Reducing medical spending of the publicly insured: the case for cash-out option

Svetlana Pashchenko

Ponpoje Porapakkarm

University of Georgia

GRIPS

May 20, 2016

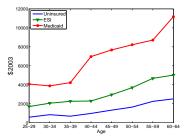
QSPS Summer Workshop

- Empirical evidence shows that people adjust their medical spending in response to change in its price (e.g. RAND Health Insurance Experiment)
- Medical spending:
- (2) Discretionary (consumption)
- How to provide insurance against (1) without increasing (2) given that only (1)+(2) is observable?

- Empirical evidence shows that people adjust their medical spending in response to change in its price (e.g. RAND Health Insurance Experiment)
- Medical spending:
 - (1) Non-discretionary (risk)
 - (2) Discretionary (consumption)
- How to provide insurance against (1) without increasing (2) given that only (1)+(2) is observable?
 - † cost-sharing => 1 discretionary spending, but † risk exposure

- Empirical evidence shows that people adjust their medical spending in response to change in its price (e.g. RAND Health Insurance Experiment)
- Medical spending:
 - (1) Non-discretionary (risk)
 - (2) Discretionary (consumption)
- How to provide insurance against (1) without increasing (2) given that only (1)+(2) is observable?
 - ↑ cost-sharing => ↓ discretionary spending, but ↑ risk exposure

- Empirical evidence shows that people adjust their medical spending in response to change in its price (e.g. RAND Health Insurance Experiment)
- Medical spending:
 - (1) Non-discretionary (risk)
 - (2) Discretionary (consumption)
- How to provide insurance against (1) without increasing (2) given that only (1)+(2) is observable?
 - \uparrow cost-sharing => \downarrow discretionary spending, but \uparrow risk exposure


- Public health insurance for low-income people
- Low copayment => price of medical consumption is low
- Can this result in high spending?
- Oregon Health Insurance experiment (Finkelstein et al, 2012, Taubman et al, 2014): Medicaid increases the use of care

- Public health insurance for low-income people
- Low copayment => price of medical consumption is low
- Can this result in high spending?
- Oregon Health Insurance experiment (Finkelstein et al, 2012, Taubman et al, 2014): Medicaid increases the use of care

- Public health insurance for low-income people
- Low copayment => price of medical consumption is low
- Can this result in high spending?
- Oregon Health Insurance experiment (Finkelstein et al, 2012, Taubman et al, 2014): Medicaid increases the use of care

- Public health insurance for low-income people
- Low copayment => price of medical consumption is low
- Can this result in high spending?
- Oregon Health Insurance experiment (Finkelstein et al, 2012, Taubman et al, 2014): Medicaid increases the use of care

- Public health insurance for low-income people
- Low copayment => price of medical consumption is low
- Can this result in high spending?
- Oregon Health Insurance experiment (Finkelstein et al, 2012, Taubman et al, 2014): Medicaid increases the use of care

Total medical expenses by insurance status

Constructs the model where:

- Not all medical spending are necessary
- Individuals choose discretionary medical spending given their insurance coverage
- Insurance coverage is endogenous (selection)
- Studies how to improve public health insurance when:

- Constructs the model where:
 - Not all medical spending are necessary
 - Individuals choose discretionary medical spending given their insurance coverage
 - Insurance coverage is endogenous (selection)
- Studies how to improve public health insurance when

- Constructs the model where:
 - Not all medical spending are necessary
 - Individuals choose discretionary medical spending given their insurance coverage
 - Insurance coverage is endogenous (selection)
- Studies how to improve public health insurance when:

- Constructs the model where:
 - Not all medical spending are necessary
 - Individuals choose discretionary medical spending given their insurance coverage
 - Insurance coverage is endogenous (selection)
- Studies how to improve public health insurance when:
- Main friction: discretionary/necessary division of medical
 - Beneficiaries have low income --> risk exposure is costly for selfare

- Constructs the model where:
 - Not all medical spending are necessary
 - Individuals choose discretionary medical spending given their insurance coverage
 - Insurance coverage is endogenous (selection)
- Studies how to improve public health insurance when:
 - Main friction: discretionary/necessary division of medical spending is unobservable
 - Beneficiaries have low income => risk-exposure is costly for welfare

- Constructs the model where:
 - Not all medical spending are necessary
 - Individuals choose discretionary medical spending given their insurance coverage
 - Insurance coverage is endogenous (selection)
- Studies how to improve public health insurance when:
 - Main friction: discretionary/necessary division of medical spending is unobservable
 - Beneficiaries have low income => risk-exposure is costly for welfare

- Constructs the model where:
 - Not all medical spending are necessary
 - Individuals choose discretionary medical spending given their insurance coverage
 - Insurance coverage is endogenous (selection)
- Studies how to improve public health insurance when:
 - Main friction: discretionary/necessary division of medical spending is unobservable
 - Beneficiaries have low income => risk-exposure is costly for welfare

- Mirrlesian framework: a planner observes total medica spending but not their composition (discretionary/non-discretionary)
- Use it to find optimal insurance policy
- Quantitative analysis:

- Theoretical analysis:
 - Mirrlesian framework: a planner observes total medical spending but not their composition (discretionary/non-discretionary)
 - Use it to find optimal insurance policy
- Quantitative analysis:

- Theoretical analysis:
 - Mirrlesian framework: a planner observes total medical spending but not their composition (discretionary/non-discretionary)
 - Use it to find optimal insurance policy
- Quantitative analysis:

- Theoretical analysis:
 - Mirrlesian framework: a planner observes total medical spending but not their composition (discretionary/non-discretionary)
 - Use it to find optimal insurance policy
- Quantitative analysis:
 - Rich structural life cycle model with heterogeneous agents
 - Construct full information benchmark: discretionary medical spending is observable
 - Assess policies based on how close they can get to the full information benchmark

- Theoretical analysis:
 - Mirrlesian framework: a planner observes total medical spending but not their composition (discretionary/non-discretionary)
 - Use it to find optimal insurance policy
- Quantitative analysis:
 - Rich structural life cycle model with heterogeneous agents
 - Construct full information benchmark: discretionary medical spending is observable
 - Assess policies based on how close they can get to the full information benchmark

- Theoretical analysis:
 - Mirrlesian framework: a planner observes total medical spending but not their composition (discretionary/non-discretionary)
 - Use it to find optimal insurance policy
- Quantitative analysis:
 - Rich structural life cycle model with heterogeneous agents
 - Construct full information benchmark: discretionary medical spending is observable
 - Assess policies based on how close they can get to the full information benchmark

- Theoretical analysis:
 - Mirrlesian framework: a planner observes total medical spending but not their composition (discretionary/non-discretionary)
 - Use it to find optimal insurance policy
- Quantitative analysis:
 - Rich structural life cycle model with heterogeneous agents
 - Construct full information benchmark: discretionary medical spending is observable
 - Assess policies based on how close they can get to the full information benchmark

- Individuals differ in their medical need: η_L and η_H , $\eta_L < \eta_H$
- Measure of L-type is π , measure of H-type is $1-\pi$
- Individuals derive utility from regular consumption u(c) discretionary medical consumption $v(m-\eta), m > \eta$
- Social planner maximizes social welfare by allocating resources $B, B < n_H$

- Individuals differ in their medical need: η_L and η_H , $\eta_L < \eta_H$
- Measure of L-type is π , measure of H-type is $1-\pi$
- Individuals derive utility from regular consumption u(c) discretionary medical consumption $v(m-\eta), m > \eta$
- Social planner maximizes social welfare by allocating resources $B, B < n_{\rm H}$

- Individuals differ in their medical need: η_L and η_H , $\eta_L < \eta_H$
- Measure of L-type is π , measure of H-type is $1-\pi$
- Individuals derive utility from regular consumption u(c) discretionary medical consumption $v(m-\eta), \ m>\eta$
- Social planner maximizes social welfare by allocating resources $B, B < \eta_H$

- Individuals differ in their medical need: η_L and η_H , $\eta_L < \eta_H$
- Measure of L-type is π , measure of H-type is $1-\pi$
- Individuals derive utility from regular consumption u(c) discretionary medical consumption $v(m-\eta), m>\eta$
- Social planner maximizes social welfare by allocating resources $B, B < \eta_H$

Medical need is private information

Social planner's problem:

$$\pi \left[u(c_L) + v(m_L - \eta_L) \right] + (1 - \pi) \left[u(c_H) + v(m_H - \eta_H) \right] \longrightarrow \max_{\{c_i, m_i\}_{i=L, H}}$$

s.t.

