable measure of aggregate
inequality, relative income and welfare can be quite different at the individual level.
Cross-sectional consumption at age sixty provides a somewhat better ranking of indi-
vidual welfare, but under-estimates welfare inequality substantially more than income.
The improved rank correlation is perhaps unsurprising as consumption directly enters
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preferences used in our welfare model. Age sixty health alone severely under-estimates
aggregate welfare inequality, although it provides a better individual ranking than in-
come or consumption. This speaks to the substantial influence of health and mortality
in determining the distribution of our welfare measure.

The next row of Table 6 provides an estimate of welfare incorporating age sixty
consumption, leisure, and health into our benchmark flow utility specification (2)
but ignoring the subsequent life-cycle dynamics. Incorporating all three components
in a static framework provides a better ranking of individual welfare, but ignoring
the dynamics substantially under-estimates welfare inequality. For example, the Gini
of age sixty flow utility is only 43% of that based on our dynamic welfare measure.
The next two rows show that isolated dynamic health measures—life expectancy and
QALE—continue to improve the rank correlation but under-predict welfare inequality.
Finally, when combining longevity and consumption dynamics through estimating ex-
pected lifetime consumption, the rank correlation reaches 0.92, but inequality continues
to be significantly lower than our more complete welfare measure.

Figure 6 further illustrates the nuanced relationship between health and economic
outcomes by plotting quality-adjusted life expectancy against the ratio of consumption
to welfare at age sixty. There is a clear negative correlation between the two measures
with consumption over-predicting welfare for those of poor health and under-predicting
for those of good health. This pattern is consistent with the relatively modest rank
correlation between welfare and consumption. A key takeaway here is even in cases
where economic outcomes provide a reasonable approximation to aggregate welfare
inequality, they may still fail to be an adequate welfare measure at the individual level.
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Figure 6: Variation in relationship between age sixty consumption, welfare, and QALE
Notes: Ratio of relative consumption to welfare given by (ci/cm) /λ where c is age sixty consumption. Plot includes
EHRS cohort only.
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Finally, Table 7 provides Gini coefficients by cohort for age sixty distributions of our
welfare and other measures. Welfare inequality has grown significantly more than age
sixty cross-sectional income, consumption, or health inequality. This implies disparity
measures based on economic outcomes such as income or consumption have become
worse estimates of welfare inequality over time (as inequality has increased) at least
partially due to growing gaps in health and mortality.

Table 7: Gini coefficients of welfare measures over cohorts

Cohort Welfare (λ) Income Consumption Health
utility

QALE ELC

EHRS 0.544 0.492 0.424 0.109 0.184 0.364
LHRS 0.606 0.532 0.442 0.123 0.198 0.390
War Babies 0.643 0.489 0.443 0.129 0.203 0.403
Baby Boomers 0.674 0.503 0.449 0.136 0.215 0.427
Notes: Estimates use base year respondent analysis weights. Income, consumption, and health utility are cross-sectional
measures at age sixty. QALE is quality-adjusted life expectancy at age sixty. ELC is expected lifetime consumption at
age sixty.

4.4 Robustness
Table 8 provides sensitivity results estimated under alternate modeling assumptions
from our benchmark specification. While the magnitude of inequality measures are
somewhat sensitive to underlying assumptions, the finding that welfare inequality is
substantial and has grown over time is quite robust across specifications. Moreover, the
rank correlations between welfare and alternate well-being measures remain relatively
stable. We discuss each of these robustness checks in more detail below.

Table 8: Robustness results

Gini by cohort

λ 10/50 λ 90/50 EHRS LHRS WB BB ρ

Benchmark 0.234 3.774 0.544 0.606 0.643 0.674 0.573
Compensating variation 0.059 2.856 0.505 0.533 0.546 0.566 0.556
Reference 90th %tile 0.314 2.842 0.446 0.500 0.533 0.555 0.573
$100k per QALY 0.076 6.465 0.670 0.731 0.763 0.784 0.502
β = 0.90 0.256 3.130 0.491 0.539 0.567 0.590 0.616
ε = 0.5 0.231 3.726 0.539 0.600 0.637 0.665 0.572
ε = 2 0.239 4.074 0.560 0.620 0.658 0.692 0.570
θ = 15.9 0.258 3.539 0.525 0.584 0.621 0.652 0.571
Survival adjusted 0.177 4.015 0.568 0.618 0.648 0.674 0.573
Non-imputed data 0.242 3.543 0.522 0.568 0.591 0.627 0.603
Notes: Estimates use base year respondent analysis weights. War Babies denoted by WB and Baby Boomers by BB.
Spearman’s rank correlation between welfare and cross-sectional consumption at age sixty denoted by ρ.
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4.4.1 Compensating variation

Our benchmark welfare measure is calculated in terms of consumption equivalent vari-
ation (EV). Alternatively, we could use the inverse of a compensating variation (CV)
measure—what share of individual i’s consumption would the median individual need
to be ex-ante compensated to make them indifferent to receiving the current and po-
tential future outcome bundles of individual i. Consumption-compensating variation
satisfies:

log
(
λCVij

)
= Uij (1)− Umj (1)
E
[∑J

a=j ψiaβ
a−jφ (hia)

]
where the only difference with the EV measure is the denominator is now the QALE for
individual i as opposed to the median individual. The new measure effectively weights
the benefit/loss of a consumption change by the flow utility of individual i as opposed
to the median. This implies gaps in QALE are more detrimental to welfare for those
below the median and less beneficial for those above.

The second row of Table 8 shows the sensitivity of inequality measures to the
choice of consumption variation metric. Welfare at the tenth percentile is 23.4% of
the median based on the baseline EV measure, compared to only 5.9% using CV.
CV welfare estimates are also substantially lower at the top end of the distribution.
On net, the decline in welfare at the very top of the distribution was strong enough
to result in a lower Gini coefficient compared to the EV measure. However, the CV
based measure still finds welfare inequality increased over cohorts, was higher than
cross-sectional income or consumption inequality, and maintained only a modest rank
correlation with consumption.

4.4.2 Reference individual

The third row of Table 8 shows sensitivity of results when using the individual at the
ninetieth percentile of welfare in the EHRS cohort as the reference person instead of
the median. The magnitude of inequality measurements are sensitive to the reference
individual chosen—the welfare Gini falls to a lower but still substantial 0.44. This puts
aggregate welfare inequality closer in line with cross-sectional income and consumption
at age sixty. Nonetheless, individual rank correlation does not change (by definition)
and a substantial increase in inequality across cohorts remains.

4.4.3 Preference parameters

Next we examine the impact of assuming a higher monetary value per QALY to cali-
brate the flow intercept ū. Ryen and Svensson (2015) document substantial variation
across estimates of willingness to pay for a QALY, most notably with conversions based
on revealed preferences of the value of statistical life (VSL) averaging 5-7 times higher
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than those based directly on stated preferences.21 As a robustness check, we double our
target to $100,000 per QALY, which aligns more closely with VSL studies. The change
results in a higher ū placing additional weight on health and longevity differences in
the welfare calculations. Inequality is substantially higher across all measurements but
continues to increase across cohorts. The rank correlation with consumption also falls
to 0.50.

