A Bird in the Hand is Worth Two in the Grave Risk Aversion and Life-Cycle Savings

> Antoine Bommier^a, Daniel Harenberg^a, François Le Grand^{b,a}

^aETH Zurich ^bEMLyon Business School

QSPS, 2016 Summer Workshop Jon M. Huntsman School of Business, Utah State University Logan, Utah, May 2016

Motivation

- Question: How does risk aversion impact life-cycle saving and portfolio choice?
- First answer: Depends on the risks considered
 - Labor income risk: ↗
 - Financial return risk: depends on IES
 - Mortality risk: 📐
- With multiple risks: ambiguous
 - \Rightarrow Need quantitative analysis
- Focus on risk aversion + income, financial and mortality risks

Modelling approach

- Kreps-Porteus recursive preferences:
 - Epstein-Zin (1989)
 - Risk-sensitive: Hansen and Sargent (1995) in their work on robustness
 - Allow us to vary risk aversion without changing IES
- Quantitative life-cycle model with incomplete markets
- Partial equilibrium analysis
- Calibrated to U.S. data
- ... and in particular to value of a statistical life: Viscusi and Aldy (2003) for a review

Main results

- Higher risk aversion
 - Decreases life-cycle savings
 - Decreases participation in the stock market
 - Decreases the conditional share in stock
- With mortality risk, give up homotheticity of Epstein-Zin
 - $\rightarrow\,$ intuition: we cannot "scale" death.
- Risk-sensitive and Epstein-Zin qualitatively similar and quantitatively close

Literature

Risk aversion	increases savings	decreases savings
Income risk	e.g., BCL	
Investment risk	Kihlstrom and Mirman (1974) and BCL if IES< 1	Kihlstrom and Mirman (1974) and BCL if IES> 1
Mortality risk	HPSA if IES < 1	Bommier (2006, 2013), BCL, Drouhin (2015), HPSA if IES> 1
All three risks	Gomes and Michaelides (2005, 2008), • more	This paper

- BCL: Bommier, Chassagnon, and LeGrand (2012)
- HPSA: Hugonnier, Pelgrin, and Saint-Amour (2012)

Relationship between risk aversion and savings (1/2)

Simple framework (see Bommier, Chassagnon, LeGrand, 2012)

- Consumption-saving problem with 2 periods: 0 and 1; 2 states in period 1: G and B
- Saving s_B (resp. s_G) if B (resp. G) for sure
- Saving s^* if uncertain future (B or G)

Role of risk aversion:

- $s^* = \text{convex combination of } s_B$ and s_G
- Weight on s_B increases with risk aversion
- \Rightarrow the more risk averse, the more important bad state realizations

Relationship between risk aversion and savings (2/2)

- Income risk
 - Bad state = low income
 - $s_B > s_G$
 - Risk aversion increases savings.
- Mortality risk
 - Bad state = living for one period only
 - saving = bet on living 2 periods
 - $s_B < s_G$
 - Risk aversion *decreases* savings.
- Investment risk: depends on IES

Back of the envelope calculation (1/2)

Magnitudes of income vs. mortality risks?

- Income risk from a lifecycle perspective
 - Lifecycle labor income = per period labor incomes discounted to age 20 at the risk-free rate
 - \Rightarrow With our calibration, average lifetime labor income of \$1.1 million with a standard deviation of \$0.8 million
 - \Rightarrow Income risk \approx \$0.8 million

Back of the envelope calculation (2/2)

Magnitudes of income vs. mortality risks?