$$\pi [c_L + m_L] + (1 - \pi) [c_H + m_H] = B$$

Incentive compatibility constraint

$$u(c_1) + v(m_1 - \eta_1) > u(c_H) + v(m_H - \eta_1)$$

Medical need is private information

Social planner's problem:

$$\pi \left[u(c_L) + v(m_L - \eta_L) \right] + (1 - \pi) \left[u(c_H) + v(m_H - \eta_H) \right] \longrightarrow \max_{\{c_i, m_i\}_{i=L, H}}$$

s.t.

$$\pi [c_L + m_L] + (1 - \pi) [c_H + m_H] = B$$

Incentive compatibility constraint

$$u(c_1) + v(m_1 - \eta_1) > u(c_H) + v(m_H - \eta_1)$$

Medical need is private information

Social planner's problem:

$$\pi \left[u(c_L) + v(m_L - \eta_L) \right] + (1 - \pi) \left[u(c_H) + v(m_H - \eta_H) \right] \longrightarrow \max_{\{c_i, m_i\}_{i=L, H}}$$

s.t.

$$\pi [c_L + m_L] + (1 - \pi) [c_H + m_H] = B$$

• Incentive compatibility constraint:

$$u(c_{I}) + v(m_{I} - \eta_{I}) > u(c_{H}) + v(m_{H} - \eta_{I})$$

Properties of the solution

- Individuals reporting low medical need get rewarded with higher regular consumption: $c_I^* > c_H^*$, $m_I^* < m_H^*$
- Consumption of individuals with low medical need should be undistorted:

$$u'(c_L^*) = v'(m_L^* - \eta_L)$$

 Consumption of individuals with high medical need should be distorted:

$$u'(c_H^*) > v'(m_H^* - \eta_H)$$

Properties of the solution

- Individuals reporting low medical need get rewarded with higher regular consumption: $c_I^* > c_H^*$, $m_I^* < m_H^*$
- Consumption of individuals with low medical need should be undistorted:

$$u'(c_L^*) = v'(m_L^* - \eta_L)$$

 Consumption of individuals with high medical need should be distorted:

$$u'(c_H^*) > v'(m_H^* - \eta_H)$$

Properties of the solution

- Individuals reporting low medical need get rewarded with higher regular consumption: $c_I^* > c_H^*$, $m_I^* < m_H^*$
- Consumption of individuals with low medical need should be undistorted:

$$u'(c_L^*) = v'(m_L^* - \eta_L)$$

 Consumption of individuals with high medical need should be distorted:

$$u'(c_H^*) > v'(m_H^* - \eta_H)$$

Implementation

The following transfer system implements the optimum.

- Individuals get a choice between two insurance plans
- Plan 1:
 - cash transfers T_L
- Plan 2

Implementation

The following transfer system implements the optimum.

- Individuals get a choice between two insurance plans
- Plan 1:
 - cash transfers T_L
- Plan 2
 - cash transfers T_H $(T_H < T_L)$

Implementation

The following transfer system implements the optimum.

- Individuals get a choice between two insurance plans
- Plan 1:
 - cash transfers T_L
- Plan 2

Implementation

The following transfer system implements the optimum.

- Individuals get a choice between two insurance plans
- Plan 1:
 - cash transfers T_I
- Plan 2:
 - cash transfers T_H ($T_H < T_L$)
 - health insurance that covers 1-q of medical spending

Summary

- Optimal policy should create a trade-off between regular and medical consumption
- This can be implemented by allowing individuals to substitute health insurance with cash transfers

Summary

- Optimal policy should create a trade-off between regular and medical consumption
- This can be implemented by allowing individuals to substitute health insurance with cash transfers

- Life-cycle model: 25-64→work, 65-99→retired
- Agents face productivity, health, medical need, and survival risks
- Two types of health insurance for working age households
 - 1 Employer-sponsored insurance ~ ESI (if getting an offer)2 Medicaid:
 - Eligibility:
- All retired households are insured by Medicare

- Life-cycle model: 25-64→work, 65-99→retired
- Agents face productivity, health, medical need, and survival risks
- Two types of health insurance for working age households
 - 1 Employer-sponsored insurance ESI (if getting an offer)
 - Elizibilitan
- All retired households are insured by Medicare

- Life-cycle model: 25-64→work, 65-99→retired
- Agents face productivity, health, medical need, and survival risks
- Two types of health insurance for working age households
 - 1 Employer-sponsored insurance ESI (if getting an offer)
 - 2 Medicaid:

	income test	asset test		
Eligibility:	$k_t r + z_t^h I_t < y^{cat}$	and $k_t < k^{cat}$		

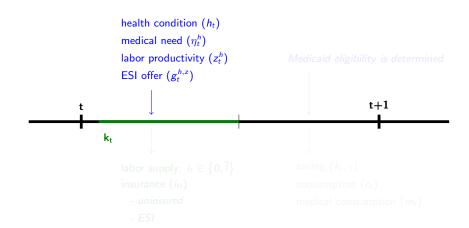
All retired households are insured by Medicare

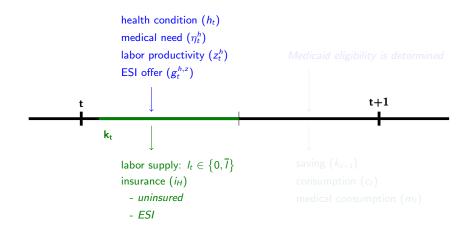
- Life-cycle model: 25-64→work, 65-99→retired
- Agents face productivity, health, medical need, and survival risks
- Two types of health insurance for working age households
 - 1 Employer-sponsored insurance ESI (if getting an offer)
 - 2 Medicaid:

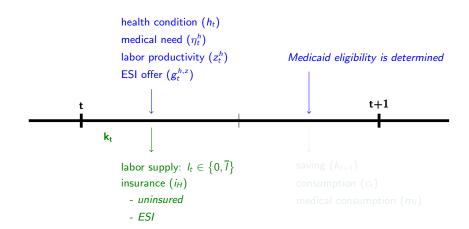
	income test	asset test		
Eligibility:	$k_t r + z_t^h I_t < y^{cat}$	and $k_t < k^{cat}$		

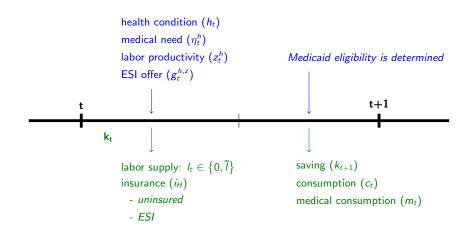
All retired households are insured by Medicare

- Life-cycle model: 25-64→work, 65-99→retired
- Agents face productivity, health, medical need, and survival risks
- Two types of health insurance for working age households
 - 1 Employer-sponsored insurance ESI (if getting an offer)
 - 2 Medicaid:


	income test	asset test
Eligibility:	$k_t r + z_t^h I_t < y^{cat}$	and $k_t < k^{cat}$


All retired households are insured by Medicare


- Life-cycle model: 25-64→work, 65-99→retired
- Agents face productivity, health, medical need, and survival risks
- Two types of health insurance for working age households
 - 1 Employer-sponsored insurance ESI (if getting an offer)
 - 2 Medicaid:


	income test	asset test
Eligibility:	$k_t r + z_t^h I_t < y^{cat}$	and $k_t < k^{cat}$

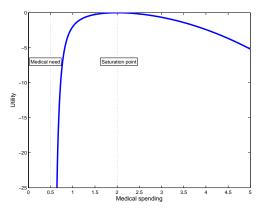
• All retired households are insured by Medicare

- Utility from medical consumption: $\frac{(m_t \eta_t^h)^{1-\sigma^M}}{1-\sigma^M}$
- $v(m_t, \Delta)$ quadratic function
- \bullet Δ saturation point
- Total medical spending is in the range $(\eta_t^h, \eta_t^h + \Delta)$

- Utility from medical consumption: $\frac{(m_t \eta_t^h)^{1-\sigma^M}}{1-\sigma^M}$
- $v(m_t, \Delta)$ quadratic function
- ullet Δ saturation point
- Total medical spending is in the range $(\eta_t^h, \eta_t^h + \Delta]$

- Utility from medical consumption: $\frac{(m_t \eta_t^h)^{1-\sigma^M}}{1-\sigma^M} + v(m_t, \Delta)$
- $v(m_t, \Delta)$ quadratic function
- ullet Δ saturation point
- Total medical spending is in the range $(\eta_+^h, \eta_+^h + \Delta]$

- Utility from medical consumption: $\frac{(m_t \eta_t^h)^{1-\sigma^M}}{1-\sigma^M} + v(m_t, \Delta)$
- $v(m_t, \Delta)$ quadratic function
- ullet Δ saturation point
- Total medical spending is in the range $(\eta_t^h, \eta_t^h + \Delta]$


- Utility from medical consumption: $\frac{(m_t \eta_t^h)^{1-\sigma^M}}{1-\sigma^M} + v(m_t, \Delta)$
- $v(m_t, \Delta)$ quadratic function
- ullet Δ saturation point
- Total medical spending is in the range $(\eta_t^h, \eta_t^h + \Delta]$

