Optimal Public Debt with Life Cycle Motives

William Peterman

Federal Reserve Board

Erick Sager Bureau of Labor Statistics

QSPS

May 20, 2016

**The views herein are the authors' and not necessarily those of the BLS, US DOL, Board of Governors or their staffs.

Intro	Model	Calibration	Results	Conclusion
Motiva	ation			

Q: What level of debt should the Government hold?

Government Debt

- Welfare Costs:
 - Crowds out capital \Rightarrow lower output
 - Financed by distortionary taxes
- Welfare Benefits (financial liquidity):
 - \Uparrow return to savings \Rightarrow reduces cost of holding precautionary savings

Aiyagari & McGrattan (1998)

- Incomplete markets, infinitely lived
- Optimal debt $=\frac{2}{3}$ of output
- Ignores life cycle
 - Agents transition through different phases of life cycle

Intro	Model	Calibration	Results	Conclusion
This Pa	per			

Question: What is optimal level of gov't debt in life cycle model?

Effect of Life Cycle on Optimal Pubic Debt

- Large effect on optimal public debt
 - Life cycle model: savings = 160% of output
 - Infinitely lived agent model: debt = 87% of output
- Welfare of adopting misspecified optimal tax policy: $\mathrm{CEV}=3.5\%$
- Different policies due to different phases of life cycle

- Life cycle all three phases; Infinitely lived only one phase
- Changing prices has different effects

Intro	Model	Calibration
Mechanis	sm: Examp	ole (II) $_$

Affect of Gov't Debt on Factor Prices:

• Decreases Government Debt (increases Gov't. savings)

Results

- Crowds in **Productive Capital**
- Interest rate \Downarrow
- Wage \Uparrow

Infinitely Lived Agent Model

- Only stationary phase
- Lower interest rate decreases liquidity

Life Cycle Model

- Accumulation, Stationary, Decumulation Phases
- Higher wage more accommodative during accumulation phase

Intro	Model	Calibration	Results	Conclusion
Literature				

Effects of government debt with incomplete markets

- 1. Steady State
 - Aiyagari & McGrattan (1998) optimal debt large
 - Floden (2001) if transfers below optimal then \Uparrow gov't debt
 - Dyrda & Pedroni (2015) if taxes optimized then less debt optimal
 - Winter & Roehrs (2015) skewed wealth leads to gov't savings being optimal
- 2. Transition
 - Dydra & Pedron (2015); Winter and Roehrs (2015); Desbonnet & Weitzenblum (2012): Considerable welfare costs in transition

Previous analysis of question done with infinitely lived agent model

Intro	Model	Calibration	Results	Conclusion
Outline $_$				

- 1. Introduction
- 2. Life cycle Model with Public Debt
- 3. Calibration
- 4. Results
- 5. Conclusion

Model

Calibration

Results

Conclusion

Life cycle Model with Public Debt

Peterman and Sager

T .
Intro
THULO

Model

Calibration

Result

Conclusion

Overview of Model

- General Equilibrium incomplete markets model
- Overlapping generations of heterogenous agents
- Idiosyncratic uninsurable shocks:
 - Agent's labor productivity
 - Unemployment spells
 - Mortality
- Labor is supplied elastically
- Agents choose when to retire
- Social Security and UI programs modeled similar to U.S.

-	
Intro	

Model

Calibration

Results

Production

- Representative Firm:
 - Large number of firms
 - Sell consumption good
 - Perfectly competitive product market
- Technology:
 - Cobb-Douglas: $Y = K^{\zeta} L^{1-\zeta}$
 - No aggregate uncertainty
- Resource Constraint: $C + (K' (1 \delta)K) + G = Y$

Intro	Model	Calibration	Results	Conclusion
Demograp	ohics			

- $\bullet~J$ overlapping generations
- s_j probability of living to j + 1 given one is alive in j
- Remaining assets are accidental bequests (Tr_t) .
- If still alive agents die with certainty at age J
- Agents retire at endogenously determined age (J_{ret}) , irreversible
 - $J_{ret} \in [\underline{J}_{ret}, \overline{J}_{ret}]$
- Population growth $= g_n$

Earnings:
$$y_{ij} = w e_{ij} h_{ij} (1 - \bar{h}_{ij})$$

- Labor productivity, e_{ij}
- Choice of hours, $h_{ij} \in [0, 1]$
- Unemployment shocks, \bar{h}_{ij}

