# Macroeconomics and Household Heterogeneity

Dirk Krueger<sup>1</sup> Kurt Mitman<sup>2</sup> Fabrizio Perri<sup>3</sup>

<sup>1</sup>University of Pennsylvania, CEPR, CFS, NBER and Netspar

<sup>2</sup>IIES, Stockholm University and CEPR

 $^3\mathrm{Federal}$  Reserve Bank of Minneapolis, CEPR and NBER

Quantitative Society for Pensions and Savings Workshop May 21, 2016

# THE QUESTION

- ► Broad Question: Is Microeconomic Heterogeneity Important for Macroeconomic Outcomes
- ► Narrower Version of this Question (and the one addressed in talk):
  - 1. Is household income and wealth inequality quantitatively important for aggregate consumption, investment and output response to an exogenous Great Recession shock?
  - 2. How do social insurance policies impact these aggregates?
  - 3. How are consumption, welfare losses of aggregate shock distributed across population? How does social insurance affect that distribution?
- What I won't be talking about:
  - ▶ Firm heterogeneity and business cycles (see e.g. Khan & Thomas 2008, Bachmann, Caballero & Engel 2013)
  - ► Interaction of inequality and long run growth (see e.g. Kuznets 1952, Benabou 2002, Piketty 2014)
  - ► Computation of heterogeneous agent models. See 2010 JEDC Special Issue)

# The Basic Argument: Why May Inequality Matter for Dynamics of Recession?

- ► Earnings fall in recessions (unemployment rises, real wages fall)
- ► If low wealth households have higher MPC out of current earnings changes....
- ► ...then the degree of wealth inequality impacts aggregate C dynamics over the cycle.
- ► If, in addition, aggregate C matters for output (if Y is partially demand-determined b/c of endogenous TFP, nominal rigidities), then wealth distribution influences aggregate Y dynamics...
- ...and social insurance policies are potentially output-stabilizing.

# PLAN FOR TALK: DATA MEETS QUANTITATIVE THEORY

- Empirical analysis using US household (PSID) y, c, a data:
  - How did y, c, a distribution look prior to Great Recession?
  - ► How did *y*, *c*, *a* change for individual households in the Great Recession?

PLAN FOR TALK: DATA MEETS QUANTITATIVE THEORY

- Empirical analysis using US household (PSID) y, c, a data:
  - ▶ How did y, c, a distribution look prior to Great Recession?
  - ► How did *y*, *c*, *a* change for individual households in the Great Recession?
- ► *Quantitative* analysis using versions of heterogeneous household business cycle (Krusell & Smith 1998) model:
  - ▶ Does the model match the inequality facts?
  - Does wealth distribution matter (quantitatively) for response of C, I to Great Recession shock?
  - ► What about Y response if Y is partially (aggregate consumption C) demand-determined?

PLAN FOR TALK: DATA MEETS QUANTITATIVE THEORY

- Empirical analysis using US household (PSID) y, c, a data:
  - ▶ How did y, c, a distribution look prior to Great Recession?
  - ► How did *y*, *c*, *a* change for individual households in the Great Recession?
- ► *Quantitative* analysis using versions of heterogeneous household business cycle (Krusell & Smith 1998) model:
  - ▶ Does the model match the inequality facts?
  - ► Does wealth distribution matter (quantitatively) for response of *C*, *I* to Great Recession shock?
  - ► What about Y response if Y is partially (aggregate consumption C) demand-determined?
- Policy analysis using stylized unemployment insurance (UI) system:
  - ► How does UI impact  $\Delta C, \Delta Y$  for given wealth distribution?
  - ▶ How does size of UI impact the wealth distribution itself?
  - ► How is distribution of welfare losses from Great Recession shaped by UI?

# Emprirical Analysis

# The data

- ▶ PSID waves of 2004-2006-2008-2010. Detailed US household-level information about *y*, *c*, *a*.
  - ► Panel dimension: can assess how individual households changed actions (*c* expenditures) during the Great Recession
  - ➤ Coarse time series dimension (biannual surveys for data between 2004 and 2010)
- Complements literature on measuring inequality trends, e.g. Piketty & Saez (2003), RED Special Issue (2010), Kuhn & Rios-Rull (2015), Atkinson & Bourguignon (2015), Krueger & Perri (2006), Aguiar & Bils (2015).
- ▶ Here: specific focus on joint dynamics of y, c, a. See also
  - Italian Survey of Household and Wealth (SHIW): Krueger & Perri (2009)
  - ▶ For the U.S.: Fisher, Johnson, Smeeding & Thompson (2015): Inequality in 3D.
  - ▶ Data constraint is panel data on *c*. Alternatively impute *c*, Skinner (1987), Blundell, Pistaferri & Preston (2008).