- Utility from medical consumption: $\frac{(m_t \eta_t^h)^{1-\sigma^M}}{1-\sigma^M} + v(m_t, \Delta)$
- $v(m_t, \Delta)$ quadratic function
- Δ saturation point
- Total medical spending is in the range $(\eta_t^h, \eta_t^h + \Delta]$

Utility from medical consumption: illustration

Saturation point

- \bullet Δ -> difference in medical expenses between privately insured and uninsured
- Total medical spending (fixed) = Non-discretionary spending
 + Discretionary spending
- $\Delta \uparrow \Rightarrow$ Discretionary spending $\uparrow \Rightarrow$ Non-discretionary spending $\downarrow \Rightarrow$ insured spend more compared to uninsured

Saturation point

- Δ -> difference in medical expenses between privately insured and uninsured
- Total medical spending (fixed) = Non-discretionary spending
 + Discretionary spending
- △ ↑ ⇒ Discretionary spending ↑ ⇒ Non-discretionary spending ↓ ⇒ insured spend more compared to uninsured

Saturation point

- \bullet Δ -> difference in medical expenses between privately insured and uninsured
- Total medical spending (fixed) = Non-discretionary spending
 + Discretionary spending
- $\Delta \uparrow \Rightarrow$ Discretionary spending $\uparrow \Rightarrow$ Non-discretionary spending $\downarrow \Rightarrow$ insured spend more compared to uninsured

Medical need shock has shifted lognormal distribution

$$\eta_t^h = \exp(\kappa_t^h) - \exp(b_t^h)$$

• $b_t^h - >$ fraction of people with zero medical expenses

$$\kappa_t^h = \mu_t^h + \delta_t^h \zeta_t,$$

 μ^{μ}_t — > mean of medical expenses δ^h_t — > variance of medical expenses

$$\zeta_t = \rho_m \zeta_{t-1} + \varepsilon_t, \ \varepsilon_t \sim N(0,1)$$

 ρ_m - > persistence of medical expenses

Medical need shock has shifted lognormal distribution

$$\eta_t^h = \exp(\kappa_t^h) - \exp(b_t^h)$$

• b_t^h -> fraction of people with zero medical expenses

$$\kappa_t^h = \mu_t^h + \delta_t^h \zeta_t,$$

 μ_t^h — > mean of medical expenses δ_t^h — > variance of medical expenses

$$\zeta_t = \rho_m \zeta_{t-1} + \varepsilon_t, \ \varepsilon_t \sim N(0,1)$$

 ρ_m -> persistence of medical expenses

Medical need shock has shifted lognormal distribution

$$\eta_t^h = \exp(\kappa_t^h) - \exp(b_t^h)$$

• b_t^h -> fraction of people with zero medical expenses

•

$$\kappa_t^h = \mu_t^h + \delta_t^h \zeta_t,$$

 μ_t^h -> mean of medical expenses

 δ_t^h -> variance of medical expenses

$$\zeta_t = \rho_m \zeta_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim N(0, 1)$$

 ρ_m - > persistence of medical expenses

•

Medical need shock has shifted lognormal distribution

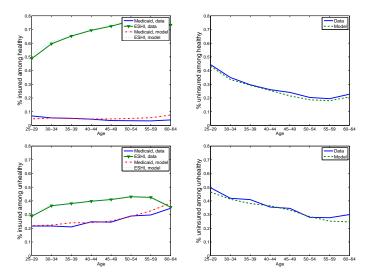
$$\eta_t^h = \exp(\kappa_t^h) - \exp(b_t^h)$$

• b_t^h -> fraction of people with zero medical expenses

$$\kappa_t^h = \mu_t^h + \delta_t^h \zeta_t,$$

 μ_t^h -> mean of medical expenses

 δ_t^h -> variance of medical expenses

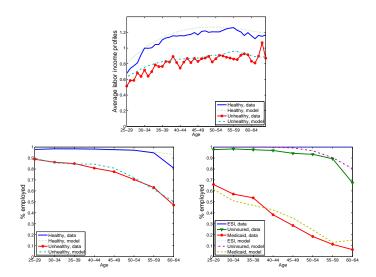

$$\zeta_t = \rho_m \zeta_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim N(0,1)$$

 ρ_m -> persistence of medical expenses

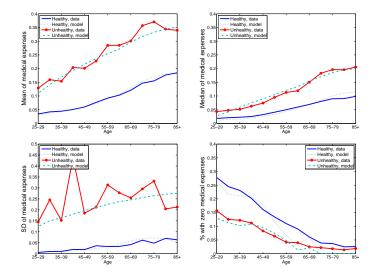
▶ Lablac

▶ Param

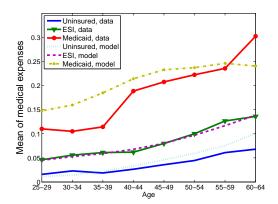
Insurance statistics

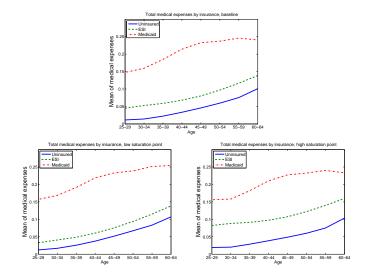


Introduction Theoretical analysis Quantitative model Calibration Model performance Results Improving target efficiency


Selection of unhealthy into Medicaid

	Data			Baseline model		
	ESHI	uninsured	public	ESHI	uninsured	public
% unhealthy by insurance	10.3	18.9	52.6	9.0	17.2	51.3


Employment and labor income

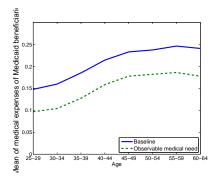

Medical expenses by health statistics

Medical expenses by insurance

The role of the saturation point

Full information benchmark

- Assume medical need η_t^h is observable
- The government (fully) covers non-discretionary medical spending
- The rest of welfare budget is allocated ass lump-sum transfers to Medicaid beneficiaries
- Thus individuals face full price of their discretionary medical consumption
- Consider one-time policy change: medical need is observable for only one period


Full information benchmark, one time policy change

	Med spending (% BS)	Lump sum transfers (\$000)
Baseline	100	-
Observable need	94.1	5.3

Full information benchmark, one time policy change

Change in the life-cycle profile of medical spending of Medicaid enrollees:

Medical need is private information

- To fix the distribution of beneficiaries and illustrate the mechanism, consider first one-time policy change
- Start by using cost-sharing as the only instrument to decrease medical spending
- Consider gradual decrease in Medicaid generosity
- The saved budget is allocated as lump-sum cash transfers so that welfare budget is unchanged

	Med spending (% BS)	Lump sum transfers (\$000)
Baseline	100	-
1. Observable need	94.4	5.3
Increasing MCD copay		
2. Medicaid covers 85%	98.5	1.8
3. Medicaid covers 80%		2.5
4. Medicaid covers 75%		2.9
5. Medicaid covers 70%		3.3
6. Medicaid covers 60%		3.9
7. Medicaid covers 50%		4.4
8. Medicaid covers 40%		4.9

	Med spending (% BS)	Lump sum transfers (\$000)
Baseline	100	-
1. Observable need	94.4	5.3
Increasing MCD copay		
2. Medicaid covers 85%	98.5	1.8
3. Medicaid covers 80%	98.0	2.5
4. Medicaid covers 75%		2.9
5. Medicaid covers 70%		3.3
6. Medicaid covers 60%		3.9
7. Medicaid covers 50%		4.4
8. Medicaid covers 40%		4.9

	Med spending	Lump sum
	(% BS)	transfers (\$000)
Baseline	100	-
1. Observable need	94.4	5.3
Increasing MCD copay		
2. Medicaid covers 85%	98.5	1.8
3. Medicaid covers 80%	98.0	2.5
4. Medicaid covers 75%	97.4	2.9
5. Medicaid covers 70%		3.3
6. Medicaid covers 60%		3.9
7. Medicaid covers 50%		4.4
8. Medicaid covers 40%		4.9

	Med spending	Lump sum
	(% BS)	transfers (\$000)
Baseline	100	-
1. Observable need	94.4	5.3
Increasing MCD copay		
2. Medicaid covers 85%	98.5	1.8
3. Medicaid covers 80%	98.0	2.5
4. Medicaid covers 75%	97.4	2.9
5. Medicaid covers 70%	97.0	3.3
6. Medicaid covers 60%		3.9
7. Medicaid covers 50%		4.4
8. Medicaid covers 40%		4.9