Labor Productivity: $\log(e_{ij}) = \theta_j + \alpha_i + \epsilon_{ij} + \nu_{ij}$

- Age-profile: $\{\theta_j\}_{j=1}^{\bar{J}_{ret}}$
- Idiosyncratic type: $\alpha_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_{\alpha}^2)$
- Transitory shock: $\epsilon_{ij} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_{\epsilon}^2)$
- Persistent shock: $\nu_{ij+1} = \rho \nu_{ij} + \eta_{ij+1}$

$$\eta_{ij+1} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_{\nu}^2)$$
$$v_{i1} = 0$$

Results

Calibration

Results

Labor Earnings (II)

Earnings:
$$y_{ij} = w e_{ij} h_{ij} (1 - \bar{h}_{ij})$$

- Labor productivity, e_{ij}
- Choice of hours, $h_{ij} \in [0, 1]$
- Unemployment shocks, \bar{h}_{ij}

Unemployment Shock: $\overline{h}_{i,j}$

- Fraction of period unemployed
 - Either 0 or d_j
 - Probability of non zero: p_j
 - Probability and duration are age specific
- Receive unemployment benefits
 - $b_{ui}(we_{ij})$

Intro	Model	Calibration	Results	Conclusion
\mathbf{Asset}	Markets $_$			

Incomplete Asset Markets:

- Incomplete w.r.t. idiosyncratic productivity risk, unemployment risk, mortality risk
- Agents save using non-contingent bond, $a \geq 0$
- Before tax rate of return, \boldsymbol{r}

Market Clearing: A = K + B

- Supply = Aggregate Savings
- Demand = Productive Capital (K) + Gov't Debt (B)

Calibration

Results

Conclusion

Government Policy

Budget Constraint:

$$G + UI + rB = (B' - B) + \Upsilon_y$$

- 1. G: Consumes in an unproductive sector
- 2. UI: Pays insurance when unemployed
- 3. B: Borrows or saves at interest r
- 4. $\Upsilon_y:$ Finances with progressive income taxation

Self Financing Programs:

- 5. Runs Social Security Program
- 6. Distributes accidental bequests

Intro	Model	Calibration	Results	Conclusion
Social	Security			

Overview:

- Finances SS with a flat tax on labor income τ^{ss}
- Half payed by employer (up to cap)
- Pays benefit b_i^{ss} based on
 - Past income AIME: x_i
 - Age of retirement: J_{ret}

▶ Detail

1.2	- 10	
	11	

Model

Calibration

Results

Conclusion

Competitive Equilibrium

- 1. Agents optimize utility s.t. budget constraint
- 2. Prices set by marginal product of capital and labor
- 3. Social Security budget clears
- 4. General Government budget clears
- 5. Capital and labor market clear
- 6. Stationary distribution of individuals over state space
 - Accounting for GDP growth: g

• Dynamic Programming

Model

Calibration

Results

Conclusion

Calibration

Peterman and Sager

Intro	Model	Calibration	Results	Conclusion
Firm				

Production: $Y = K^{\zeta} N^{1-\zeta}$

Notation	Parameter	Value	Source
Capital Share	ζ	.36	CKK
Depreciation	δ	.0833	$\frac{I}{Y} = 25.5\%$
Growth	g	0.02	-

Intro	Model	Calibration	Results	Conclusion
Demog	raphics			

- Agents enter the model at age 20
- s_j Bell and Miller (2002)
- Remaining agents die with certainty age 100(J)
- Population growth: $g_n = 1.1\%$

Calibration

Results

Conclusion

Idiosyncratic Labor Productivity

Labor Productivity: $\log(e_{ij}) = \theta_j + \alpha_i + \nu_{ij} + \epsilon_{ij}$

Notation	Parameter	Value	Source
Persistence Shock	σ_{ν}^2	0.017	Kaplan (2012)
Persistence	ho	0.958	Kaplan (2012)
Ability	σ_{lpha}^2	0.065	Kaplan (2012)
Transitory Shock	σ_{ϵ}^2	0.081	Kaplan (2012)
Age Profile	$\{\theta_j\}_{j=1}^{\bar{J}_{ret}}$		Kaplan (2012)