The next four rows in Table 8 indicate sensitivity of other preference parameters.
With a lower time discount rate β, our measure indicates somewhat less welfare in-
equality as differences in mortality and future consumption and health declines are
less important. However, the pattern of main results hold. Main conclusions are also
insensitive to alternate values of the Frisch elasticity of labor supply ε or altering the
disutility weight on labor supply θ such that the first order condition holds for the
sixty year old at the 75th percentile of the distribution (as opposed to our benchmark
choice of the median).

4.4.4 Survival to sixty

An additional factor driving results is differential survival rates to age sixty across
cohorts. For example, if medical advances are keeping sick individuals alive to age
sixty in later cohorts that would be deceased in earlier cohorts, this would partially
explain the growing welfare inequality. Using survival tables from the Social Security
Administration (Bell and Miller, 2005), we estimate the EHRS cohort would be about
6.7% larger at age sixty if the cohort had realized the same survival rates as the
Baby Boomers. In order to examine the quantitative influence of this channel, we
increase the cohort size of the EHRS by 6.7% and assign these individuals a remaining
lifetime utility of zero. We preform an analogous adjustment for the LHRS and War
Babies, using cohort size increases of 4.0% and 1.9%. The “survival adjusted” results
are provided near the bottom of Table 8. By construction, the inequality estimates
increase for the first three cohorts. However, the increase in inequality over cohorts
remains.

4.4.5 Imputed data

The last row in Table 8 provides results when using only raw data for estimating our
forecasting model (i.e. we exclude imputed consumption and other data).22 The cost of
this estimation strategy is a loss in precision and potential bias due to any systematic
pattern in missing observations. Moreover, we continue to use the imputed data for
initial age sixty conditions for simulations to ensure there is enough data to conduct

21The VSL studies reviewed by Ryen and Svensson (2015) are by definition measuring value of
length of life, while stated preference studies elicited willingness to pay for pure quality of life im-
provements, pure length of life, or a mixture of both.

22Here we use only a single lag in the consumption equation (instead of the benchmark two) to
preserve observations.
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our cohort comparisons and so welfare estimates remain representative of the larger
population. With only non-imputed data used in the forecasting model, estimated
welfare inequality decreases somewhat in each cohort, but inequality continues to rise
across cohorts. This demonstrates that overall patterns are not an artificial result of
the underlying dynamics of the imputation model.

4.4.6 Form of flow utility

Finally, we examine the robustness of results to a more general form of flow utility
given by:

u (c, l, h) = φ (h)
[
ū+ c1−γ

1− γ

(
1− (1− γ) θε

1 + ε
(1− l)

1+ε
ε

)γ
− 1

1− γ

]

which reduces to our benchmark case with γ = 1. These preferences follow those
proposed by Trabandt and Uhlig (2011) and Jones and Klenow (2016) which maintain
a constant Frisch elasticity of labor supply. With γ > 1 there is more curvature over
consumption and the welfare cost of consumption inequality increases. However, leisure
and consumption become less substitutable implying welfare inequality may be reduced
if the inputs are strongly negatively correlated across individuals.

Table 9: Robustness results

EV 10/50 ratio by cohort CV 90/50 ratio by cohort

EHRS LHRS WB BB EHRS LHRS WB BB ρ

γ = 1 0.234 0.210 0.196 0.196 2.856 3.161 3.211 3.563 0.573
γ = 1.5 0.207 0.180 0.163 0.165 3.567 3.915 3.829 4.158 0.520
γ = 2 0.231 0.197 0.163 0.167 4.237 4.500 4.183 4.502 0.471
Notes: Estimates use base year respondent analysis weights. War Babies denoted by WB and Baby Boomers by BB.
Spearman’s rank correlation between EV measure of welfare and cross-sectional consumption at age sixty denoted by
ρ.

We examine sensitivity of results to increases in curvature to γ = 1.5 and γ = 2.
However, with higher curvature over consumption than the benchmark, it is no longer
possible to calculate EV welfare for those at the very top of the distribution as no
amount of consumption increase would provide the same expected life-time utility to
the median individual. Likewise, using the CV measure is not possible for the worst off
as no amount of consumption would be enough to compensate the median individual.
Under these feasibility considerations, Table 9 provides the 10/50 welfare ratio based
on the EV measure and the 90/50 ratio based on CV for alternate curvatures.

The 90/50 ratio monotonically increases with the curvature parameter suggesting
welfare inequality may be under-predicted in the benchmark case. The change in 10/50
ratio is non-monotonic but both robustness experiments suggest increased inequality
relative to the benchmark as well. Looking more closely across cohorts, the 10/50 ratio
continues to decrease or be stable over time regardless of the curvature value. The
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90/50 ratio increases over cohorts at higher curvatures, with the exception of moving
from the LHRS cohort to War Babies. To understand this change, note that con-
sumption inequality was relatively stable between the LHRS and War Babies, while
health inequality increased (see Table 7). With low curvature in the benchmark case,
consumption inequality plays a lesser role in determining welfare inequality. So the
increase in health inequality dominates the benchmark and the 90/50 welfare ratio
increases slightly between the cohorts. However, the welfare cost of health inequality
decreases with γ, resulting in the observed decline in 90/50 ratio at higher curva-
tures. While these patterns are inconclusive, they suggest the increase in inequality
across cohorts could be somewhat muted with higher curvature, at least between the
LHRS cohort and War Babies. Lastly, there is some decline in the rank correlation
with consumption as leisure and consumption are less substitutable in welfare and are
negatively correlated across individuals.

5 Conclusion
We propose and estimate an individual measure of welfare incorporating heterogeneity
and uncertainty in future consumption, leisure, health, and mortality at age sixty.
Our measure broadly indicates that inequality is larger and has increased more rapidly
than suggested by other welfare metrics such as income or consumption. We also find
health and mortality gaps are more important than consumption in explaining welfare
inequality among the elderly in our sample, with leisure playing a comparatively minor
role. Moreover, health at age sixty is a better indicator of individual well-being rank
than income or consumption.

While there are limitations to our approach, the framework provides important in-
sight and ample opportunities for further analyses. As our framework allows estimation
of welfare for each individual, it is possible to compare welfare distributions across var-
ious sub-groups of the population (see appendix C for examples of welfare breakdowns
by education, region, gender, and race). While we focus on welfare at age sixty, changes
in welfare can also be calculated and analyzed over the elderly life-course, for example
comparing our measure with welfare at age seventy or eighty. Our measure could also
be used as an outcome in designed or natural experiments, for example to examine
the effect of healthcare policy on the distribution of welfare. Moreover, our framework
could be extended in multiple directions to examine additional cohorts, younger ages,
or welfare inequality differences across countries.
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A Imputation of consumption and other missing
data

The CAMS collected consumption data for approximately 20% of the HRS sample
starting from 2001. In order to estimate our dynamic panel models and construct sim-
ulated life-cycle paths for the remaining sample, we multiply impute their consumption
data. We use the computationally attractive EM-bootstrapping algorithm allowing for
cross-sectional time-series data proposed by Honaker and King (2010) and implemented
through the freely available Amelia II software program (Honaker et al., 2011). This
approach provides m separate complete datasets in which all analyses are conducted
independently. Results are then combined into a single estimate.23 We set m = 12 but
test the sensitivity of results to higher values of m.