	Med spending	Lump sum
	(% BS)	transfers (\$000)
Baseline	100	-
1. Observable need	94.4	5.3
Increasing MCD copay		
2. Medicaid covers 85%	98.5	1.8
3. Medicaid covers 80%	98.0	2.5
4. Medicaid covers 75%	97.4	2.9
5. Medicaid covers 70%	97.0	3.3
6. Medicaid covers 60%	96.2	3.9
7. Medicaid covers 50%		4.4
8. Medicaid covers 40%		4.9

	Med spending	Lump sum
	(% BS)	transfers (\$000)
Baseline	100	-
1. Observable need	94.4	5.3
Increasing MCD copay		
2. Medicaid covers 85%	98.5	1.8
3. Medicaid covers 80%	98.0	2.5
4. Medicaid covers 75%	97.4	2.9
5. Medicaid covers 70%	97.0	3.3
6. Medicaid covers 60%	96.2	3.9
7. Medicaid covers 50%	95.6	4.4
8. Medicaid covers 40%	95.1	4.9

	Med spending	Lump sum
	(% BS)	transfers (\$000)
Baseline	100	-
1. Observable need	94.4	5.3
Increasing MCD copay		
2. Medicaid covers 85%	98.5	1.8
3. Medicaid covers 80%	98.0	2.5
4. Medicaid covers 75%	97.4	2.9
5. Medicaid covers 70%	97.0	3.3
6. Medicaid covers 60%	96.2	3.9
7. Medicaid covers 50%	95.6	4.4
8. Medicaid covers 40%	95.1	4.9

	Med spending	Lump sum
	(% BS)	transfers (\$000)
Baseline	100	-
1. Observable need	94.4	5.3
Increasing MCD copay		
2. Medicaid covers 85%	98.5	1.8
3. Medicaid covers 80%	98.0	2.5
4. Medicaid covers 75%	97.4	2.9
5. Medicaid covers 70%	97.0	3.3
6. Medicaid covers 60%	96.2	3.9
7. Medicaid covers 50%	95.6	4.4
8. Medicaid covers 40%	95.1	4.9

	Med spending	Lump sum
	(% BS)	transfers (\$000)
Baseline	100	-
1. Observable need	94.4	5.3
Increasing MCD deductibles		
2. Deductibles 1K	99.4	1.5
3. Deductibles 2K		2.1
4. Deductibles 3K		2.7
5. Deductibles 5K		3.6
6. Deductibles 7K		4.4
7. Deductibles 10K		5.5
8. Deductibles 14K		6.4

	Med spending	Lump sum
	(% BS)	transfers (\$000)
Baseline	100	-
1. Observable need	94.4	5.3
Increasing MCD deductibles		
2. Deductibles 1K	99.4	1.5
3. Deductibles 2K	98.4	2.1
4. Deductibles 3K		2.7
5. Deductibles 5K		3.6
6. Deductibles 7K		4.4
7. Deductibles 10K		5.5
8. Deductibles 14K		6.4

	Med spending	Lump sum
	(% BS)	transfers (\$000)
Baseline	100	-
1. Observable need	94.4	5.3
Increasing MCD deductibles		
2. Deductibles 1K	99.4	1.5
3. Deductibles 2K	98.4	2.1
4. Deductibles 3K	97.7	2.7
5. Deductibles 5K		3.6
6. Deductibles 7K		4.4
7. Deductibles 10K		5.5
8. Deductibles 14K		6.4

	Med spending	Lump sum
	(% BS)	transfers (\$000)
Baseline	100	-
1. Observable need	94.4	5.3
Increasing MCD deductibles		
2. Deductibles 1K	99.4	1.5
3. Deductibles 2K	98.4	2.1
4. Deductibles 3K	97.7	2.7
5. Deductibles 5K	96.9	3.6
6. Deductibles 7K		4.4
7. Deductibles 10K		5.5
8. Deductibles 14K		6.4

	Med spending	Lump sum
	(% BS)	transfers (\$000)
Baseline	100	-
1. Observable need	94.4	5.3
Increasing MCD deductibles		
2. Deductibles 1K	99.4	1.5
3. Deductibles 2K	98.4	2.1
4. Deductibles 3K	97.7	2.7
5. Deductibles 5K	96.9	3.6
6. Deductibles 7K	96.4	4.4
7. Deductibles 10K		5.5
8. Deductibles 14K		6.4

	Med spending	Lump sum
	(% BS)	transfers (\$000)
Baseline	100	-
1. Observable need	94.4	5.3
Increasing MCD deductibles		
2. Deductibles 1K	99.4	1.5
3. Deductibles 2K	98.4	2.1
4. Deductibles 3K	97.7	2.7
5. Deductibles 5K	96.9	3.6
6. Deductibles 7K	96.4	4.4
7. Deductibles 10K	95.7	5.5
8. Deductibles 14K		

	Med spending	Lump sum
	(% BS)	transfers (\$000)
Baseline	100	-
1. Observable need	94.4	5.3
Increasing MCD deductibles		
2. Deductibles 1K	99.4	1.5
3. Deductibles 2K	98.4	2.1
4. Deductibles 3K	97.7	2.7
5. Deductibles 5K	96.9	3.6
6. Deductibles 7K	96.4	4.4
7. Deductibles 10K	95.7	5.5
8. Deductibles 14K	95.2	6.4

	Med spending	Lump sum
	(% BS)	transfers (\$000)
Baseline	100	-
1. Observable need	94.4	5.3
Increasing MCD deductibles		
2. Deductibles 1K	99.4	1.5
3. Deductibles 2K	98.4	2.1
4. Deductibles 3K	97.7	2.7
5. Deductibles 5K	96.9	3.6
6. Deductibles 7K	96.4	4.4
7. Deductibles 10K	95.7	5.5
8. Deductibles 14K	95.2	6.4

- Based on our theoretical analysis: cash-out option
 - A choice between regular Medicaid benefits and lump-sum cash transfers
 - Induces self-selection of individuals with low medical need into cash plan
 - The size of the transfers is adjusted so the welfare budget is unchanged
- One-time policy change

- Based on our theoretical analysis: cash-out option
 - A choice between regular Medicaid benefits and lump-sum cash transfers
 - Induces self-selection of individuals with low medical need into cash plan
 - The size of the transfers is adjusted so the welfare budget is unchanged
- One-time policy change

- Based on our theoretical analysis: cash-out option
 - A choice between regular Medicaid benefits and lump-sum cash transfers
 - Induces self-selection of individuals with low medical need into cash plan
 - The size of the transfers is adjusted so the welfare budget is unchanged
- One-time policy change

- Based on our theoretical analysis: cash-out option
 - A choice between regular Medicaid benefits and lump-sum cash transfers
 - Induces self-selection of individuals with low medical need into cash plan
 - The size of the transfers is adjusted so the welfare budget is unchanged
- One-time policy change

- Based on our theoretical analysis: cash-out option
 - A choice between regular Medicaid benefits and lump-sum cash transfers
 - Induces self-selection of individuals with low medical need into cash plan
 - The size of the transfers is adjusted so the welfare budget is unchanged
- One-time policy change

- Based on our theoretical analysis: cash-out option
 - A choice between regular Medicaid benefits and lump-sum cash transfers
 - Induces self-selection of individuals with low medical need into cash plan
 - The size of the transfers is adjusted so the welfare budget is unchanged
- One-time policy change

	Med	Lump sum	% in cash
	spending	transfers	plan
	(% BS)	(\$000)	ages 25-64
Baseline	100	-	-
1. Observable need	94.4	5.3	-
Increasing MCD copay			
2. BS (93%)	99.0	1.6	65-24
3. Medicaid covers 85%			74-71
4. Medicaid covers 80%			79-76
5. Medicaid covers 75%			86-76
6. Medicaid covers 70%			90-76

	Med	Lump sum	% in cash
	spending	transfers	plan
	(% BS)	(\$000)	ages 25-64
Baseline	100	-	-
1. Observable need	94.4	5.3	-
Increasing MCD copay			
2. BS (93%)	99.0	1.6	65-24
3. Medicaid covers 85%	96.3	3.9	74-71
4. Medicaid covers 80%			79-76
5. Medicaid covers 75%			86-76
6. Medicaid covers 70%			90-76

	Med	Med Lump sum	
	spending	transfers	plan
	(% BS)	(\$000)	ages 25-64
Baseline	100	-	-
1. Observable need	94.4	5.3	-
Increasing MCD copay			
2. BS (93%)	99.0	1.6	65-24
3. Medicaid covers 85%	96.3	3.9	74-71
4. Medicaid covers 80%	95.8	4.5	79-76
5. Medicaid covers 75%			86-76
6. Medicaid covers 70%			90-76

	Med	Lump sum	% in cash
	spending transfers		plan
	(% BS)	(\$000)	ages 25-64
Baseline	100	-	-
1. Observable need	94.4	5.3	-
Increasing MCD copay			
2. BS (93%)	99.0	1.6	65-24
3. Medicaid covers 85%	96.3	3.9	74-71
4. Medicaid covers 80%	95.8	4.5	79-76
5. Medicaid covers 75%	95.3	4.9	86-76
6. Medicaid covers 70%			90-76