_

Calibration

Results

Conclusion

Unemployment Insurance

- Base Benefit: $b_{ui}(we) = rr(we)we \ h_{\text{average}} \ \overline{h}$
- Replacement rate: $rr(we) = \phi_{ui,0} \ln(we)^{\phi_{ui,1}}$
- $b_{ui} \in [.13 \times \text{avg. earnings} \times \overline{h}, 1.1 \times \text{avg. earnings} \times \overline{h}]$

Preferences

 $\text{Preferences: } u(c) + v(h,\overline{h}) = \tfrac{c^{1-\gamma}}{1-\gamma} - \chi_1 \tfrac{((1-\overline{h})^{\xi}h)^{1+\frac{1}{\sigma}}}{1+\frac{1}{\sigma}} - \chi_2 \mathbbm{1}(j < J_{ret})$

Notation	Parameter	Value	Source
Conditional Discount	β	1.0	$\frac{K}{Y} = 2.7$
Risk aversion	γ	2.2	Kaplan (2012)
Frisch Elasticity	σ	0.41	Kaplan (2012)
Utility during unemployment	ξ	0	Kaplan (2012)
Disutility to Labor	χ_1	70.0	Avg. $h_j = \frac{1}{3}$
Fixed Cost to Working	χ_2	1.105	70% retire by J_{nr}

Intro	Model	Calibration	Results	Conclusion
Governme	ent			

Income tax function:
$$T(\tilde{y}_t; \tau_0, \tau_1, \tau_2) = \tau_0(\tilde{y}_t - (\tilde{y}_t^{-\tau_1} + \tau_2)^{-\frac{1}{\tau_1}})$$

Notation	Parameter	Value	Source
Avg. Tax	$ au_0$.258	Gouveia & Strauss (1994)
Progressiveness	$ au_1$.768	Gouveia & Strauss (1994)
Progressiveness	$ au_2$	8.99	Balance budget
Gov't Consumption	$\frac{G}{Y}$	15.5%	Data
Debt to GDP	$\frac{B}{Y}$	$\frac{2}{3}$	Aiyagari & McGrattan (1998)
UI	$\phi_{ui,0}$	0.38	March CPS
UI	$\phi_{ui,1}$	-0.80	March CPS

▶ Social Security

Intro	Model	Calibration	Results	Conclusion
Results				

Outline:

- 1. Illustrative Example
- 2. Social Welfare Function
- 3. Optimal Policy
- 4. Welfare Effects
- 5. Decompose Mechanisms
- 6. Transfer Programs & Borrowing Constraints
- 7. Sensitivity to Social Welfare Function

Age

- Infinitely lived: only stationary
- Life cycle: three phases

Age

- Accumulating assets
- Labor income more important

Age

- May not exist (shorter) in life cycle model
- Only phase in infinitely lived

Model

Calibration

Results

Conclusion

Effect of Government Debt

Comparative Static: Holding less debt

- Less crowd-out \rightarrow more productive capital
 - Higher wage, $w = (1 \alpha)(K/L)^{\alpha}$
 - Lower interest rate $r = \alpha (K/L)^{\alpha-1} \delta$
- During *accumulation phase*:
 - Labor earnings is majority of income
 - Higher wage increases income
 - Life cycle only
- During *stationary phase*:
 - Lower interest rate decreases interest income
 - Accumulate fewer total assets (less liquid)
 - Less emphasis in life cycle model

Model

Calibration

Results

Conclusion

Computational Experiment

Choose B to maximize social welfare function:

$$S(v,\lambda) \equiv \max_{B} E_0 v_0(a,\epsilon,x;B) \tag{1}$$

Utilitarian SWF: maximizing expected utility of newborn

- Adjust taxes to clear budgets
 - τ_{ss} to satisfy Social Security budget
 - τ_0 to clear government general budget (G held fixed)

Intro	Model	Calibration	Results	Conclusion
Experi	ment 1 $_$			

Experiment 1: Optimal Policy

- Compute optimal policy in life cycle model
- Compute optimal policy in infinitely lived agent analogue

Calibration

Results

Conclusion

Experiment 1: Optimal Policy

- Life cycle savings = 160% of output
- Infinitely lived debt = 87% of output

Welfare Decomposition

Experiment 2: Welfare Decomposition

- Consumption equivalence (CEV)
 - Optimal (160% savings) vs optimal from infinitely lived (87% debt)
- Decompose into:
 - 1. Level effect: difference in aggregate consumption
 - 2. Insurance effect: difference in volatility of consumption paths
 - 3. Redistribution effect: difference in cross-sectional spread
 - 4. Labor effect: difference in consumption-labor substitution