There are two primary assumptions underlying the proposed imputation method.
First, the complete data is assumed be multivariate normal. While this may seem
somewhat restrictive, it has been shown that multivariate normal imputation models
provide an adequate approximation to the true underlying distribution in a variety of
settings, even in the presence of categorical or mixed data (Schafer, 1997). Second is the
standard required assumption that data is missing at random (MAR)—any nonrandom
pattern of missingness can be accounted for by the observed data included in the model.
Note this is less restrictive than the requirement data be missing completely at random

23Assuming asymptotically normally distributed statistics implies a simple average across datasets
(Rubin, 2004).
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(MCAR). In practice, we know that missing data is not at random, at least for years
falling outside of the CAMS window (1992-1998 and 2014). However, by including a
rich set of related covariates in the imputation model, we argue that missing data can
be treated as MAR in the statistical sense. While there is no way to empirically test
this assumption, we run a number of diagnostic tests to check the credibility of the
imputation model in search of any obvious deficiencies.

Variables from the RAND HRS data file (v.P) included in our imputation model
are age (AGEY_E), aged squared, number of household members (HHRES), total
wealth (ATOTA), wealth squared, log household income (ITOT), log income squared,
and dummy indicators for labor force status (LBRF), gender (RAGENDER), race
(RARACEM), education (RAEDUC), marital status (MSTAT), census division (CEN-
DIV), 1980 census occupation code for longest reported tenure (JLOCC), self-reported
health (SHLT), ADLs (ADLA), and eight doctor diagnosed health conditions (HIBPE,
DIABE, CANCRE, LUNGE, HEARTE, STROKE, PSYCHE, ARTHRE). The model
also included our constructed indicator for retirement and hours worked. In order to
allow for the time-series structure of the data, lags and leads of consumption, wealth,
income, and hours worked are included in the imputation model. While we are primar-
ily imputing consumption data, Amelia II also provides imputed values for all other
missing variables included in the model.24

A useful check of the viability of the imputation model is to compare the distri-
butions of the imputed values against the observed data. While there is no need for
these distributions to be the same, the comparison gives a sense of the plausibility of
imputations (Honaker et al., 2011). Figure 7 plots the density of observed and im-
puted values of consumption. The imputed values are taken as the mean across the m
imputed datasets. The comparison suggests no unusual pattern in the distribution of
imputed values, providing cursory support of model plausibility.

Another diagnostic tool proposed by Honaker et al. (2011) is overimputing. While
it is impossible to examine if the imputed values are close to the missing values they
are attempting to recover, observed values can be used to test the accuracy of the im-
putation process. Overimputing sequentially treats each of the observed consumption
values as if they were missing and then imputes their values several hundred times.
This provides a mean imputed value and confidence interval that can be compared
to the actual observed data. Figure 8 plots all observed consumption values against
the mean of their imputed values and the associated 95% confidence interval. A vi-
sual inspection of the diagnostic plot suggests the model does fairly well predicting
values other than the lowest values. However, few individuals lie in this extreme end
of the distribution—less than 0.3% of the observations fall below zero ($1,000 annual
consumption). Honaker et al. (2011) suggest a good imputation model should have
at least 90% of the confidence intervals containing the true values (i.e. 90% of the

24If the observed data used in the imputation model has a poorly behaved likelihood, the conver-
gence of the EM algorithm could be sensitive to the staring values chosen. We found no evidence
of local convergence issues using the overdispersed start values diagnostic test proposed by Honaker
et al. (2011).
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Figure 7: Distributions of observed and imputed values of consumption

confidence intervals should cross the y = x line). In our case, 94% of the observed
values are within the confidence bounds.

Figure 8: Overimputed values of consumption

As a final examination of the imputation model we try to get a sense of how it
predicts missing values in a time series. While it is infeasible to examine the imputed
time trends for each individual in the sample, Figure 9 provides time series for a random
sub-set of ten individuals with at least one observed consumption value. The mean
of the imputed values are plotted in red with 95% confidence bounds (based on 100
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imputations). The isolated black points without bounds are observed data. Broadly,
the imputed values fall in line with the observed data and no egregious outliers emerge.
Note that prior to wave five (2000) and for wave twelve (2014) all values are imputed
as these waves are outside of our CAMS data window.
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Figure 9: Observed and imputed consumption over time for a random sub-sample

35



B Forecasting model
In this appendix we lay out our forecasting model and underlying assumptions. We
also detail our estimation and simulation procedures. For additional applications of
this framework see Miller et al. (2019), which uses a simplified version of the model to
look more closely at the relationship between health and elderly life-cycle consumption.

B.1 Panel VAR representation
While we allow for multiple lags in estimation of the forecasting model, the following
VAR(1) demonstrates the key features of the framework. Let Yit be a vector of outcomes
for individual i at time t that includes log consumption c, retirement indicator r, self-
rated health s, and our n = 9 morbidity states given by n× 1 vector M . Conditional
on survival, the outcomes evolve according to the structural VAR(1) model:

AYit = BYit−1 + εit,

where ε is a vector of normally distributed shocks with mean zero. The shocks are
assumed to be independent and identically distributed (iid) across individuals and time
and independent across outcomes. The main diagonal terms of matrix A are scaled
to one and we assume in our benchmark model that all parameters are homogeneous
across individuals and time (e.g. Ait = A ∀i, t).