- Mortality risk.
 - Life expectancy at age 20 = 58.5 years with a standard deviation of 14.5 years.
 - \Rightarrow Mortality risk ≈ 14.5 years.
 - Using the value of a statistical life, one year alive \approx $\$\,186\,{\rm k}$ (VSL= $\$\,6.5{\rm m}$ at 45).
 - \Rightarrow Mortality risk \approx \$2.7 millions.
- $\Rightarrow\,$ Back of the envelope calculation: Mortality risk $\gg\,$ income risk
- \Rightarrow Impact of risk aversion should be dominated by mortality risk

1 Motivation and mechanisms

Computation and calibration

Endowments

- Working age t = 1, retirement age $t = T_R$, max age $t = T_M$
- Mortality risk: survival probabilities $(p_{t+1|t})_t$
- Labor income ($1 \le t < T_R$)

$$y_t^L = y_0 \exp(\mu_t + \pi_t + \varepsilon_t^y)$$
$$\pi_t = \rho \pi_{t-1} + \varepsilon_t^{\pi}$$
$$\varepsilon_t^y \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma_y^2\right), \quad \varepsilon_t^{\pi} \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma_{\pi}^2\right)$$

• Social security pension income ($T_R \leq t \leq T_M$), y^R

Asset markets

- Bond: risk-free gross return R^f
- Stock: risky gross return

$$\ln R_t^s = \ln \left(R^f + \nu \right) + \varepsilon_t^R, \quad \varepsilon_t^R \stackrel{iid}{\sim} \mathcal{N} \left(0, \sigma_R^2 \right)$$

- ε^R_t correlated with both labor income shocks with $\kappa_{R,y}$ and $\kappa_{R,\pi}$
- No short-selling
- Stock-market participation cost, $F \ge 0$, paid once in life

Choices and constraints

- Choices $\{c_t, s_t, b_t, \eta_t\}$
- Constraints

$$\begin{split} c_t + b_t + s_t + F \mathbf{1}_{\eta_{t-1}=0} &= y_t + R^f b_{t-1} + R^s_t s_{t-1}, \\ y_t &= \begin{cases} y_t^L & \text{if } t < t_R, \\ y^R & \text{else}, \end{cases} \\ s_t &= 0 \text{ if } \eta_t = 0, \\ c_t &> 0, \quad b_t \ge 0, \quad s_t \ge 0. \end{split}$$

and bequests are $w_t = R^f b_{t-1} + R^s_t s_{t-1}$.

Preferences (1/2)

- Felicity (alive) from consumption: $u(c) = \frac{c^{1-\sigma}-1}{1-\sigma}$
- Felicity (dead) from bequests:

$$v(w) = -v_0 + \frac{\theta}{1-\sigma} \left[(\hat{w} + w)^{1-\sigma} - \hat{w}^{1-\sigma} \right]$$

• Kreps-Porteus recursive preferences

General recursion

$$\begin{aligned} U_t^A &= (1-\beta)u(c_t) \\ &+\beta \Phi^{-1} \bigg(p_{t+1|t} \mathbb{E}_t \left[\Phi \left(U_{t+1}^A \right) \right] + (1-p_{t+1|t}) \mathbb{E}_t \Big[\Phi \left(U_{t+1}^D \right) \Big] \bigg) \\ U_t^D &= (1-\beta) v(w_t) + \beta v(0) \end{aligned}$$

Preferences (2/2)

Why is v_0 important?

- difference between being alive consuming 1 unit and being dead without leaving bequest
- strongly connected to the value of life
- cannot be set to zero without a loss of generality (and a strong constraint on value of life)
- does not "go away" with non-additive preferences
- (does not affect choices in case of additive preferences)

$$\begin{aligned} U_t^A &= (1-\beta)u(c_t) + \beta p_{t+1|t} \mathbb{E}_t \left[U_{t+1}^A \right] - \beta (1-p_{t+1|t})v_0 \\ &+ (1-p_{t+1|t})\beta \mathbb{E}_t [(1-\beta)\frac{\theta}{1-\sigma} \left[(\hat{w}+w)^{1-\sigma} - \hat{w}^{1-\sigma} \right]] \end{aligned}$$

Epstein-Zin and risk-sensitive preferences (1/2)

- Both Kreps-Porteus
- Epstein-Zin preferences (EZ)

$$\Phi(u) = \frac{1}{1-\gamma} (1+(1-\sigma)u)^{\frac{1-\gamma}{1-\sigma}} - \frac{1}{1-\gamma}, \quad \text{ if } \gamma, \sigma \neq 1$$