#### The data

- Variables of Interest
  - Net Worth = a = Value of all assets (including real estate) minus liabilities
  - ➤ Disposable Income = y = Total money income net of taxes (computed using TAXSIM)
  - Consumption Expenditures = c = Expenditures on durables, nondurables and services (excluding health)
- ► Sample
  - ► All households in PSID waves 2004-2006-2008-2010, with at least one member of age 22-60

# DATA: MARGINAL DISTRIBUTIONS

|                 | У          | С          | a           | SCF $07 a$ |
|-----------------|------------|------------|-------------|------------|
| Mean $(2006\$)$ | $62,\!549$ | $43,\!980$ | $291,\!616$ | 497,747    |
| % Share: Q1     | 4.5        | 5.6        | -0.9        | -0.2       |
| Q2              | 9.9        | 10.7       | 0.8         | 1.2        |
| Q3              | 15.3       | 15.6       | 4.4         | 4.6        |
| Q4              | 22.8       | 22.4       | 13.0        | 11.9       |
| Q5              | 47.5       | 45.6       | 82.7        | 82.5       |
| 90 - 95         | 10.8       | 10.3       | 13.7        | 11.1       |
| 95 - 99         | 12.8       | 11.3       | 22.8        | 25.3       |
| Top $1\%$       | 8.0        | 8.2        | 30.9        | 33.5       |
| Sample Size     |            | 6442       |             | 2910       |

- ▶ a: Bottom 40% holds basically no wealth
- y, c: less concentrated
- ▶ a distribution in PSID  $\simeq$  SCF except at very top

# Heterogeneity (Inequality) in 2006: Joint Distributions

|     | % Sha | are of: | Exp.Rate |
|-----|-------|---------|----------|
| Q.a | У     | с       | c/y~(%)  |
| Q1  | 8.6   | 11.3    | 92.2     |
| Q2  | 10.7  | 12.4    | 81.3     |
| Q3  | 16.6  | 16.8    | 70.9     |
| Q4  | 22.6  | 22.4    | 69.6     |
| Q5  | 41.4  | 37.2    | 63.1     |

- a correlated with y and saving
- ▶ Wealth-rich earn more and save at a higher rate
- ▶ Bottom 40% hold no wealth, still account for almost 25% of spending

#### MOVING TO THE THEORY

- ▶ Empirical evidence shows:
  - ▶ Bottom 40% have no wealth...
  - $\blacktriangleright$  ... but account for almost 25% of consumption

#### MOVING TO THE THEORY

- ▶ Empirical evidence shows:
  - ▶ Bottom 40% have no wealth...
  - ▶ ...but account for almost 25% of consumption
- ► Is a standard macro model with heterogeneous agents a la Krusell & Smith (1998) consistent with these facts?
- ▶ We then use the model as a laboratory for *quantifying*:
  - ▶ how wealth distribution affects C, I, Y responses to Great Recession shock
  - ▶ how this impact is shaped by social insurance policies
  - ► how welfare losses from Great Recession are distributed across wealth distribution

THE MODEL AND CALIBRATION

#### Aggregate Technology

 Standard production function as in RBC literature [Kydland & Prescott 1982, Long & Plosser 1983]

 $Y = Z^* K^{\alpha} N^{1-\alpha}$ 

► Total factor productivity  $Z^*$  in turn is given by

$$Z^* = ZC^{\omega}$$

- C is aggregate consumption
- $\omega \ge 0$ : aggregate demand externality
- Benchmark model  $\omega = 0$
- ▶ Focus on  $Z \in \{Z_l, Z_h\}$ : recession and expansion.

$$\pi(Z'|Z) = \begin{pmatrix} \rho_l & 1-\rho_l \\ 1-\rho_h & \rho_h \end{pmatrix}$$

- ► Capital depreciates at a constant rate  $\delta = 0.025$  quarterly.
- Capital share:  $\alpha = 36\%$

# HOUSEHOLD PREFERENCES

- ► Continuum of households with idiosyncratic y risk [Bewley 1986, Imrohoroglu 1989, Huggett 1993, Aiyagari 1994]
- Period utility function  $u(c) = \log(c)$
- ► To generate sufficient wealth dispersion follow Carroll, Slacalek & Tokuoka (2015):
  - ► Households draw discount factor  $\beta$  at birth from  $U[\bar{\beta} \epsilon, \bar{\beta} + \epsilon]$
  - ► Choose  $\bar{\beta}, \epsilon$  to match quarterly K/Y = 10.26, Wealth Gini of working pop.=0.77. Yields annual  $\beta \in [0.9265, 0.9672]$
- ► In working life, constant retirement prob.  $1 \theta = 1/160$ .
- ► In retirement constant death probability  $1 \nu = 1/60$ .