	Med	Lump sum	% in cash
	spending	transfers	plan
	(% BS)	(\$000)	ages 25-64
Baseline	100	-	-
1. Observable need	94.4	5.3	-
Increasing MCD copay			
2. BS (93%)	99.0	1.6	65-24
3. Medicaid covers 85%	96.3	3.9	74-71
4. Medicaid covers 80%	95.8	4.5	79-76
5. Medicaid covers 75%	95.3	4.9	86-76
6. Medicaid covers 70%	95.1	5.4	90-76

	Med	Lump sum	% in cash
	spending	transfers	plan
	(% BS)	(\$000)	ages 25-64
Baseline	100	-	-
1. Observable need	94.4	5.3	-
Increasing MCD copay			
2. BS (93%)	99.0	1.6	65-24
3. Medicaid covers 85%	96.3	3.9	74-71
4. Medicaid covers 80%	95.8	4.5	79-76
5. Medicaid covers 75%	95.3	4.9	86-76
6. Medicaid covers 70%	95.1	5.4	90-76

	Med spending (% BS)	Lump sum transfers (\$000)	% in cash plan ages 25-64	Welfare (% CEV)
Baseline	100	-	-	-
Observable need	94.1	3.5	-	1.14
Increasing MCD copay				
BS (93%)	99.1	1.6	68-29	0.73
Medicaid covers 85%				1.06
Medicaid covers 80%				0.89
Medicaid covers 75%				0.65
Medicaid covers 70%				0.40

	Med	Lump sum	% in cash	Welfare
	spending	transfers	plan	(% CEV)
	(% BS)	(\$000)	ages 25-64	
Baseline	100	-	-	-
Observable need	94.1	3.5	-	1.14
Increasing MCD copay				
BS (93%)	99.1	1.6	68-29	0.73
Medicaid covers 85%	96.7	2.9	84-62	1.06
Medicaid covers 80%				0.89
Medicaid covers 75%				0.65
Medicaid covers 70%				0.40

	Med	Lump sum	% in cash	Welfare
	spending	transfers	plan	(% CEV)
	(% BS)	(\$000)	ages 25-64	
Baseline	100	-	-	-
Observable need	94.1	3.5	-	1.14
Increasing MCD copay				
BS (93%)	99.1	1.6	68-29	0.73
Medicaid covers 85%	96.7	2.9	84-62	1.06
Medicaid covers 80%	95.9	3.2	88-74	0.89
Medicaid covers 75%				0.65
Medicaid covers 70%				0.40

	Med	Lump sum	% in cash	Welfare
	spending	transfers	plan	(% CEV)
	(% BS)	(\$000)	ages 25-64	
Baseline	100	-	-	-
Observable need	94.1	3.5	-	1.14
Increasing MCD copay				
BS (93%)	99.1	1.6	68-29	0.73
Medicaid covers 85%	96.7	2.9	84-62	1.06
Medicaid covers 80%	95.9	3.2	88-74	0.89
Medicaid covers 75%	95.4	3.4	91-79	0.65
Medicaid covers 70%				0.40

	Med spending	Lump sum transfers	% in cash plan	Welfare (% CEV)
	(% BS)	(\$000)	ages 25-64	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Baseline	100	-	-	-
Observable need	94.1	3.5	-	1.14
Increasing MCD copay				
BS (93%)	99.1	1.6	68-29	0.73
Medicaid covers 85%	96.7	2.9	84-62	1.06
Medicaid covers 80%	95.9	3.2	88-74	0.89
Medicaid covers 75%	95.4	3.4	91-79	0.65
Medicaid covers 70%	95.1	3.6	93-82	0.40

	Med	Lump sum	% in cash	Welfare
	spending	transfers	plan	(% CEV)
	(% BS)	(\$000)	ages 25-64	
Baseline	100	-	-	-
Observable need	94.1	3.5	-	1.14
Increasing MCD copay				
BS (93%)	99.1	1.6	68-29	0.73
Medicaid covers 85%	96.7	2.9	84-62	1.06
Medicaid covers 80%	95.9	3.2	88-74	0.89
Medicaid covers 75%	95.4	3.4	91-79	0.65
Medicaid covers 70%	95.1	3.6	93-82	0.40

Reducing medical spending of the publicly insured: the case for

Results of introducing cash-out option: full policy adjustment

	Med	Lump sum	% in cash	Welfare
	spending	transfers	transfers plan	
	(% BS)	(\$000)	ages 25-64	
Baseline	100	-	-	-
Observable need	94.1	3.5	-	1.14
Increasing MCD copay				
BS (93%)	99.1	1.6	68-29	0.73
Medicaid covers 85%	96.7	2.9	84-62	1.06
Medicaid covers 80%	95.9	3.2	88-74	0.89
Medicaid covers 75%	95.4	3.4	91-79	0.65
Medicaid covers 70%	95.1	3.6	93-82	0.40

- Cash option is important for reducing overconsumption of medical care
- But it reduces target efficiency: in-kind transfers are attractive for sick people while cash is attractive for everyone

- Cash option is important for reducing overconsumption of medical care
- But it reduces target efficiency: in-kind transfers are attractive for sick people while cash is attractive for everyone

- Cash option is important for reducing overconsumption of medical care
- But it reduces target efficiency: in-kind transfers are attractive for sick people while cash is attractive for everyone

	Med	Lump sum	% MCD	% in cash	Welfare
	spending	transfers	coverage	plan	(% CEV)
	(% BS)	(\$000)		ages 25-64	
Baseline	100	-	8.7	-	-
Increasing MCD copay					
BS (93%)	99.1	1.6	9.1	68-29	0.73
Medicaid covers 85%					1.06
Medicaid covers 80%					0.89
Medicaid covers 75%					0.65
Medicaid covers 70%	95.1	3.6	12.5	93-82	0.40

- Cash option is important for reducing overconsumption of medical care
- But it reduces target efficiency: in-kind transfers are attractive for sick people while cash is attractive for everyone

	Med	Lump sum	% MCD	% in cash	Welfare
	spending	transfers	coverage	plan	(% CEV)
	(% BS)	(\$000)		ages 25-64	
Baseline	100	-	8.7	-	-
Increasing MCD copay					
BS (93%)	99.1	1.6	9.1	68-29	0.73
Medicaid covers 85%	96.7	2.9	11.1	84-62	1.06
Medicaid covers 80%					0.89
Medicaid covers 75%					0.65
Medicaid covers 70%	95.1	3.6	12.5		0.40

- Cash option is important for reducing overconsumption of medical care
- But it reduces target efficiency: in-kind transfers are attractive for sick people while cash is attractive for everyone

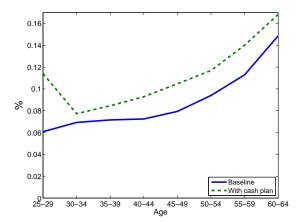
	Med	Med Lump sum % MCD		% in cash	Welfare
	spending	transfers	coverage	plan	(% CEV)
	(% BS)	(\$000)		ages 25-64	
Baseline	100	-	8.7	-	-
Increasing MCD copay					
BS (93%)	99.1	1.6	9.1	68-29	0.73
Medicaid covers 85%	96.7	2.9	11.1	84-62	1.06
Medicaid covers 80%	95.9	3.2	11.7	88-74	0.89
Medicaid covers 75%					0.65
Medicaid covers 70%	95.1	3.6	12.5	93-82	0.40

- Cash option is important for reducing overconsumption of medical care
- But it reduces target efficiency: in-kind transfers are attractive for sick people while cash is attractive for everyone

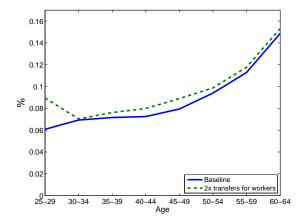
	Med	Lump sum	% MCD	% in cash	Welfare
	spending	transfers	coverage	plan	(% CEV)
	(% BS)	(\$000)		ages 25-64	
Baseline	100	-	8.7	-	-
Increasing MCD copay					
BS (93%)	99.1	1.6	9.1	68-29	0.73
Medicaid covers 85%	96.7	2.9	11.1	84-62	1.06
Medicaid covers 80%	95.9	3.2	11.7	88-74	0.89
Medicaid covers 75%	95.4	3.4	12.1	91-79	0.65
Medicaid covers 70%	95.1	3.6	12.5	93-82	0.40

- Cash option is important for reducing overconsumption of medical care
- But it reduces target efficiency: in-kind transfers are attractive for sick people while cash is attractive for everyone