▶ Detail

Results

Model

Calibration

Results

Conclusion

Welfare Decomposition ____

Welfare Decomposition, ex ante

CEV (% Change)	=	3.47~%
Levels Effect	=	5.62~%
Insurance Effect	=	-0.46 $\%$
Redistribution Effect	=	0.14~%
Labor Disutility Effect	=	-1.72 $\%$

- Optimal policy has strong positive Levels Effect
- Optimal policy somewhat mitigated by labor disutility

Benchmark

Welfare Decomposition by Age (Weighted)

Level Effect:

- Higher wages \rightarrow more consumption early
- Lower $\mathbf{r} \rightarrow \mathbf{less}$ consumption later, work longer

Model

Calibration

Results

Conclusion

The Effect on Life Cycle Profiles

Optimal policy: More government savings, \uparrow wage, \downarrow r

Intro	Model	Calibration	Results	Conclusion
Experi	ment 3			

Decompose the Effect of Life Cycle Features:

- Sequentially remove life cycle features
 - 1. Age-varying aspects
 - 2. Demographics
 - 3. Endowment
- Recalibrate each model
- Calculate optimal policy

Intro	Model	Calibration	Results	Conclusion
Models				

	Bench.	Less Age- Spec. I	Less Mortality Risk II	Less Pop. Growth III	Extend Life IV	Eliminate Accum. V	Inf. Lived
Retirement	Yes	No	No	No	No	No	No
Soc. Sec	Yes	No	No	No	No	No	No
Age H.C.	Yes	No	No	No	No	No	No
Age Unemp	Yes	No	No	No	No	No	No
Mort. Risk	Yes	Yes	No	No	No	No	No
Pop. Growth	Yes	Yes	Yes	No	No	No	No
Life Length	81	81	81	81	400	400	Infinite
Save Endow.	0	0	0	0	0	Avg. IV	Dist.

- Age-secific I
- Demographics II-IV
- Endowment V

Calibration

Results

Conclusion

Optimal Policy (Age-specific) _

	Bench.	Less Age- Spec. I	Less Mortality Risk II	Less Pop. Growth III	Extend Life IV	Eliminate Accum. V	Inf. Lived
Optimal (% of GDP)	160%	173%	287%	307%	360%	-100%	-87%
Retirement	Yes	No	No	No	No	No	No
Soc. Sec	Yes	No	No	No	No	No	No
Age H.C.	Yes	No	No	No	No	No	No
Age Unemp	Yes	No	No	No	No	No	No
Mort. Risk	Yes	Yes	No	No	No	No	No
Pop. Growth	Yes	Yes	Yes	No	No	No	No
Life Length	81	81	81	81	400	400	Infinite
Save Endow.	0	0	0	0	0	Avg. IV	Dist.

 \Uparrow optimal savings because work throughout whole life

Life cycle Profiles

- Wage more important
- Less building time

	Bench.	Less Age- Spec. I	Less Mortality Risk II	Less Pop. Growth III	Extend Life IV	Eliminate Accum. V	Inf. Lived
Optimal (% of GDP)	160%	173%	287%	307%	360%	-100%	-87%
Retirement	Yes	No	No	No	No	No	No
Soc. Sec	Yes	No	No	No	No	No	No
Age H.C.	Yes	No	No	No	No	No	No
Age Unemp	Yes	No	No	No	No	No	No
Mort. Risk	Yes	Yes	No	No	No	No	No
Pop. Growth	Yes	Yes	Yes	No	No	No	No
Life Length	81	81	81	81	400	400	Infinite
Save Endow.	0	0	0	0	0	Avg. IV	Dist.

 \Uparrow optimal savings because agents live to older age

 $\rightarrow\,$ Removing mortality lengthens accumulation phase

	Bench.	Less Age- Spec. I	Less Mortality Risk II	Less Pop. Growth III	Extend Life IV	Eliminate Accum. V	Inf. Lived
Optimal (% of GDP)	160%	173%	287%	307%	360%	-100%	-87%
Retirement	Yes	No	No	No	No	No	No
Soc. Sec	Yes	No	No	No	No	No	No
Age H.C.	Yes	No	No	No	No	No	No
Age Unemp	Yes	No	No	No	No	No	No
Mort. Risk	Yes	Yes	No	No	No	No	No
Pop. Growth	Yes	Yes	Yes	No	No	No	No
Life Length	81	81	81	81	400	400	Infinite
Save Endow.	0	0	0	0	0	Avg. IV	Dist.