We estimate our model in four “blocks” of outcomes—the morbidity block consisting
of n outcomes, the self-rated health block (one outcome), the retirement block (one
outcome), and the consumption block (one outcome). The unrestricted model can be
written in block matrix form as:




1 −a23 −a24

−a32 1 −a34

−a42 −a43 1

−A11

−A21

−A31

−A41

−A12 −A13 −A14n

3

n 3 



Mit

sit
rit
cit

=




b22 b23 b24

b32 b33 b34

b42 b43 b44

B11

B21

B31

B41

B12 B13 B14

n 3 



Mit−1

sit−1
rit−1
cit−1

+





ε1,it

ε2,it

ε3,it

ε4,it

,

where n× n matrix A11 has main diagonal terms scaled to one.
As illustrated in Figure 1, the causal pathways we propose suggest a block recursive

system. Specifically, we assume that A12 = A13 = A14 = 0 in the morbidity block, a23 =
a24 = 0 in the self-rated health block, and a34 = 0 in the retirement block. In other
words, we assume the contemporaneous causal pathway runs from morbidities to self-
rated health to retirement to consumption. However, we allow health and retirement
to affect future outcomes through lagged effects (though we assume there is no such
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feedback from consumption and set B14 = b24 = b34 = 0). Block triangulation of the
system eliminates simultaneity across blocks and allows for block-by-block estimation.25

B.1.1 Exogenous characteristics

We also include a k× 1 vector of exogenous individual characteristics Xit as predictors
in our model. The VAR(1) model with exogenous regressors takes the following form:

AYit = BYit−1 + CXit + εit. (7)

Exogenous characteristics include dummies for age, education, gender, race, census di-
vision, census occupation code, and birth cohort. We also include a linear calendar year
trend and post-2008 indicator to help account for the influence of the great recession
on outcomes.26 Lastly, we include a time invariant individual unobserved endowment
π in the consumption equation. The endowment π is modeled as a fixed effect with
no restriction on the correlation with other model regressors. The unobserved indi-
vidual effect helps maintain the appropriate variance in consumption across time by
effectively acting as a person specific drift in the autoregressive process. We exclude
time invariant exogenous regressors (education, gender, race, census division, occupa-
tion code, birth cohort) from the consumption equation due to colinearity with the
fixed effect. However, we include socioeconomic characteristics instead of additional
individual fixed effects in the health and retirement equations because 1) morbidities
and retirement are absorbing states and 2) self-rated health is ordinal, each of which
poses difficulties in estimating dynamic panel models with fixed effects.27 The resulting
exogenous effects then take the following form:

25Note this produces the same results as the Cholesky decomposition of shocks from a reduced
form VAR.

26Note the inclusion of age, cohort, and calendar year introduces some multicollinearity into the
model, so interpreting point estimates on these variables should be done with caution. However, using
the estimates for forecasting does not pose an issue (Holford, 1991).

27For example, as many individuals never enter a given absorbing state in the data, it is not
possible to estimate unique unobserved fixed effects for each individual for each absorbing state. As
these estimates would be required for our simulations, we do not include additional unobserved fixed
effects in absorbing state models.
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


C11 C12 C13 C14 C15 C16 C17 C18 C19 0

c21 c22 c23 c24 c25 c26 c27 c28 c29 0
c31 c32 c33 c34 c35 c36 c37 c38 c39 0
c41 0 0 0 0 0 0 c48 c49 c410

CXit =

n

(n+ 3)× k





Ageit

Educationi

Genderi

Racei

Divisioni

Occupationi

Cohorti

Y eart

Postt
πi

k × 1

.

Lastly we normalize c410 = 1 to allow identification of the unobserved fixed effects in
the consumption block.

B.1.2 Consumption

The resulting consumption forecasting equation given in system (7) can be explicitly
written as:

cit = A41Mit + a42sit + a43rit +B41Mit−1 + b42sit−1 + b43rit−1

+ b44cit−1 + c41Ageit + c48Y eart + c49Postt + πi + ε4,it. (8)
This is a standard linear dynamic panel data model with lagged dependent variable and
individual level fixed effects (π). Given our block recursive system, this equation may
be estimated independently of other blocks with all structural parameters identified
including the variance of ε4.

B.1.3 Retirement

As retirement is a binary outcome, forecasting of the measure is not a true linear VAR
process. In contrast, we assume a continuous latent variable r? underlies the observed
outcome such that:

rit = 0 if r?it ≤ 0
rit = 1 if r?it > 0.

Conditional on working the previous period (and setting b33 = 0), the retirement model
as defined in system (7) is then given by:

r?it = A31Mit + a32sit +B31Mit−1 + b32sit−1 + [c31, . . . , c39]Xit + ε3,it. (9)
Similar to consumption, current and lagged values of health (both self-rated and specific
morbidities) are allowed to influence the probability of retirement. We assume ε3 is
an iid shock with standard normal distribution implying the retirement model has a
standard probit structure.
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B.1.4 Self-rated health

As self-rated health is measured on a five point scale, we again assume a continuous
latent variable s? underlies the observed outcome. The self-rated health model as
defined in system (7) is then given by:

s?it = A21Mit +B21Mit−1 + b22sit−1 + b23rit−1 + [c21, . . . , c29]Xit + ε2,it, (10)

with the observed health state defined as:

sit = δ if κδ−1 < s?it < κδ for δ = 1, . . . , 5

for cut-points (κ0, . . . , κ5) with δ = 1 representing the worst health state (poor) and
δ = 5 the best health state (excellent). Note that latent self-rated health is assumed to
depend on the lagged value of the observed self-rated health category to incorporate the
persistence in general health shocks over the life-course. We assume ε2 is an iid shock
with standard normal distribution. Thus the evolution of self-rated health follows an
ordered probit structure.

B.1.5 Morbidities

Unlike other outcomes, block triangulation of the system does not allow direct identifi-
cation of the structural parameters in the morbidity block as there are n = 9 separate
outcomes. Instead the morbidity block is estimated as a reduced form VAR. The re-
duced form system is obtained by premultiplying the structural system block by the
inverse of matrix −A11:

Mit = −A−1
11 B11Mit−1 − A−1

11 B12sit−1 − A−1
11 B13rit−1 − A−1

11 [C11, . . . , C19]Xit − A−1
11 ε1,it.

Denoting −A−1
11 B1j = B̂j, −A−1

11 [C11, . . . , C17] = Ĉ and −A−1
11 ε1,t = et yields the fol-

lowing reduced form system:

Mit = B̂1Mit−1 + B̂2sit−1 + B̂3rit−1 + ĈXit + eit.

In the reduced form VAR all right hand side variables are predetermined at time t and
morbidity states do not a have direct contemporaneous effect on each other. However,
the error terms et are composites of morbidity specific structural shocks and thus are
potentially correlated across morbidity states (i.e. cov (eit, e′it) 6= 0). This allows for
contemporaneous correlation in the probability of morbidity states. For example, the
onset of heart disease may be correlated with the onset of hypertension or stroke due
to correlated contemporaneous shocks.

Contemporaneous morbidity shocks are assumed to follow a standard multivariate
normal distribution with an n × n covariance matrix given by Σ. Note that this ap-
proach does not allow for identification of the variance in structural errors in vector
ε1, but only of the variance in composite errors in vector e. Thus, while this approach
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is not sufficient for evaluating outcome responses to structural morbidity shocks, iden-
tification of composite errors is sufficient for forecasting outcomes as desired in our
analysis.

As morbidity outcomes are binary, we again assume a continuous latent variable
m? underlies each observed morbidity state such that:

mj,it = 0 if m?
j,it ≤ 0

mj,it = 1 if m?
j,it > 0

for j = 1 . . . n. We then have the following model:
m?