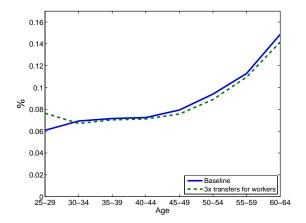
	Med	Lump sum	% MCD	% in cash	Welfare
	spending	transfers	coverage	plan	(% CEV)
	(% BS)	(\$000)		ages 25-64	
Baseline	100	-	8.7	-	-
Increasing MCD copay					
BS (93%)	99.1	1.6	9.1	68-29	0.73
Medicaid covers 85%	96.7	2.9	11.1	84-62	1.06
Medicaid covers 80%	95.9	3.2	11.7	88-74	0.89
Medicaid covers 75%	95.4	3.4	12.1	91-79	0.65
Medicaid covers 70%	95.1	3.6	12.5	93-82	0.40


- Cash option is important for reducing overconsumption of medical care
- But it reduces target efficiency: in-kind transfers are attractive for sick people while cash is attractive for everyone

	Med	Lump sum	% MCD	% in cash	Welfare
	spending	transfers	coverage	plan	(% CEV)
	(% BS)	(\$000)		ages 25-64	
Baseline	100	-	8.7	-	-
Increasing MCD copay					
BS (93%)	99.1	1.6	9.1	68-29	0.73
Medicaid covers 85%	96.7	2.9	11.1	84-62	1.06
Medicaid covers 80%	95.9	3.2	11.7	88-74	0.89
Medicaid covers 75%	95.4	3.4	12.1	91-79	0.65
Medicaid covers 70%	95.1	3.6	12.5	93-82	0.40


- Because if cash transfers some individuals may choose to stop working to get Medicaid
- Modification to the policy: cash transfers are work-dependent

- Because if cash transfers some individuals may choose to stop working to get Medicaid
- Modification to the policy: cash transfers are work-dependent


Work-independent cash transfers (cash plan + traditional Medicaid covers 85%)

Workers get 2 times higher transfers

Workers get 3 times higher transfers

Work-dependent cash transfers

	Med	Transfers	% MCD	% in cash	Welfare
	spending	w/n-w	coverage	plan	(% CEV)
	(% BS)	(\$000)		ages 25-64	
Baseline	100	-	8.7	-	-
Observable need	94.1	3.5	12.8	-	1.14
Observable need, work-dep transfers					
x2	94.8	6.0/3.0	10.7	-	1.79
x3	95.3	7.5/2.5	9.1	-	1.99
With cash plan					
Medicaid covers 85%	96.7	2.9/2.9	11.1	84-62	1.06
Cash transf work-dependent					
x2	97.3	4.4/2.2	9.5	82-57	1.48
x3	97.5	4.8/1.6	8.6	79-55	1.58

The effect of introducing work-dependent transfers into cash plans

- We consider a framework where medical spending are composed of necessary and discretionary components
- We show that in this framework the optimal policy is to introduce a trade-off between discretionary medical consumption and regular consumption good
- We construct rich structural model to evaluate the effect of this type of policies
- We find that adding cash-out option to Medicaid can decrease discretionary medical spending without decreasing welfare

- We consider a framework where medical spending are composed of necessary and discretionary components
- We show that in this framework the optimal policy is to introduce a trade-off between discretionary medical consumption and regular consumption good
- We construct rich structural model to evaluate the effect of this type of policies
- We find that adding cash-out option to Medicaid can decrease discretionary medical spending without decreasing welfare

- We consider a framework where medical spending are composed of necessary and discretionary components
- We show that in this framework the optimal policy is to introduce a trade-off between discretionary medical consumption and regular consumption good
- We construct rich structural model to evaluate the effect of this type of policies
- We find that adding cash-out option to Medicaid can decrease discretionary medical spending without decreasing welfare

- We consider a framework where medical spending are composed of necessary and discretionary components
- We show that in this framework the optimal policy is to introduce a trade-off between discretionary medical consumption and regular consumption good
- We construct rich structural model to evaluate the effect of this type of policies
- We find that adding cash-out option to Medicaid can decrease discretionary medical spending without decreasing welfare

Properties of the solution

$$u'(c_L^*) = v'(m_L - \eta_L)$$

$$u'(c_H) = \frac{u'(c_L^*) + \frac{v'(m_H^* - \eta_L)}{u'(c_H^*)} \pi(u'(c_H^*) - u'(c_L^*))}{u'(c_L^*) + \pi(u'(c_H^*) - u'(c_L^*))} v'(m_H^* - \eta_H)$$

- ullet Plan 1: cash transfers $T_L = c_L^* + m_L^*$
- Plan 2:

- ullet Plan 1: cash transfers $T_L = c_L^* + m_L^*$
- Plan 2:
 - cash transfers $T_H = c_H^* + q m_H^* \ (T_H < T_L)$
 - price of medical consumption q < 1 if $m \ge m_H$ where

$$q = \frac{u'(c_L^*) + \frac{v'(m_H^* - \eta_L)}{u'(c_H^*)} \pi(u'(c_H^*) - u'(c_L^*))}{u'(c_I^*) + \pi(u'(c_H^*) - u'(c_I^*))}$$

- ullet Plan 1: cash transfers $T_L = c_L^* + m_L^*$
- Plan 2:
 - cash transfers $T_H = c_H^* + q m_H^* \ (T_H < T_L)$
 - price of medical consumption q < 1 if $m \ge m_H$ where

$$q = \frac{u'(c_L^*) + \frac{v'(m_H^* - \eta_L)}{u'(c_H^*)} \pi(u'(c_H^*) - u'(c_L^*))}{u'(c_L^*) + \pi(u'(c_H^*) - u'(c_I^*))}$$

- ullet Plan 1: cash transfers $T_L = c_L^* + m_L^*$
- Plan 2:
 - cash transfers $T_H = c_H^* + q m_H^* \ (T_H < T_L)$
 - price of medical consumption q < 1 if $m \ge m_H$ where

$$q = \frac{u'(c_L^*) + \frac{v'(m_H^* - \eta_L)}{u'(c_H^*)} \pi(u'(c_H^*) - u'(c_L^*))}{u'(c_L^*) + \pi(u'(c_H^*) - u'(c_L^*))}$$

Implementation

• (c_I^*, m_I^*) solve the problem of L-type:

$$u(c_L) + v(m_L - \eta_L) \longrightarrow \max_{c_L, m_L}$$

s.t.

$$c_L + m_L = T_L$$

• (c_H^*, m_H^*) solve the problem of H-type:

$$u(c_H) + v(m_H - \eta_H) \longrightarrow \max_{c_H, m_H}$$

s.t.

$$c_H + m_H = T_H$$
 if $m_H < m_H^*$
 $c_H + q m_H = T_H$ if $m_H \ge m_H^*$

L-type does not deviate by solving the problem of H-type

Implementation

• (c_L^*, m_L^*) solve the problem of L-type:

$$u(c_L) + v(m_L - \eta_L) \longrightarrow \max_{c_L, m_L}$$

s.t.

$$c_L + m_L = T_L$$

• (c_H^*, m_H^*) solve the problem of H-type:

$$u(c_H) + v(m_H - \eta_H) \longrightarrow \max_{c_H, m_H}$$

s.t.

$$c_H + m_H = T_H \text{ if } m_H < m_H^*$$

 $c_H + q m_H = T_H \text{ if } m_H \ge m_H^*$

L-type does not deviate by solving the problem of H-type

Implementation

• (c_L^*, m_L^*) solve the problem of L-type:

$$u(c_L) + v(m_L - \eta_L) \longrightarrow \max_{c_L, m_L}$$

s.t.

$$c_L + m_L = T_L$$

• (c_H^*, m_H^*) solve the problem of H-type:

$$u(c_H) + v(m_H - \eta_H) \longrightarrow \max_{c_H, m_H}$$

s.t.

$$c_H + m_H = T_H$$
 if $m_H < m_H^*$
 $c_H + qm_H = T_H$ if $m_H \ge m_H^*$

L-type does not deviate by solving the problem of H-type

Parametrization

•
$$\nu(m_t) = -\frac{1}{2}m_t^2 + \gamma_{1,t}^h m_t + \gamma_{2,t}^h$$

$$\bullet$$
 $\frac{\partial v(m_t)}{\partial m_t}|_{m_t=\eta_t^h+\Delta}=0$ implies:

$$\gamma_{1,t}^h = \eta_t^h + \Delta - \Delta^{-\sigma^M}$$

•
$$v(\eta_t^h + \Delta) = 0$$
 implies

$$\begin{aligned} \gamma_{2,t}^h &= \\ &- \left(\frac{\Delta^{1-\sigma^M}}{1-\sigma^M} - \frac{1}{2} (\eta_t^h + \Delta)^2 + (\eta_t^h + \Delta - \Delta^{-\sigma^M}) (\eta_t^h + \Delta) \right) \end{aligned}$$