• Risk-sensitive preferences (RS)

$$\Phi(u) = -\frac{1}{k} \left(\exp(-ku) - 1 \right) \qquad \text{if } k \neq 0$$

- Limit cases ($k=0, \ \gamma=1, \ \sigma=1$) by continuity
- Coincide if

•
$$\gamma = \sigma$$
 and $k = 0 \Rightarrow$ additively separable case • $\sigma = 1$

Epstein-Zin and risk-sensitive preferences (2/2)

- EZ: homothetic but not monotone (with respect to FSD)
- RS: non-homothetic but monotone.
- \Rightarrow Not monotone, what does that mean?
 - RS: the only KP preferences that are monotone and disentangle risk aversion from IES
 - Working paper by Bommier and LeGrand (2014), work in progress by Bommier, Kochov, and LeGrand (2016)
 - In our setting:
 - Homotheticity has to be given up, because of value of life.
 - Non-monotonicity little impact

Value of a statistical life

 Standard definition (see Johansson 2002): Marginal rate of substitution between survival rate and consumption

$$VSL_t = \frac{\frac{\partial U_t^A}{\partial p_{t+1|t}}}{\frac{\partial U_t^A}{\partial c_t}}$$

 \Rightarrow how much consumption to give up for increasing the likelihood to live one more year

• Viscusi and Aldy (2003) for empirical estimates

Computation

- Reformulate model
 - Cash-at-hand, $x_t = R^f b_{t-1} + R^s_t s_{t-1} + y_t$
 - Total savings, a_t , and share in stock $\alpha \in [0, 1]$
- Persistent productivity, π_t : continuous state variable
- State space (x_t, π_t, η_t, t)
- Not differentiable
- \bullet Standard VFI very long \rightarrow calibration hardly feasible.
- \Rightarrow Refinement of VFI
- \Rightarrow Use 3D cubic B-spline to interpolate expected continuation value
 - Calibration: consider 3 agents: add, EZ, RS

Calibration of preferences

Parameter	Value	Source/ counterpart/ target
Inverse IES, σ	2.0	
Exog. endowment, \hat{w}	1.5	
Discount factor, β	0.96	$Assets^{add}_{45} = US\$ 100'000$
Life-death gap, v_0	30.0	$VSL_{45}^{add} = US\$$ 6.5m
Bequest motive, θ	20.0	$Bequests^{add}_{85}$
Risk aversion, EZ, γ	3.0	
Risk aversion, RS, k	0.08	$Assets_{45}^{RS} = Assets_{45}^{EZ}$

Parameterization of endowments and asset markets

Parameter	Value	Source/ counterpart/ target
Working age, retirement age,	maximum age	21, 65, 100
Survival rates, $p_{t+1 t}$	$\{p_{t+1 t}\}_1^T$	U.S. mortality 2007, HMD
Age productivity, μ_t	$\{\mu_t\}_1^T$	Earnings profiles 2007, PSID
Average wage, y_0	$21756~\mathrm{USD}$	Net compensation 2007, SSA
Pensions, y_R	0.3	Replacement rate, preliminary
Autocorrelation, ρ	0.95	Storesletten, et al. (2004)
Var. persistent shocks, σ_π^2	0.03	Storesletten, et al. (2004)
Correlation with stock, $\kappa_{R,\pi}$	0.15	Gomes and Michaelides (2005)
Var. transitory shocks, σ_y^2	0.00	Preliminary
Inheritance, w_0	0.0	Preliminary
Gross risk-free return, R^f	1.01	Bond return, Shiller data
Equity premium, $ u$	0.02	Preliminary
Stock volatility, σ_R	0.18	Shiller data
Participation cost, F	0.2	Preliminary

Lifecycle profiles without mortality risk

Re-calibration

Lifecycle profiles with mortality risk (1/3)

Baseline with all risks

Lifecycle profiles with mortality risk (2/3)

Baseline with all risks

Lifecycle profiles with Mortality risk (3/3)

Typical Epstein-Zin specification

• Many different variants, e.g. • GM 2005. See • Literature Overview).