1,it
...

m?
n,it

 =


b̂11 · · · b̂1n
... . . . ...
b̂n1 · · · b̂nn



m1,it−1

...
mn,it−1

+ B̂2sit−1 + B̂3rit−1 + ĈXt +


e1,it
...

en,it

 . (11)

Note that each latent morbidity variable is determined by lagged values of the other
observed morbidity and self-rated health states. Given the assumed joint normality of
the error structure, this morbidity block of equations is in the form of a multivariate
probit model.

B.1.6 Higher order lags

Including additional outcome lags may be necessary to ensure there is no autocorrela-
tion in the structural error terms of the system. The VAR(1) model extends easily to
higher orders. For example, a VAR(2) version of our model takes the following form:

AYit = BYit−1 +DYit−2 + CXit + εit,

with the block matrix form of DYit−2 given by:



d22 d23 d24

d32 d33 d34

d42 d43 d44

D11

D21

D31

D41

D12 D13 D14





Mit−2

sit−2
rit−2
cit−2

.

Here, for example, coefficient vector D41 allows the second lag of the morbidity state
vector to directly affect current consumption. Note that it is not strictly required that
the number of lags included be identical for each outcome. For example, excluding the
second lag of self-rated health on consumption simply implies setting d42 = 0.
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B.1.7 Mortality

The final process to be modeled is survival from one period of life to the next. As
all other outcomes are conditional on survival, mortality probabilities are estimated
independently of the VAR system above. Conditional on being alive at time t − 1,
survival to the following period of life is given by:

ψit = I

(
K∑
k=1

[
γMk Mit−k + γsksit−k + γrkrit−k

]
+ δXit + uit > 0

)
, (12)

where I (.) is an indicator function and ψ = 1 indicates survival, X the vector of
observed individual characteristics previously defined, and uit an iid random shock
with standard normal distribution. The specification allows K lags of morbidity states,
self-rated health, and retirement to influence survival probability.

B.2 Estimation
The pooled sample used to estimate the forecasting model includes all individuals born
prior to 1960 and aged fifty and over at the time of the survey. This consists of 35,889
unique individuals and 216,626 total individual-year observations. Table 10 shows
descriptive statistics for modeled outcomes for each cohort in the HRS. Incidence of
each morbidity state was substantial among respondents, allowing for relatively precise
estimates of their effects on dynamic processes. However, there was still significant
variation in incidence rates across morbidity states. For example, in the EHRS cohort,
over 57% of observations reported arthritis while only 7% reported having suffered a
stroke. In terms of labor supply, the share of retired individuals ranged from 37%
in the most recent Baby Boomer cohort to 95% in the (much older) AHEAD cohort.
Annual real consumption averaged between $20-$28,000 across cohorts.

The dependency structure of our forecasting model is further motivated by the ob-
served correlations in consumption, health, and labor supply found in the HRS data
(see Figure 10). There are positive associations of varying strength across morbidities
highlighting the importance of modeling their evolution jointly. Morbidity states have
a strong negative correlation with self-rated health and a more modest positive associ-
ation with retirement. Consumption is positively associated with self-rated health and
negatively associated with retirement and all morbidities except cancer. Cancer is the
clear outlier with the weakest co-morbidity correlations and a small positive correlation
with consumption.

The positive relationship between self-rated health and consumption—and negative
relationship with morbidities—suggests using consumption as the sole basis of a well-
being metric could understate the inequality among the elderly. On the other hand,
the negative association between consumption and retirement suggests a possible over-
statement of welfare inequality as those with low consumption may enjoy more leisure.
Our welfare model allows us to gauge the relative strength of these channels.
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Table 10: Estimation sample descriptive statistics by cohort

AHEAD CODA EHRS LHRS WB BB MBB

Individuals 7,758 4,231 5,365 5,133 3,615 4,759 5,028
Observations 36,896 27,522 44,237 44,213 26,805 22,251 14,702
Age (mean) 81.65 74.78 67.03 62.01 59.63 57.49 54.38
Hypertension (%) 54.69 56.98 52.89 49.77 48.25 48.46 46.21
Diabetes (%) 15.40 18.88 18.99 17.50 17.72 19.10 18.47
Cancer (%) 16.79 17.50 13.49 10.61 10.03 7.95 7.12
Lung disease (%) 9.46 10.16 9.54 8.33 7.04 6.73 7.29
Heart disease (%) 35.26 30.45 22.67 18.61 16.12 14.04 12.03
Stroke (%) 15.22 11.94 7.15 5.73 5.41 4.77 3.97
Psyche problem (%) 11.81 11.63 11.03 12.79 16.88 19.34 18.94
Arthritis (%) 55.99 59.96 57.15 51.63 50.54 44.53 37.92
Difficulty with ADLs (%) 40.26 27.96 23.12 20.80 21.41 20.04 17.89
Self-rated health (%)
Poor 14.26 10.30 9.20 7.80 6.67 7.88 7.41
Fair 25.74 21.48 19.12 18.49 16.55 19.30 20.74
Good 30.86 32.29 31.50 30.62 30.39 29.68 30.86
Very good 21.33 26.54 28.30 29.13 32.06 30.40 29.49
Excellent 7.80 9.39 11.89 13.95 14.33 12.73 11.50

Retired (%) 95.32 90.45 74.70 60.57 54.12 43.50 37.00
Annual consumption ($1000s, mean) 22.45 25.13 25.13 27.25 27.58 24.23 20.60
Male (%) 37.67 47.16 45.18 45.41 37.38 42.40 42.18
Education (%)
<HS 41.78 32.68 31.38 28.37 21.48 19.98 21.77
HS 29.60 31.38 32.72 32.92 30.96 24.76 25.16
Some College 16.30 17.75 18.50 20.42 24.42 28.24 29.21
College 12.32 18.19 17.40 18.29 23.14 27.02 23.85

Race (%)
White 84.93 86.87 80.22 79.96 80.23 68.31 60.43
Black 12.97 9.73 16.37 15.97 14.87 20.80 25.96
Other 2.11 3.40 3.41 4.07 4.90 10.89 13.61

Notes: Children of the Depression denoted by CODA, War Babies by WB, early Baby Boomers by BB, and mid Baby
Boomers by MBB. Consumption is reported in real 2010 dollars.

B.2.1 Methods

As there is no simultaneity across blocks in the system, we estimate the model block-
by-block. The consumption block is comprised only of equation (8), which is a standard
single equation linear dynamic panel data model with lagged dependent variables and
individual level fixed effects. The equation is estimated via OLS. We use the bootstrap-
based method of Everaert and Pozzi (2007) to correct for the so-called Nickell (1981)
bias that is known to arise from OLS estimates of such models.28 Including a single

28We implement the bootstrap with De Vos et al. (2015) Stata routine xtbcfe. We use the de-
terministic initialization as our benchmark where initial conditions are set equal to those observed.
However, results are insensitive to the use of the burn-in initialization which assumes that initial
conditions are in the infinite past and are drawn using the same bootstrap procedure used for bias
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Figure 10: Outcome correlations

period lag (two calendar years) of retirement and health on consumption and two lags
(four years) for consumption on itself is sufficient to ensure that shocks are serially
uncorrelated in the consumption equation.29

For consistency with the model of consumption, we use two lags of outcomes in
all retirement, health, and survival equations (i.e. we estimate a VAR(2) system and
set K = 2 in the survival model). The ordered probit model of self-rated health (10)
is estimated independently of other VAR blocks using maximum likelihood.30 The
retirement equation (9) and mortality equation (12) are estimated independently using
standard probit regressions.