 \Uparrow optimal savings: more old agents affects aggregate dynamics

Calibration

Results

Conclusion

Increased Population of Old

Elasticity of Private Savings wrt Government Savings

Model II	Model III
-0.923	-0.900

- Young are more responsive to interest rates changes
- Model III compared to II:
 - Fewer young agents
 - Government savings crowds out less private savings
 - Public saving is more productive
 - Government saves more

	Bench.	Less Age- Spec. I	Less Mortality Risk II	Less Pop. Growth III	Extend Life IV	Eliminate Accum. V	Inf. Lived
Optimal (% of GDP)	160%	173%	287%	307%	360%	-100%	-87%
Retirement	Yes	No	No	No	No	No	No
Soc. Sec	Yes	No	No	No	No	No	No
Age H.C.	Yes	No	No	No	No	No	No
Age Unemp	Yes	No	No	No	No	No	No
Mort. Risk	Yes	Yes	No	No	No	No	No
Pop. Growth	Yes	Yes	Yes	No	No	No	No
Life Length	81	81	81	81	400	400	Infinite
Save Endow.	0	0	0	0	0	Avg. IV	Dist.

 \Uparrow optimal savings: extend building period

 $\rightarrow\,$ Lengthens accumulation phase

Model

Calibration

Results

Conclusion

Optimal Policy (Endowment)

	Bench.	Less Age- Spec. I	Less Mortality Risk II	Less Pop. Growth III	Extend Life IV	Eliminate Accum. V	Inf. Lived
Optimal							
(% of GDP)	160%	173%	287%	307%	360%	-100%	-87%
Retirement	Yes	No	No	No	No	No	No
Soc. Sec	Yes	No	No	No	No	No	No
Age H.C.	Yes	No	No	No	No	No	No
Age Unemp	Yes	No	No	No	No	No	No
Mort. Risk	Yes	Yes	No	No	No	No	No
Pop. Growth	Yes	Yes	Yes	No	No	No	No
Life Length	81	81	81	81	400	400	Infinite
Save Endow.	0	0	0	0	0	Avg. IV	Dist.

- Eliminate building phase
- Optimal to hold debt

Intro	Model	Calibration	Results	Conclusion
Takeaway	S			

Why savings optimal in life cycle and debt in infinitely lived?

- In infinitely lived no accumulation phase
 - Link between stationary phase (endowment) and gov't savings/debt
 - Less gov't savings increases agents liquidity
- In life cycle agents experience an accumulation phase
 - More public savings increases wage
 - Particularly helpful during accumulation phase
 - Liquidity not affected until stationary phase

Experiments 4 & 5

(4) Interactions With Government Transfers

- Remove UI and solve for optimal
- Remove Social Security and solve for optimal
- Recalibrate each model
- Very small effect on optimal debt

(5) Interaction With Borrowing Constraint

- Allow for individual borrowing, ad hoc constraint
- Optimal public savings increases from 160% to 220%
- Precautionary savings less important when borrowing allowed

Intro	Model	Calibration	Results	Conclusion
Experin	ment 6			

Social Welfare Criteria

- We use ex ante Utilitarian social welfare function
 - Equivalent to welfare weight of 1 for newborn and 0 for others
- What if put different weight on cohorts?

Intro Model Calibration Results Conclusion
Welfare weights

Allow for welfare weights on each generation $\{\alpha_j\}_{j=20}^J$:

$$\sum_{j=20}^{J} \alpha_j E_0[v_j(a_j, \epsilon_j, x_j)] = \sum_{j=20}^{J} \left(\sum_{t=20}^{j} \alpha_t \beta^{j-t} \mu_j \right) E_j[U_j(c_j, h_j, J_j)]$$

• We assumed $\alpha_{j=20} = 1$ and $\alpha = 0$ for other j

Model

Calibration

Results

Conclusion

Illustrative example

What is relationship between cohorts' weights and optimal policy?