# HOUSEHOLD PREFERENCES

- ► Continuum of households with idiosyncratic y risk [Bewley 1986, Imrohoroglu 1989, Huggett 1993, Aiyagari 1994]
- Period utility function  $u(c) = \log(c)$
- ► To generate sufficient wealth dispersion follow Carroll, Slacalek & Tokuoka (2015):
  - ► Households draw discount factor  $\beta$  at birth from  $U[\bar{\beta} \epsilon, \bar{\beta} + \epsilon]$
  - ► Choose  $\bar{\beta}, \epsilon$  to match quarterly K/Y = 10.26, Wealth Gini of working pop.=0.77. Yields annual  $\beta \in [0.9265, 0.9672]$
- ► In working life, constant retirement prob.  $1 \theta = 1/160$ .
- ► In retirement constant death probability  $1 \nu = 1/60$ .
- ▶ Other mechanisms to generate large wealth dispersion
  - ▶ Entrepreneurs [Quadrini 1997, Cagetti & De Nardi 2006]
  - ▶ Bequest motives [De Nardi 2004]
  - ► Health expenditure shocks in old age [De Nardi, French, Jones 2010, Ameriks, Briggs, Caplin, Shapiro, Tonetti 2015]
  - ► Extreme income realizations [Castaneda, Diaz-Gimenez, Rios-Rull 2003]
  - ▶ Heterogeneous investm. returns [Benhabib, Bisin, Zhu 2011]

#### HOUSEHOLD ENDOWMENTS

- ▶ Time endowment normalized to 1
- ▶ Idiosyncratic unemployment risk,  $s \in S = \{u, e\}$ 
  - $\blacktriangleright \ \pi(s'|s,Z',Z)$
- ▶ Idiosyncratic labor productivity risk,  $y \in Y$ 
  - ► Estimate stochastic process from annual PSID (1967-1996) data (only employed households):

$$log(y') = p + \epsilon$$
$$p' = \phi p + \eta$$

with persistence  $\phi$ , innovations  $(\eta, \epsilon)$ . Find estimates of  $(\hat{\phi}, \hat{\sigma}_{\eta}^2, \hat{\sigma}_{\epsilon}^2) = (0.9695, 0.0384, 0.0522)$ 

- ▶ Turn into quarterly process, discretize into Markov chain
- Follows large literature on estimation of stochastic earnings processes [Meghir & Pistaferri 2001, Storesletten, Telmer, Yaron, 2004]
- ► Alternative: Estimate earnings process with administrative data [e.g. Guvenen, Karahan, Ozkan, Song 2015]

# FINANCIAL MARKETS AND AGGREGATE STATE VARIABLES

- $a \in A$  asset (capital) holdings
- ▶ Incomplete insurance markets.
- ▶ No borrowing, perfect annuity markets
- Households born with a = 0. Mimics life cycle.
- ▶ Cross-sectional distribution:  $\Phi(y, s, a, \beta)$
- ► Aggregate state of economy summarized by  $(Z, \Phi)$ . Source of the computational complexity.

# GOVERNMENT POLICY

- ▶ Balanced budget unemployment insurance system
  - Replacement rate  $\rho = \frac{b(y,Z,\Phi)}{w(Z,\Phi)y}$  if s = u
  - ▶ Thus benefits given by  $b(y, Z, \Phi) = \rho w(Z, \Phi) y$
  - Baseline  $\rho = 0.5$ . Compare to  $\rho = 0.1$ .
  - Proportional labor income tax  $\tau(Z; \rho)$  to balance budget:
- ▶ Balanced PAYGO social security system
  - Payroll tax rate  $\tau_{SS} = 15.3\%$
  - ▶ Lump-sum benefits that balance the budget

#### RECURSIVE FORMULATION OF HH PROBLEM

- Individual state variables  $x = (y, s, a, \beta)$
- Aggregate state variables  $(Z, \Phi)$
- Aggregate law of motion  $\Phi' = H(Z, \Phi', Z')$
- ▶ Household dynamic program problem of worker reads as

$$\begin{aligned} v_W(s, y, a, \beta; Z, \Phi) &= \\ \{ \max_{c, a' \ge 0} u(c) + \beta \sum_{\substack{(Z', s', y') \in (Z, S, Y) \\ * \quad [\theta v_W(s', y', a', \beta; Z', \Phi') + (1 - \theta) v_R(a', \beta; Z', \Phi')]} \end{aligned}$$

subject to

$$c + a' = (1 - \tau(Z; \rho) - \tau_{SS})w(Z, \Phi)y[1 - (1 - \rho)1_u] + (1 + r(Z, \Phi) - \delta)a$$
  
$$\Phi' = H(Z, \Phi', Z')$$

Equilibrium concept: • Recursive Competitive Equilibrium

### CALIBRATION OF AGGREGATE PRODUCTIVITY RISK

• Recall that  $Z \in \{Z_l, Z_h\}$  and

$$\pi(Z'|Z) = \left(\begin{array}{cc} \rho_l & 1-\rho_l \\ 1-\rho_h & \rho_h \end{array}\right)$$