This leaves the morbidity block. The morbidity model (11) is structured as a multi-
variate probit with correlated shocks. We estimate this model using a chain of bivariate
probit estimators as proposed by Mullahy (2016) due to the large number of outcomes
and large number of observations in the HRS. With no additional assumptions, this ap-
proach allows for consistent estimation via maximum likelihood as opposed to relying

correction (see De Vos et al. (2015) for details).
29Second lags of retirement and health outcomes were insignificant and noisy so we opted for

parsimony by excluding them. This is equivalent to estimating the VAR(2) system with D41 = d42 =
d43 = 0. First order autocorrelation was tested for consumption using the approach of Born and
Breitung (2016) and implemented in Stata with Wursten et al. (2016). Under the null hypothesis of
no autocorrelation, p-values were all greater than 0.63 regardless of imputed dataset used for the test.

30Note there is no incidental parameters or initial conditions problem in this case as there is no
permanent unobserved heterogeneity or serial correlation in the self-rated health (or retirement and
morbidity) model. The standard (ordered) probit estimator is consistent and provides asymptotically
valid test statistics and standard errors.
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on more computationally intensive simulation based methods. However, a potential
estimation issue arises in the morbidity block because morbidity states are absorbing
(e.g. ever been diagnosed with heart disease). This means, for example, diagnosed
heart disease at time t perfectly predicts heart disease at time t+ 1 and we have quasi-
complete separation. This implies the effective coefficients on the lagged dependent
variables in the morbidity block are infinity (i.e. b̂11, b̂22, . . . , b̂nn =∞ in system (11)).
In a simple univariate probit model, the obvious solution is to condition on not being
diagnosed with the morbidity at time t. However, estimation of the bivariate probit
involves maximization of the joint likelihood function, so we estimate the model as
is, without conditioning on time t morbidity status. While inclusion of all observa-
tions in the bivariate probit does not effect the likelihood or estimates of the remaining
(non-infinite) coefficients, it is possible there could be numerical convergence problems.
However, inclusion of all observations does not result in numerical instability in our case
and likelihoods converge without issue. Moreover, conditioning the bivariate probit on,
for example, not having been previously diagnosed with heart disease results in nearly
identical estimates for parameters in the heart disease equation as the unconditional
bivariate probit.

B.2.2 Estimation results

Select estimation results for the forecasting model are provided in Figure 11 while the
full set of results are shown in Tables 13-15 in appendix C. The first panel of Figure 11
shows the average marginal effects of morbidities on the contemporaneous probability of
reporting poor self-rated health. For example, a recent stroke increases the probability
of reporting poor health by 5.9 percentage points. Similarly, the second panel shows
that a stroke directly increases the probability of retirement by 14 percentage points.
However, a stroke can additionally influence retirement indirectly by lowering self-rated
health. Continuing the example, a stroke directly decreases consumption by about 0.08
log points and decreases the probability of survival to the next model period by 2.6
percentage points. Again there are additional indirect effects operating on consumption
and mortality due to any changes in self-rated health and retirement induced by the
stroke. The final panel in Figure 11 further illustrates the dynamics of the system
by showing the average marginal effects of current health states and retirement on
the probability of having a stroke the following model period. For example, heart
disease increases the probability of a stroke the following period by 0.8 percentage
points. Moreover, these relationships continue to evolve dynamically throughout the
system over time (see impulse response Figure 12 in appendix C which demonstrates
the dynamic relationships for heart disease).

B.3 Simulations
We use the estimated panel VAR model to construct expected remaining lifetime utility
for a subset of sixty year old from the HRS. Note that as the HRS began in 1992, age
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Notes: Dependent variables across columns. Average marginal effects on the probability of an outcome reported for
probit results—poor health, retirement, mortality, and stroke. Contemporaneous associations reported for poor health,
retirement, and consumption as dependent variables. Lagged associations reported for mortality and stroke. Good
health coefficients use poor health state as reference group. Spikes indicate 95% confidence intervals.

sixty data is not available for the older AHEAD or CODA cohorts, so these are excluded
from our welfare analysis. Moreover, the mid-Baby Boomers were only recently added
to the survey and do not have the requisite lagged data to estimate welfare. This
leaves four cohorts for welfare analyses—the EHRS, LHRS, War Babies, and early
Baby Boomers. Our forecasting model requires lagged outcomes implying data is
needed from age fifty-eight as part of age sixty “initial” conditions. However, the
oldest respondents in the EHRS cohort were already sixty when first interviewed in
1992, so they are dropped from the simulation sample. Effectively, this drops those
born in 1931 from the EHRS and leaves the cohort as those born 1932-1936.

The HRS provides respondent level analysis weights for each wave designed to
produce representative cohort samples of the non-institutionalized US population. We
use base year weights corresponding to when the cohort is approximately age sixty
to examine the welfare distribution. Specifically, we use 1996 analysis weights for the
EHRS, 2000 for the LHRS, 2006 for War Babies, and 2008 for Baby Boomers. As
any missing data was imputed among respondents (see appendix A), no individuals
were dropped from the simulation due to missing item response. However, individuals
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were dropped if they were not interviewed at ages 58-59 and 60-61.31 For example,
a member of the EHRS cohort interviewed at age 60 in 1996 but missing from the
previous survey round would be excluded from the simulation sample (but included in
the 2000 nationally representative sample). Table 11 provides a comparison of time
invariant characteristics between the weighted representative sample and the sample
used in our simulations after dropping these missing cases. The simulation sample
is slightly more female, educated, and white relative to the representative sample.
However, the differences are small and move in same directions for all cohorts.

Table 11: Representative and simulation sample comparison

EHRS LHRS WB BB

Rep Sim Rep Sim Rep Sim Rep Sim

0 1 2 3 4 5 6 7

Individuals 3,160 3,091 3,816 3,607 2,697 2,572 3,015 2,735
Male (%) 47.20 46.36 46.82 46.61 47.89 47.92 48.25 47.53
Education (%)
<HS 29.07 28.88 25.32 25.43 18.73 18.47 14.88 14.87
HS 33.61 33.80 32.08 32.33 30.45 30.27 24.80 24.94
Some College 19.28 19.25 21.52 21.37 24.35 24.45 29.19 28.92
College 18.04 18.08 21.09 20.87 26.46 26.81 31.13 31.27

Race (%)
White 86.30 86.55 86.15 86.54 85.48 86.00 81.57 81.79
Black 10.38 10.24 10.00 9.97 9.73 9.18 10.81 10.58
Other 3.31 3.20 3.85 3.49 4.79 4.82 7.63 7.64

Notes: War Babies denoted by WB and Baby Boomers by BB. EHRS cohort inclues those under
age 60 in 1992. "Rep" indicates representative sample based on HRS respondent analysis weights.
"Sim" indicates simulation sample weighted by the same analysis weights.