Assuming $\hat{\beta}^{j} \mu_{j} \propto \sum_{t=20}^{j} \alpha_{t} \beta^{j-t} \mu_{j}$ can rewrite:

$$S_{\hat{\beta}}(v,\lambda) = \max_{B} \sum_{j=20}^{J} \hat{\beta}^{j} \mu_{j} E_{j} \Big[U_{j} \big(c_{j}, h_{j}, J_{j}; v_{j}(\cdot; B) \big) \mid \lambda_{j}(\cdot; B) \Big]$$

- Allows us to reweight each age's stream
- Demonstrates effect of different weights
- Larger $\hat{\beta}$ more weight on older generations

Calibration

Results

Conclusion

Effect of Cohort Weights

- \Uparrow weights on older less savings (more debt) optimal
- Putting more weight on ages after building phase

Model

Calibration

Results

Conclusion

Alternative Criteria

- SWF=total expected future utility from population
- $\alpha_j = 1 \forall j$

$$\sum_{j=20}^{J} \alpha_j E_0[v_j(a_j, \epsilon_j, x_j)]$$

Model

Calibration

Results

Conclusion

Equally Weight Population

- Examine population average expected future utility
- Optimal debt is 100% of GDP

Intro	Model	Calibration	Results	Conclusion
Conclus	ion			

- Optimal debt policy is different in life cycle model
- Instead holding debt optimal for government to save
 - Facilitates accumulation phase
 - Stationary phase less important
- Large welfare consequences to ignoring life cycle model
 - Overall conclusion not sensitive to gov't transfers or agents allowed some borrowing

For optimal debt assuming infinitely lived for tractability has large economic consequences

Model

Calibration

Results

Conclusion

Thank you

Peterman and Sager

Model

Calibration

Results

Conclusion

Optimal Policy (With Endowment Shock)

	Bench.	Less Age- Spec. I	Less Mortality Risk II	Less Pop. Growth III	Extend Life IV	Savings Endow. V	Hetero. Savings Endow. VI
Optimal	10007	1 = 0.07	2050	00507	0.0007	00007	07007
(% of GDP)	160%	173%	287%	307%	360%	233%	273%
Soc. Sec	Yes	No	No	No	No	No	No
Retirement	Yes	No	No	No	No	No	No
Age H.C.	Yes	No	No	No	No	No	No
Age Unemp	Yes	No	No	No	No	No	No
Mort. Risk	Yes	Yes	No	No	No	No	No
Pop. Growth	Yes	Yes	Yes	No	No	No	No
Life Length	81	81	81	81	400	400	400
Endowment							
Save Endow.	0	0	0	0	0	Avg. IV	Dist.
Idio. Shock	Avg.	Avg.	Avg.	Avg.	Avg.	Avg.	Hetero

Removing age-specific: competing effects

- Exposed more periods to idiosyncratic shock
- No need to accumulate for retirement

Benefit Formula: $b^{ss} = [\text{Replacement Rate}] \times [\text{Past Earnings}(x)]$

(1) Past earnings: x

$$x' = \begin{cases} \frac{y + (j-1)x}{j} & \text{if } j \le 35, \\ \max\{x, \frac{y + (t-j)x}{j}\} & \text{if } 35 < j < J_{ret}, \\ x & \text{if } j \ge J_{ret}, \end{cases}$$

(2) Replacement rate (piecewise linear)

(3) Retirement Age Credits/Deductions (b^{ss} adjusted s.t.):

- 64-66: 6.7% reduction per year
- 62-63: 5% reduction per year
- 67-70: 8% increase per year

Dynamic Programming: Worker _____

$$v_{j}(a,\epsilon,x) = \max_{c,a',h} [u(c,h)] + \beta s_{j} \sum_{\epsilon'} \pi_{j}(\epsilon'|\epsilon) v_{j+1}(a',\epsilon',x')$$

s.t.
$$c + a' \leq we(\epsilon)h(1-\bar{h}) + (1+r)(a+Tr) - T(h,a,\epsilon) + b_{ui}(we)\bar{h}$$

$$a' \geq 0$$

$$\epsilon \equiv (\theta_{j},\alpha_{i},\nu_{ij},\epsilon_{ij},\bar{h}_{ij})$$

Results

Conclusion

Dynamic Programming: Could Retire

Agents could retire $(j \in [\underline{J}_{ret}, \overline{J}_{ret}])$ but have not: $v_j(a, \epsilon, x) = \max_{c, a', h, \mathbb{1}(j=J_{ret})} [u(c, h)] + \beta s_j \sum_{\epsilon'} \pi_j(\epsilon'|\epsilon) (\mathbb{1}(j < J_{ret})v_{j+1}(a', \epsilon', x') + (1 - \mathbb{1}(j < J_{ret}))v_{j+1}^{ret}(a', x'))$

s.t.