Parametrization

•
$$\nu(m_t) = -\frac{1}{2}m_t^2 + \gamma_{1,t}^h m_t + \gamma_{2,t}^h$$

•
$$\frac{\partial v(m_t)}{\partial m_t}|_{m_t=\eta_t^h+\Delta}=0$$
 implies:

$$\gamma_{1,t}^h = \eta_t^h + \Delta - \Delta^{-\sigma^M}$$

•
$$v(\eta_t^h + \Delta) = 0$$
 implies

$$\begin{split} \gamma_{2,t}^h &= \\ &- \left(\frac{\Delta^{1-\sigma^M}}{1-\sigma^M} - \frac{1}{2} (\eta_t^h + \Delta)^2 + (\eta_t^h + \Delta - \Delta^{-\sigma^M}) (\eta_t^h + \Delta) \right) \end{split}$$

Parametrization

•
$$\nu(m_t) = -\frac{1}{2}m_t^2 + \gamma_{1,t}^h m_t + \gamma_{2,t}^h$$

•
$$\frac{\partial v(m_t)}{\partial m_t}|_{m_t=\eta_t^h+\Delta}=0$$
 implies:

$$\gamma_{1.t}^h = \eta_t^h + \Delta - \Delta^{-\sigma^M}$$

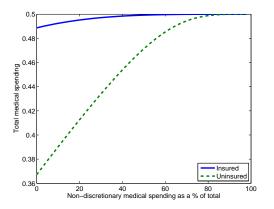
• $v(\eta_t^h + \Delta) = 0$ implies

$$egin{aligned} \gamma_{2,t}^h &= \ &-\left(rac{\Delta^{1-\sigma^M}}{1-\sigma^M} - rac{1}{2}(\eta_t^h + \Delta)^2 + (\eta_t^h + \Delta - \Delta^{-\sigma^M})(\eta_t^h + \Delta)
ight) \end{aligned}$$

Parametrization of utility from consumption and leisure

• Utility from consumption and leisure:

$$\frac{\left(c_t^{\chi}\left(1-l_t-\phi_w\mathbf{1}_{\{l_t>0\}}-\phi_{h,t}\right)^{1-\chi}\right)^{1-\sigma}}{1-\sigma}$$


Simple illustration

$$rac{c^{1-\sigma}}{1-\sigma} + rac{(m-\eta)^{1-\sigma^M}}{1-\sigma^M} + v(m,\Delta)
ightarrow \max_{c,m}$$

s.t.

$$c + qm = I$$
 (for insured)
 $c + m = I$ (for uninsured)

The effect of health insurance on medical spending

Saturation point vs risk aversion: identification

 Static problem of endowment I allocation between regular and medical consumption:

$$\frac{c^{1-\sigma}}{1-\sigma} + v(m-\eta) \to \max_{c,m}$$

s.t.

$$c + m = 1$$

FOC:

$$(1-m)^{-\sigma} = v'(m-\eta)$$

Saturation point vs risk aversion: identification

 Static problem of endowment I allocation between regular and medical consumption:

$$\frac{c^{1-\sigma}}{1-\sigma} + v(m-\eta) \to \max_{c,m}$$

s.t.

$$c + m = I$$

• FOC:

$$(I-m)^{-\sigma} = v'(m-\eta)$$

Saturation point vs risk aversion: identification

• Case 1: $v(m-\eta)$ - just CRRA with the risk aversion σ_M

$$v'(m-\eta)=(m-\eta)^{-\sigma^M}$$

• How change in σ_M affects marginal utility from medical spending? Ambiguous:

$$\frac{\partial v'(m-\eta)}{\partial \sigma} = -(m-\eta)^{-\sigma^M} \ln(m-\eta)$$

Saturation point vs risk aversion: identification

• Case 1: $v(m-\eta)$ - just CRRA with the risk aversion σ_M

$$v'(m-\eta)=(m-\eta)^{-\sigma^M}$$

• How change in σ_M affects marginal utility from medical spending? Ambiguous:

$$\frac{\partial v'(m-\eta)}{\partial \sigma_{M}} = -(m-\eta)^{-\sigma^{M}} \ln(m-\eta)$$

Saturation point vs risk aversion: identification

• Case 2: $v(m-\eta)$ - CRRA +quadratic component

$$v'(m-\eta) = (m-\eta)^{-\sigma^M} - m + \eta + \Delta - \Delta^{-\sigma^M}$$

• Increase in Δ unambiguously increases MU from medical consumption => higher Δ - higher demand for medical care

Saturation point vs risk aversion: identification

• Case 2: $v(m-\eta)$ - CRRA +quadratic component

$$v'(m-\eta) = (m-\eta)^{-\sigma^M} - m + \eta + \Delta - \Delta^{-\sigma^M}$$

• Increase in Δ unambiguously increases MU from medical consumption => higher Δ - higher demand for medical care

Labor productivity

- individual *i* 's labor productivity: $z_t^h = \lambda_t^h \times y_t^i$
 - $\Rightarrow \lambda_t^h$ deterministic function of age and health

$$\Rightarrow y_t^i = \nu_t^i + \xi^i; \quad \nu_t^i = \rho \nu_{t-1}^i + \varepsilon_t^i$$

• estimate λ_t^h together with ϕ_w , $\phi_{h,t}$ (French, 2005)

$$u(c_t, l_t) = \frac{\left(c_t^{\chi} \left(1 - l_t - \phi_w \mathbf{1}_{\{l_t > 0\}} - \phi_{h,t}\right)^{1 - \chi}\right)^{1 - \sigma}}{1 - \sigma}$$

.

Labor productivity

- individual *i* 's labor productivity: $z_t^h = \lambda_t^h \times y_t^i$
 - $\Rightarrow \lambda_t^h$ deterministic function of age and health

$$\Rightarrow \ y_t^i = \nu_t^i + \xi^i; \quad \ \nu_t^i = \rho \nu_{t-1}^i + \varepsilon_t^i$$

• estimate λ_t^h together with ϕ_w , $\phi_{h,t}$ (French, 2005)

$$u(c_t, l_t) = \frac{\left(c_t^{\chi} \left(1 - l_t - \phi_w \mathbf{1}_{\{l_t > 0\}} - \phi_{h,t}\right)^{1 - \chi}\right)^{1 - \sigma}}{1 - \sigma}$$

Labor productivity

- individual i 's labor productivity: $z_t^h = \lambda_t^h \times y_t^i$
 - $\Rightarrow \lambda_t^h$ deterministic function of age and health

$$\Rightarrow y_t^i = \nu_t^i + \xi^i; \quad \nu_t^i = \rho \nu_{t-1}^i + \varepsilon_t^i$$

• estimate λ_t^h together with ϕ_w , $\phi_{h,t}$ (French, 2005)

$$u(c_t, l_t) = \frac{\left(c_t^{\chi} \left(1 - l_t - \phi_w \mathbf{1}_{\{l_t > 0\}} - \phi_{h,t}\right)^{1 - \chi}\right)^{1 - \sigma}}{1 - \sigma}$$

N book

Parameters

Parameter name	Notation	Value	Source
Consumption share	×	0.6	French (2005)
Labor supply	7	0.4	
Risk aversion reg/med consumption	σ , σ_{M}	3	
Labor productivity			
- Persistence parameter	ρ	0.98	Storesletten, et al (2000)
- Variance of innovations	σ_{ε}^2	0.02	"
- Fixed effect	σ_{ε}^{2} σ_{ξ}^{2}	0.24	"
Deductible and cost-sharing	,		
- ESHI	ded ^G , q ^G	\$182, 83%	MEPS
- Medicaid	ded^M, q^M	\$0, 93%	MEPS
- Medicare	ded ^{MCR} , q ^{MCR}	\$320, 87%	MEPS

Parameter name	Notation	Value	Source
Discount factor	β	0.976	Ratio of assets 60-64 to 35-39
Consumption floor	<u>c</u>	\$2,500	% employment among public insurance
Medicaid			
- Income test	y CAT	0.95FPL	% publicly insured
- Asset test	k ^{CAT}	\$30,000	publicly insured profile
Fixed costs of work	ϕ_{w}	0.220	employment profiles (healthy)
Time loss due to unhealthy			, , , , , , , , , , , , , , , , , , , ,
- age 25-40	ϕ_t^{UH}	0.010	employment profiles (unhealthy)
- age 64	ϕ_t^{UH}	0.295	"
Saturation point	Δ	0.328	difference in medical spending ESHI/uninsured

	Med spending (% BS)	Lump sum transfers (\$000)	% MCD coverage	Welfare (% CEV)
Baseline	100	-	8.7	-
Observable need	94.1	3.5	12.81	1.14