$$\Omega_t = \left((1-\beta) c_t^{1-\sigma} + \beta \left(\mathbb{E}_t \left[p_{t+1|t} \Omega_{t+1}^{1-\gamma} + (1-p_{t+1|t}) \theta w_{t+1}^{1-\gamma} \right] \right)^{\frac{1-\sigma}{1-\gamma}} \right)^{\frac{1}{1-\sigma}}$$

- Bequests explicit and homothetic,
- . . . but VSL not necessarily > 0
- In our framework, set $v_0=-\theta\frac{\hat{w}^{1-\sigma}}{1-\sigma}$ (and $\hat{w}=0.0)$
- In addition, if no bequests: $\theta = 0$ If $\gamma > 1$: $\frac{\partial \Omega_t}{\partial p_{t+1|t}} < 0 \Rightarrow VSL < 0$. The term $+(1 - p_{t+1|t})(\infty)^{1-\gamma}$ can be added in the recursion, where $\infty =$ utility of death.

1

Typical Epstein-Zin specification, $\theta = 0$ (1/2)

• Like baseline with all risks

Recalibration

Typical Epstein-Zin specification, $\theta = 0$ (2/2)

Conclusion

- Mortality = main risk in life
 - importance of value of life
 - saving = risk-taking behavior
 - Higher risk aversion decreases lifecycle savings
- EZ vs. RS
 - EZ can accommodate positive VSL, but lose homotheticity
 - Typical EZ implementation may yield negative VSL
- Observed low levels of saving may be rational and explained by higher risk-aversion. Alternative explanation to time-inconsistency (e.g., Caliendo and Findley, 2013)
- In paper, also explain the different results of Hugonnier, Pelgrin, and Saint-Amour (2012)

Thank you !

Appendix Table of Contents

Literature

- Epstein-Zin preferences:
 - With bequests: Gomes and Michaelides (2005), Inkman, Lopez, and Michaelides (2011), Horneff, Maurer, and Stamos (2008a, 2008b), Chai, Horneff, Maurer, and Mitchell (2011)
 - Without bequests: Gomes and Michaelides (2008), Gomes, Michaelides, and Polkovnichenko (2009), Fehr and Habermann (2008), Fehr, Habermann, and Kindermann (2008) Fehr, Kallweit, and Kindermann (2013)
- Risk aversion and savings:

Bommier (2006, 2013), Bommier, Chassagnon, LeGrand (2012), Bhamra and Uppal (2006)

• Value of a statistical life:

Kaplow (2005), Viscusi and Aldy (2003), Bommier and Villeneuve (2010),

Cordoba and Ripoll (2013)

Risk Aversion and Life-Cycle Savings

Appendix 1

Relationship Between Risk Aversion and Savings (3/3)

Investment risk

- Bad state = low rate of return
- If IES < 1
 - Income effect dominates
 - $s_B > s_G$
 - Risk aversion increases savings
- Else if $\mathsf{IES}\!>1$
 - Substitution effect dominates
 - $s_B < s_G$
 - Risk aversion decreases savings

General Kreps-Porteus Recursion

Recursion

$$\begin{split} U_t &= (1 - \beta) u_t + \beta \Phi^{-1} \left(\mathbb{E}_t^{\mathcal{F} \times \mathcal{G}} \left[\Phi \left(U_{t+1} \right) \right] \right), \\ \text{with } u_t &= \begin{cases} u(c_t) & \text{if alive at } t \\ v(w_t) & \text{if dead at } t \end{cases} \end{split}$$

🕨 Go Back

Numerical Example of Non-Monotonic Preferences

• Consider EZ utility:
$$V(c_0, \tilde{c}_1) = c_0^{\frac{1}{2}} + (\mathbb{E}[\tilde{c}_1^{-\frac{1}{2}}])^{-1}$$
.