$$\begin{array}{rcl} c+a' &\leq & (1+r)(a+Tr)-T(a)+b_{ss}(x) & \qquad & \mbox{if } \mathbf{j} \geq \underline{\mathbf{J}}_{\mathbf{ret}} \\ \\ c+a' &\leq & we(\epsilon)h(1-\bar{h})+(1+r)(a+Tr)-T(h,a,\epsilon)+b_{ui}(we)\bar{h} & \qquad & \mbox{else} \\ \\ a' &\geq & 0 \end{array}$$

Dynamic Programming: Retired _____

$$v_j^{ret}(a, x) = \max_{c, a'} \quad u(c) + \beta s_j v_{j+1}^{ret}(a', x)$$

s.t.
$$c + a' \leq (1+r)(a+Tr) - T(a) + b_{ss}(x)$$
$$a' \geq 0$$

т	-	4-	-	
1			1.1	

Model

Calibration

Results

Conclusion

Social Security _____

Parameter	Value	Source
κ_{1a} Year 1 - 3	6.7%	U.S. SS Program
κ_{1b} Year 4 & 5	5%	U.S. SS Program
κ_2	8%	U.S. SS Program
b_1	.21 x Avg Earnings	Huggett and Parra (2010)
b_2	1.29 x Avg Earnings	Huggett and Parra (2010)
b_3	2.42 x Avg Earnings	Huggett and Parra (2010)
$ au_{r1}$	90%	U.S. SS Program
$ au_{r2}$	32%	U.S. SS Program
$ au_{r3}$	15%	U.S. SS Program
$ au_{ss}$	10.3%	Mrkt Clearing
j_{nr}	66	Data
\underline{J}_{ret}	62	U.S. SS Program
\overline{J}_{ret}	70	U.S. SS Program

Model

Calibration

Results

Decomposition Details

Define Welfare:

$$S = S_c + S_h \equiv \int \mathbb{E}_0 \left[\sum_{j=1}^J \beta^{j-1} s_j u\left(c_j\right) \right] d\lambda_1 + \int \mathbb{E}_0 \left[\sum_{j=1}^J \beta^{j-1} s_j \varphi\left(h_j\right) \right] d\lambda_1$$

CEV Decomposition:

$$\begin{array}{lll} (1+\Delta_{CEV}) & = & (1+\Delta_{level}) & (1+\Delta_{insure}) & (1+\Delta_{distr}) & (1+\Delta_{hours}) \\ \\ \left(\frac{S^{opt}-S_h}{S_c}\right)^{\frac{1}{1-\sigma}} & = & \frac{C^{opt}}{C} & \frac{\bar{C}^{opt}/\bar{C}}{C^{opt}/C} & \frac{(S_c^{opt}/S_c)^{\frac{1}{1-\sigma}}}{\bar{C}^{opt}/\bar{C}} & \left(\frac{S^{opt}-S_h}{S_c^{opt}}\right)^{\frac{1}{1-\sigma}} \end{array}$$

where:

- Consumption Equivalent: $(1 + \Delta_{CEV})^{1-\sigma}S_c + S_h = S^{opt}$
- Labor Substitution Effect: $(1 + \Delta_{hours})^{1-\sigma}S_c^{opt} = S_c^{opt} + (S_h^{opt} S_h)$
- Certainty Equivalent: $\bar{C} = \sum_{j} \mu_j \int \bar{c}(a, \varepsilon, x) d\lambda_1$

• Back

Model

Calibration

Results

Conclusion

Welfare Decomposition _____

Welfare Decomposition, ex ante

CEV (% Change)	=	2.33~%
Levels Effect	=	4.36~%
Insurance Effect	=	-0.47 $\%$
Redistribution Effect	=	0.11~%
Labor Disutility Effect	=	-1.59~%

Similar to misspecified • Back

Level Effect:

- Higher wages \rightarrow more consumption early
- Lower $\mathbf{r} \rightarrow \mathbf{less}$ savings and consumption later

Back