	Med spending	Lump sum	% MCD	Welfare
	(% BS)	transfers (\$000)	coverage	(% CEV)
Baseline (MCD covers 93%)	100	-	8.7	-
Observable need	94.1	3.5	12.81	1.14
Reducing MCD generosity				
Medicaid covers 85%	99.4	1.6	9.5	0.69
Medicaid covers 80%				0.74
Medicaid covers 75%				0.72
Medicaid covers 70%				0.63
Medicaid covers 60%				0.36
Medicaid covers 50%				-0.23
Medicaid covers 40%				-0.92

	Med spending (% BS)	Lump sum transfers (\$000)	% MCD coverage	Welfare (% CEV)
Baseline (MCD covers 93%)	100	-	8.7	-
Observable need	94.1	3.5	12.81	1.14
Reducing MCD generosity				
Medicaid covers 85%	99.4	1.6	9.5	0.69
Medicaid covers 80%	98.8	2.0	10.1	0.74
Medicaid covers 75%				
Medicaid covers 70%				
Medicaid covers 60%				
Medicaid covers 50%				
Medicaid covers 40%				

	Med spending (% BS)	Lump sum transfers (\$000)	% MCD	Welfare (% CEV)
	, ,	transfers (\$000)	coverage	(% CEV)
Baseline (MCD covers 93%)	100	-	8.7	-
Observable need	94.1	3.5	12.81	1.14
Reducing MCD generosity				
Medicaid covers 85%	99.4	1.6	9.5	0.69
Medicaid covers 80%	98.8	2.0	10.1	0.74
Medicaid covers 75%	98.1	2.4	10.7	0.72
Medicaid covers 70%				
Medicaid covers 60%				
Medicaid covers 50%				
Medicaid covers 40%				

	Med spending	Lump sum	% MCD	Welfare
	(% BS)	transfers (\$000)	coverage	(% CEV)
Baseline (MCD covers 93%)	100	-	8.7	-
Observable need	94.1	3.5	12.81	1.14
Reducing MCD generosity				
Medicaid covers 85%	99.4	1.6	9.5	0.69
Medicaid covers 80%	98.8	2.0	10.1	0.74
Medicaid covers 75%	98.1	2.4	10.7	0.72
Medicaid covers 70%	97.5	2.7	11.1	0.63
Medicaid covers 60%				
Medicaid covers 50%				
Medicaid covers 40%				

	Med spending	Lump sum	% MCD	Welfare
	(% BS)	transfers (\$000)	coverage	(% CEV)
Baseline (MCD covers 93%)	100	-	8.7	-
Observable need	94.1	3.5	12.81	1.14
Reducing MCD generosity				
Medicaid covers 85%	99.4	1.6	9.5	0.69
Medicaid covers 80%	98.8	2.0	10.1	0.74
Medicaid covers 75%	98.1	2.4	10.7	0.72
Medicaid covers 70%	97.5	2.7	11.1	0.63
Medicaid covers 60%	96.4	3.2	12.2	0.36
Medicaid covers 50%				
Medicaid covers 40%				

	Med spending	Lump sum	% MCD	Welfare
	(% BS)	transfers (\$000)	coverage	(% CEV)
Baseline (MCD covers 93%)	100	-	8.7	-
Observable need	94.1	3.5	12.81	1.14
Reducing MCD generosity				
Medicaid covers 85%	99.4	1.6	9.5	0.69
Medicaid covers 80%	98.8	2.0	10.1	0.74
Medicaid covers 75%	98.1	2.4	10.7	0.72
Medicaid covers 70%	97.5	2.7	11.1	0.63
Medicaid covers 60%	96.4	3.2	12.2	0.36
Medicaid covers 50%	95.6	3.5	12.8	-0.23
Medicaid covers 40%				

	Med spending	Lump sum	% MCD	Welfare
	(% BS)	transfers (\$000)	coverage	(% CEV)
Baseline (MCD covers 93%)	100	-	8.7	-
Observable need	94.1	3.5	12.81	1.14
Reducing MCD generosity				
Medicaid covers 85%	99.4	1.6	9.5	0.69
Medicaid covers 80%	98.8	2.0	10.1	0.74
Medicaid covers 75%	98.1	2.4	10.7	0.72
Medicaid covers 70%	97.5	2.7	11.1	0.63
Medicaid covers 60%	96.4	3.2	12.2	0.36
Medicaid covers 50%	95.6	3.5	12.8	-0.23
Medicaid covers 40%	94.8	3.8	12.2	-0.92

	Med spending	Lump sum	% MCD	Welfare
	(% BS)	transfers (\$000)	coverage	(% CEV)
Baseline (MCD covers 93%)	100	-	8.7	-
Observable need	94.1	3.5	12.81	1.14
Reducing MCD generosity				
Medicaid covers 85%	99.4	1.6	9.5	0.69
Medicaid covers 80%	98.8	2.0	10.1	0.74
Medicaid covers 75%	98.1	2.4	10.7	0.72
Medicaid covers 70%	97.5	2.7	11.1	0.63
Medicaid covers 60%	96.4	3.2	12.2	0.36
Medicaid covers 50%	95.6	3.5	12.8	-0.23
Medicaid covers 40%	94.8	3.8	12.2	-0.92

	Med spending (% BS)	Lump sum transfers (\$000)	% MCD coverage	% in cash plan ages 25-64	Welfare (% CEV)
Baseline	100	-	8.7	-	-
Observable need	94.1	3.5	12.81	-	1.14
Reducing MCD generosity					
BS generosity 93%		1.6	9.1	68-29	0.73
Medicaid covers 85%					1.06
Medicaid covers 80%					0.89
Medicaid covers 75%					0.65
Medicaid covers 70%					0.40

	Med	Lump sum	% MCD	% in cash	Welfare
	spending	transfers	coverage	plan	(% CEV)
	(% BS)	(\$000)		ages 25-64	
Baseline	100	-	8.7	-	-
Observable need	94.1	3.5	12.81	-	1.14
Reducing MCD generosity					
BS generosity 93%	99.1	1.6	9.1	68-29	0.73
Medicaid covers 85%	96.7	2.9	11.1	84-62	1.06
Medicaid covers 80%					0.89
Medicaid covers 75%					0.65
Medicaid covers 70%	95.1	3.6	12.5	93-82	0.40

	Med	Lump sum	% MCD	% in cash	Welfare
	spending	transfers	coverage	plan	(% CEV)
	(% BS)	(\$000)		ages 25-64	
Baseline	100	-	8.7	-	-
Observable need	94.1	3.5	12.81	-	1.14
Reducing MCD generosity					
BS generosity 93%	99.1	1.6	9.1	68-29	0.73
Medicaid covers 85%	96.7	2.9	11.1	84-62	1.06
Medicaid covers 80%	95.9	3.2	11.7	88-74	0.89
Medicaid covers 75%					
Medicaid covers 70%					

	Med	Lump sum	% MCD	% in cash	Welfare
	spending	transfers	coverage	plan	(% CEV)
	(% BS)	(\$000)		ages 25-64	
Baseline	100	-	8.7	-	-
Observable need	94.1	3.5	12.81	-	1.14
Reducing MCD generosity					
BS generosity 93%	99.1	1.6	9.1	68-29	0.73
Medicaid covers 85%	96.7	2.9	11.1	84-62	1.06
Medicaid covers 80%	95.9	3.2	11.7	88-74	0.89
Medicaid covers 75%	95.4	3.4	12.1	91-79	0.65
Medicaid covers 70%	95.1	3.6	12.5	93-82	0.40

	Med	Lump sum	% MCD	% in cash	Welfare
	spending	transfers	coverage	plan	(% CEV)
	(% BS)	(\$000)		ages 25-64	
Baseline	100	-	8.7	-	-
Observable need	94.1	3.5	12.81	-	1.14
Reducing MCD generosity					
BS generosity 93%	99.1	1.6	9.1	68-29	0.73
Medicaid covers 85%	96.7	2.9	11.1	84-62	1.06
Medicaid covers 80%	95.9	3.2	11.7	88-74	0.89
Medicaid covers 75%	95.4	3.4	12.1	91-79	0.65
Medicaid covers 70%	95.1	3.6	12.5	93-82	0.40

back

	Med	Lump sum	% MCD	% in cash	Welfare
	spending	transfers	coverage	plan	(% CEV)
	(% BS)	(\$000)		ages 25-64	
Baseline	100	-	8.7	-	-
Observable need	94.1	3.5	12.81	-	1.14
Reducing MCD generosity					
BS generosity 93%	99.1	1.6	9.1	68-29	0.73
Medicaid covers 85%	96.7	2.9	11.1	84-62	1.06
Medicaid covers 80%	95.9	3.2	11.7	88-74	0.89
Medicaid covers 75%	95.4	3.4	12.1	91-79	0.65
Medicaid covers 70%	95.1	3.6	12.5	93-82	0.40