• Lotteries $i = \ell_1, \ell_2$ paying off (c_0^i, c_d^i) or (c_0^i, c_u^i) (50%–50%):

Lottery	c_0^i	c_d^i	c_u^i	$V(c_0^i,c_d^i)$	$V(c_0^i,c_u^i)$
$i = \ell_1$	4	1	7	9.00	21.58
$i = \ell_2$	2	2.5	9	8.97	19.49

 $\Rightarrow \ell_1$ always pays off more than ℓ_2 .

• BUT, ex ante, $V(c_0^{\ell_1}, \tilde{c}_1^{\ell_1}) = 11.91 < 12.15 = V(c_0^{\ell_2}, \tilde{c}_1^{\ell_2})!$

Implications for consumption-saving problems

- Two states B, G, two periods, constant rate R
- $y_B < y_G$ and $s_B > s_G$
- With monotone preferences: $s_B > s_m^* > s_G$
- With EZ preferences, it may be the case that: s^{*}_{EZ} > s_B > s_G, while saving s_B offers a greater lifetime utility in both states B and G.

Re-calibration Without Mortality

Parameter	Value	Source/ counterpart/ target
Inverse IES, σ	2.0	
Exog. endowment, \hat{w}	1.5	
Discount factor, β	0.96 ightarrow 0.95	$Assets^{add}_{45} = US\$ 100'000$
Life-death gap, v_0	$30.0 \rightarrow 30.3$	$VSL_{45}^{add} = US\$$ 6.5m
Bequest motive, θ	20.0	$Bequests_{85}^{add} = ?$
Risk aversion, EZ, γ	3.0 ightarrow 7.0	
Risk aversion, RS, k	0.08 ightarrow 0.58	$Assets_{45}^{RS} = Assets_{45}^{EZ}$

→ Go Back

EZ in Gomes and Michaelides 2005

$$V_t = \left((1 - \beta p_t) c_t^{1 - \frac{1}{\varepsilon}} + \beta E_t \left(p_t V_{t+1}^{1 - \rho} + (1 - p_t) b \frac{(X_{t+1}/b)^{1 - \rho}}{1 - \rho} \right)^{\frac{1 - \frac{1}{\varepsilon}}{1 - \rho}} \right)^{\frac{1 - \frac{1}{\varepsilon}}{1 - \rho}}$$

 $\bullet\,$ Derivative ambiguous if $\rho>1$ and $\varepsilon<1$

▶ Go Back

1

Re-calibration for 'typical' EZ Specification

Parameter	Value	Source/ counterpart/ target
Inverse IES, σ	2.0	
Exog. endowment, \hat{w}	1.5	
Discount factor, β	0.96	$Assets^{add}_{45} = US\$ 100'000$
Life-death gap, v_0	30.0 ightarrow 0.0	not targeted
Bequest motive, θ	20.0 ightarrow 0.0	exogenous
Risk aversion, EZ, γ	${f 3.0} o {f 7.0}$	
Risk aversion, RS, k	0.08 ightarrow 0.71	$Assets_{45}^{RS} = Assets_{45}^{EZ}$

▸ Go Back

- BHAMRA, H. S. AND R. UPPAL (2006): "The role of risk aversion and intertemporal substitution in dynamic consumption-portfolio choice with recursive utility," *Journal of Economic Dynamics and Control*, 30, 967–991.
- BOMMIER, A. (2006): "Uncertain Lifetime and Intertemporal Choice: Risk Aversion as a Rationale for Time Discounting," *International Economic Review*, 47, 1223–1246.
- (2013): "Life Cycle Preferences Revisited," *Journal of European Economic Association*, 11, 1290–1319.
- BOMMIER, A., A. CHASSAGNON, AND F. LE GRAND (2012):
 - "Comparative Risk Aversion: A Formal Approach with Applications to Saving Behaviors," *Journal of Economic Theory*, 147, 1614–1641.
- BOMMIER, A., A. KOCHOV, AND F. LEGRAND (2016): "On Monotone Recursive Preferences," mimeo.