Table 12 provides a summary of initial outcome conditions in the simulation sample.
By most measures, there was an average decline in age sixty health over cohorts.
Average age sixty consumption and retired share increased slightly between the EHRS
and LHRS cohorts. However, both declined for War Babies and fell even more for
Baby Boomers, presumably due to the timing of the great recession, which hit when
Baby Boomers were in their late fifties. Increased longevity (and hence savings motive)
could also potentially explain some of the decline in flow consumption for later cohorts.
Supportive of these hypotheses, our simulations suggest the consumption of younger
cohorts to some extent caught up to older cohorts later in the life-cycle (see Figure 19
in appendix C).

Using age sixty data as initial (t = 0) conditions32, we simulate the remaining life
outcomes for each individual (i) as follows:

31Due to the timing of the interviews across the calendar year, some respondents were 59 in one
wave of the survey and 62 in the next. We treat these age 59 data as age 60 data for our simulations.

32Initial conditions also include unobserved endowments π̂ estimated from model (8) using the
prediction method of De Vos et al. (2015).
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Table 12: Simulation sample initial conditions by cohort

EHRS LHRS WB BB

Age (mean) 60 60 60 60
Hypertension (%) 38.10 41.93 47.60 51.23
Diabetes (%) 11.81 12.77 16.45 20.13
Cancer (%) 6.84 8.25 10.82 9.48
Lung disease (%) 7.11 6.78 7.37 8.15
Heart disease (%) 13.85 14.75 16.11 16.25
Stroke (%) 2.90 3.88 5.22 4.66
Psyche problem (%) 7.44 11.85 17.32 21.85
Arthritis (%) 44.79 48.12 51.62 52.53
Difficulty with ADLs (%) 11.75 19.35 22.40 22.42
Self-rated health (%)
Poor 7.31 6.68 6.61 7.26
Fair 15.20 16.71 16.60 17.15
Good 28.32 30.12 31.08 29.34
Very good 31.66 30.80 31.72 34.19
Excellent 17.51 15.70 13.98 12.06

Retired (%) 48.66 50.46 48.07 47.47
Annual consumption ($1000s, mean) 27.59 30.29 29.43 26.41
Notes: Mean and percentage estimates use base year respondent analysis weights. War
Babies denoted by WB and Baby Boomers by BB. Consumption is reported in real
2010 dollars.

1. Survival shock ui1 is drawn and survival to time t = 1 (age 62) is determined
according to equation (12). If individual survives, move to step two.

2. Morbidity shock vector ei1 is drawn from a standard multivariate normal distri-
bution with estimated covariance matrix Σ (see Table 15). This shock vector
along with the model outlined in equation (11) is used to compute simulated age
62 morbidity vector Mi1.

3. Given age 62 morbidities (Mi1), general health shock ε2,i1 is drawn and age 62
self-rated health (si1) is computed using equation (10).

4. Given age 62 self-rated health (si1) and morbidities (Mi1), retirement shock ε3,i1
is drawn to determine age 62 retirement (ri1) using equation (9).

5. Given all other age 62 outcomes (ri1, si1,Mi1), consumption shock ε4,i1 is drawn
to determine age 62 consumption (ci1) using equation (8).

6. Steps 1-5 are repeated for t = 2, 3, . . . until death or t = 30 (age 120).

7. Steps 1-6 are repeated 5,000 for each individual.

A comparison between the average simulated life-cycle profiles and those based on
available data is shown by cohort in Figures 13-17 in appendix C. Overall, the simula-
tions match the available aggregated data well suggesting our life-cycle dynamics model
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provides a reasonable approximation of the underlying data generating processes. Note
that by construction, the data and simulations are the same at age 60. However, using
only age 60 data and the estimated model parameters, the simulations continue to
match the data reasonably well even up to 18 years later (when the EHRS cohort is
age 78). As opposed to average profiles, the simulations match somewhat less well for
the standard deviation of consumption and health (Figure 17). The spikes in stan-
dard deviation of consumption in the data is driven by sensitivity to high consumption
outliers. There are also relatively few data observations for Baby Boomers at age 66,
resulting in the sharp declines in standard deviations shown in the figure.
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Figure 12: Impulse response to incidence of heart disease at age 62
Notes: Results plot percentage difference in expected outcomes with the exogenous onset of heart disease at age sixty-
two relative to remaining without heart disease at sixty-two. Sample includes all individuals in the simulation sample
without heart disease at age sixty. Expected outcomes are conditional on survival.
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Figure 13: Mean of life-cycle morbidity profiles by cohort
Notes: “Data” plots mean of all available data (inclusive of imputed missing values) in HRS by two-year age interval
and cohort. “Simulated” plots mean of expected simulated outcome for each observation in the data (i.e. the expected
outcome for each person-year observation in the data).
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Figure 14: Mean of life-cycle morbidity profiles by cohort
Notes: “Data” plots mean of all available data (inclusive of imputed missing values) in HRS by two-year age interval
and cohort. “Simulated” plots mean of expected simulated outcome for each observation in the data (i.e. the expected
outcome for each person-year observation in the data).
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Figure 15: Mean of life-cycle health, mortality, and retirement profiles by cohort
Notes: “Data” plots mean of all available data (inclusive of imputed missing values) in HRS by two-year age interval
and cohort. “Simulated” plots mean of expected simulated outcome for each observation in the data (i.e. the expected
outcome for each person-year observation in the data).
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Figure 16: Mean of life-cycle consumption and health utility profiles by cohort
Notes: “Data” plots mean of all available data (inclusive of imputed missing values) in HRS by two-year age interval
and cohort. “Simulated” plots mean of expected simulated outcome for each observation in the data (i.e. the expected
outcome for each person-year observation in the data).
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Figure 17: Standard deviation of consumption and health utility life-cycle profiles by
cohort
Notes: “Data” plots standard deviation of all available data (inclusive of imputed missing values) in HRS by two-year
age interval and cohort. “Simulated” plots mean of standard deviations of simulated outcome (i.e. the mean of standard
deviations calculated for each of the 5,000 simulation runs).
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Table 14: Model estimates for ADLs, self-rated health, retirement, consumption, and
mortality

ADLs Self-rated health Retirement Consumption Mortality

Variable Coeff SE Coeff SE Coeff SE Coeff SE SE SE

Hyper -0.271 0.015 0.067 0.037 -0.010 0.012 0.083 0.027
Diab -0.272 0.019 0.063 0.050 -0.036 0.018 0.118 0.033
Cancer -0.690 0.020 0.177 0.053 0.035 0.021 0.658 0.027
Lung -0.481 0.024 0.188 0.070 -0.008 0.026 0.406 0.033
Heart -0.496 0.017 0.123 0.046 -0.006 0.019 0.175 0.025
Stroke -0.496 0.023 0.471 0.076 -0.074 0.020 0.235 0.030
Psych -0.416 0.022 0.395 0.059 -0.089 0.017 0.228 0.030
Arthritis -0.218 0.015 0.034 0.035 0.015 0.013 -0.026 0.024
ADL -0.669 0.014 0.377 0.040 -0.069 0.018 0.333 0.020
Health 2 -0.603 0.047 0.060 0.019 -0.329 0.017
Health 3 -0.769 0.048 0.079 0.022 -0.534 0.019
Health 4 -0.779 0.050 0.113 0.022 -0.651 0.023
Health 5 (best) -0.760 0.055 0.142 0.026 -0.642 0.033
Lag Hyper 0.041 0.031 0.143 0.020 -0.021 0.050 -0.003 0.012 -0.036 0.027
Lag Diab 0.095 0.040 0.096 0.026 -0.034 0.072 0.011 0.016 0.059 0.035
Lag Cancer 0.028 0.045 0.544 0.029 -0.094 0.081 -0.009 0.023 -0.451 0.030
Lag Lung 0.183 0.049 0.216 0.034 -0.024 0.104 -0.001 0.021 -0.103 0.036
Lag Heart 0.061 0.034 0.293 0.023 -0.154 0.069 0.008 0.018 -0.015 0.026
Lag Stroke 0.379 0.047 0.358 0.033 -0.213 0.128 0.004 0.019 -0.046 0.033
Lag Psych 0.335 0.044 0.230 0.031 -0.126 0.088 0.036 0.019 -0.135 0.033
Lag Arthritis 0.198 0.026 0.107 0.018 0.068 0.046 -0.009 0.013 -0.078 0.024
Lag ADL 0.326 0.018 -0.168 0.059 0.015 0.018 -0.112 0.020
Lag Health 2 -0.228 0.031 0.623 0.014 0.017 0.063 0.015 0.011 -0.031 0.019
Lag Health 3 -0.468 0.032 1.123 0.015 -0.017 0.064 0.013 0.012 -0.056 0.021
Lag Health 4 -0.634 0.034 1.643 0.016 -0.047 0.066 0.012 0.011 -0.095 0.024
Lag Health 5 -0.719 0.041 2.259 0.019 -0.062 0.069 0.018 0.015 -0.127 0.032
Time -0.057 0.007 0.022 0.003 -0.021 0.010 0.001 0.009 -0.025 0.005
2008+ 0.050 0.026 0.008 0.012 -0.004 0.033 -0.037 0.011 0.045 0.021
CODA 0.094 0.032 0.028 0.016 0.079 0.080 -0.020 0.025
Early HRS 0.119 0.046 0.023 0.023 0.070 0.096 -0.063 0.035
Late HRS 0.125 0.059 0.005 0.029 0.000 0.111 -0.075 0.046
War Babies 0.178 0.073 -0.011 0.036 0.053 0.128 -0.142 0.058
Boomers 0.248 0.090 -0.100 0.043 0.047 0.150 -0.120 0.072
Mid Boomers 0.367 0.107 -0.168 0.052 0.034 0.172 -0.255 0.095
Black 0.082 0.019 -0.056 0.009 0.051 0.024 0.062 0.017
Other race 0.026 0.034 -0.101 0.015 -0.052 0.038 -0.066 0.032
Female -0.001 0.015 0.035 0.007 0.112 0.018 -0.223 0.013
HS grad -0.089 0.017 0.085 0.008 -0.018 0.024 0.033 0.015
Some college -0.045 0.020 0.121 0.009 -0.039 0.026 0.021 0.018
College grad -0.087 0.023 0.200 0.011 -0.038 0.029 0.008 0.021
Retired -0.031 0.012 0.203 0.033
Lag Retired 0.085 0.029 -0.025 0.013 -0.038 0.012 -0.019 0.028
Lag2 Retired 0.019 0.027 -0.017 0.013
Lag Con 0.173 0.005
Lag2 Con 0.084 0.005
Constant -0.900 0.080 -0.853 0.206 -1.723 0.303

Notes: Dependent variable across columns. Multivariate probit results reported for ADLs as dependent outcome.
Standard (ordered) probit results reported for self-rated health, mortality, and retirement as dependant outcomes.
Linear dynamic panel estimates reported for consumption as outcome. All regressions also include dummies for age.
Regressions for ADLs, self-rated health, mortality, and retirement also include dummies for occupation and census
division. Regressions for ADLs and self-rated health also includes second lag for all health outcomes.
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Table 15: Morbidity shock covariance matrix (Σ)

Hyper Diabetes Cancer Lung Heart Stroke Psych Arthritis ADLs

Hyper 1.00 0.26 0.04 0.08 0.28 0.29 0.14 0.09 0.09
Diabetes 0.26 1.00 0.07 0.05 0.10 0.14 0.06 0.03 0.08
Cancer 0.04 0.07 1.00 0.12 0.03 0.06 0.12 0.05 0.13
Lung 0.08 0.05 0.12 1.00 0.22 0.10 0.17 0.09 0.19
Heart 0.28 0.10 0.03 0.22 1.00 0.28 0.16 0.10 0.14
Stroke 0.29 0.14 0.06 0.10 0.28 1.00 0.21 0.10 0.40
Psych 0.14 0.06 0.12 0.17 0.16 0.21 1.00 0.15 0.29
Arthritis 0.09 0.03 0.05 0.09 0.10 0.10 0.15 1.00 0.26
ADLs 0.09 0.08 0.13 0.19 0.14 0.40 0.29 0.26 1.00

Table 16: Welfare decomposition in HRS cohort and welfare Gini for each cohort by
select characteristics

Decomposition Welfare Gini by cohort

Median
λ

Mean
log λ

Cons. Leisure QALY EHRS LHRS War Boomers

Education
<HS 0.444 -0.802 -0.393 0.031 -0.440 0.434 0.478 0.506 0.523
HS grad 1.058 -0.020 -0.015 0.019 -0.025 0.430 0.493 0.542 0.536
Some college 1.402 0.271 0.196 0.006 0.069 0.477 0.526 0.578 0.565
College grad 2.536 0.893 0.476 -0.012 0.429 0.479 0.539 0.573 0.625

Gender
Male 0.862 -0.150 0.045 -0.005 -0.190 0.525 0.564 0.605 0.624
Female 1.182 0.083 -0.030 0.031 0.081 0.548 0.624 0.660 0.693

Race
White 1.112 0.070 0.063 0.013 -0.005 0.534 0.594 0.633 0.665
Black 0.457 -0.742 -0.404 0.028 -0.366 0.498 0.537 0.539 0.587
Other 0.771 -0.304 -0.245 0.011 -0.070 0.533 0.677 0.606 0.683

Notes: Estimates use base year respondent analysis weights.
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