- BOMMIER, A. AND F. LEGRAND (2014): "A Robust Approach to Risk Aversion," Working paper, ETH Zurich.
- BOMMIER, A. AND B. VILLENEUVE (2010): "Risk Aversion and the Value of Risk to Life," *The Journal of Risk and Insurance*, Forthcoming.
- CALIENDO, F. N. AND T. S. FINDLEY (2013): "Time Inconsistency and Retirement Planning," *Economics Letters*, 121, 30–34.
- CHAI, J., W. HORNEFF, R. MAURER, AND O. S. MITCHELL (2011): "Optimal Portfolio Choice over the Life Cycle with Flexible Work, Endogenous Retirement, and Lifetime Payouts," *Review of Finance*, 15, 875–907.
- CORDOBA, J. AND M. RIPOLL (2013): "Beyond Expected Utility in the Economics of Health and Longevity, *Working Paper*," .

DROUHIN, N. (2015): "A Rank-Dependent Utility Model of Uncertain Lifetime," *Journal of Economic Dynamics and Conctrol*, 53, 208–224.

- EPSTEIN, L. G. AND S. E. ZIN (1989): "Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework," *Econometrica*, 57, 937–969.
- FEHR, H. AND C. HABERMANN (2008): "Risk Sharing and Efficiency Implications of Progressive Pension Arrangements," *Scandinavian Journal of Economics*, 110, 419–443.
- FEHR, H., C. HABERMANN, AND F. KINDERMANN (2008): "Social security with rational and hyperbolic consumers," *Review of Economic Dynamics*, 11, 884–903.
- FEHR, H., M. KALLWEIT, AND F. KINDERMANN (2013): "Should pensions be progressive?" *European Economic Review*, 63, 94–116.
- GOMES, F. AND A. MICHAELIDES (2005): "Optimal Life-Cycle Asset Allocation: Understanding the Empirical Evidence," *The Journal of Finance*, 60, 869–904.

GOMES, F., A. MICHAELIDES, AND V. POLKOVNICHENKO (2009):
"Optimal savings with taxable and tax-deferred accounts," *Review of Economic Dynamics*, 12, 718–735.

- GOMES, F. J. AND A. MICHAELIDES (2008): "Asset Pricing with Limited Risk Sharing and Heterogeneous Agents," *The Review of Financial Studies*, 21, 415–448.
- HANSEN, L. P. AND T. J. SARGENT (1995): "Discounted Linear Exponential Quadratic Gaussian Control," *IEEE Transactions on Automatic Control*, 40, 968–971.
- HORNEFF, W., R. H. MAURER, AND M. Z. STAMOS (2008a): "Optimal gradual annuitization: Quantifying the costs of switching to annuities," *Journal of Risk and Uncertainty*, 75, 1019–1038.

HORNEFF, W. J., R. H. MAURER, AND M. Z. STAMOS (2008b):
"Life-cycle asset allocation with annuity markets," *Journal of Economic Dynamics and Control*, 32, 3590–3612.

- HUGONNIER, J., F. PELGRIN, AND P. ST-AMOUR (2012): "Health and (Other) Asset Holdings," *The Review of Economic Studies*, 80, 663–710.
- INKMANN, J., P. LOPES, AND A. MICHAELIDES (2011): "How Deep Is the Annuity Market Participation Puzzle?" *Review of Financial Studies*, 24, 279–319.
- JOHANSSON, P.-O. (2002): "On the Definition and Age-Dependency of the Value of a Statistical Life," *Journal of Risk and Uncertainty*, 25, 251–263.
- KAPLOW, L. (2005): "The value of a statistical life and the coefficient of relative risk aversion," *Journal of Risk and Uncertainty*, 23–34.
- KIHLSTROM, R. E. AND L. J. MIRMAN (1974): "Risk Aversion with many Commodities," *Journal of Economic Theory*, 8, 361–388.

STORESLETTEN, K., C. I. TELMER, AND A. YARON (2004):

"Consumption and Risk sharing over the Life Cycle," *Journal of Monetary Economics*, 51, 609–633. VISCUSI, W. K. AND J. E. ALDY (2003): "The Value of a Statistical Life: A Critical Review of Market Estimates Throughout the World," *The Journal of Risk and Uncertainty*, 27, 5–76.