- Expected *duration* of a recession is  $EL_l = \frac{1}{1-\rho_l}$ . Fraction of time economy is in recession is  $\Pi_l = \frac{1-\rho_h}{2-\rho_l-\rho_h}$ .
- Choose  $\rho_l, \rho_h, \frac{Z_l}{Z_h}$  to match:
  - 1. the average length of a severe recession  $EL_l$
  - 2. the fraction of time economy is in severe recession,  $\Pi_l$ .
  - 3. the decline in GDP per capita in *severe* recessions relative to normal times

# WHAT IS A SEVERE RECESSION?

- ▶ Define start of severe recession when  $u \ge 9\%$ . Lasts as long as  $u \ge 7\%$ .
- ▶ From 1948 to 2014.III two severe recessions, 1980.II-1986.II and 2009.I-2013.III.
- ► Frequency of severe recessions:  $\Pi_l = 16.48\%$ , expected length of 22 quarters.
- ► Average unemployment rate  $u(Z_l) = 8.39\%$ ,  $u(Z_h) = 5.33\%$
- ▶ Implied transition matrix:

$$\pi = \left(\begin{array}{cc} 0.9545 & 0.0455\\ 0.0090 & 0.9910 \end{array}\right)$$

- Average output drop in severe recessions measured as  $\frac{Y_l}{Y_h} = 0.9298$ . Matching this in model requires  $\frac{Z_l}{Z_h} = 0.9614$ .
- Severe recession similar in spirit to rare disasters [Rietz 1988, Barro 2006, Gourio 2015]

### IDIOSYNCRATIC EMPLOYMENT STATUS TRANSITIONS

Transition matrices  $\pi(s'|s, Z', Z)$  for  $s, s' \in \{u, e\}$  calibrated to quarterly job finding rates (computed from CPS). For example

• Economy is and remains in a recession:  $Z = Z_l, Z' = Z_l$ 

 $\begin{pmatrix} 0.34 & 0.66 \\ 0.06 & 0.94 \end{pmatrix}$ 

► Economy is and remains in normal times:  $Z = Z_h, Z' = Z_h$ 

 $\begin{pmatrix} 0.19 & 0.81 \\ 0.05 & 0.95 \end{pmatrix}$ 

- ▶ In recessions more likely to lose job and less likely to find one.
- ► Thus as economy falls into recession, UE *risk* up (and more persistent) even for those not yet having lost job. Strong precautionary savings motive for wealth-poor!

#### IDIOSYNCRATIC EMPLOYMENT STATUS TRANSITIONS

Transition matrices  $\pi(s'|s, Z', Z)$  for  $s, s' \in \{u, e\}$  calibrated to quarterly job finding rates (computed from CPS). For example

▶ Economy is and remains in a recession:  $Z = Z_l, Z' = Z_l$ 

 $\begin{pmatrix} 0.34 & 0.66 \\ 0.06 & 0.94 \end{pmatrix}$ 

► Economy is and remains in normal times:  $Z = Z_h, Z' = Z_h$ 

$$\begin{pmatrix} 0.19 & 0.81 \\ 0.05 & 0.95 \end{pmatrix}$$

 Role of unemployment risk in heterogenous agent models: Krusell, Mukoyama & Sahin (2010), Herkenhoff (2013), Ravn & Sterk (2015), den Haan, Rendahl & Riegler (2015)

# MODEL: SUMMARY OF KEY ELEMENTS

- ► Exogenous aggregate shock Z moves aggregate wages wand unemployment rate  $\Pi_Z(u)$ . Rare but severe recessions.
- ► Potentially: aggregate consumption C demand externality  $\omega > 0$ .
- ► Exogenous individual income risk
  - ▶ (Un-)employment risk  $s \in \{u, e\}$ . Increases in recessions
  - $\blacktriangleright$  Income risk y, conditional on being employed
- ► Exogenous individual preference heterogeneity  $\beta \sim U[\bar{\beta} \epsilon, \bar{\beta} + \epsilon]$ . Constant survival risk  $\theta$ .
- ► Basic life cycle elements and thus age heterogeneity
- Unemployment insurance system with size  $\rho$ .

# RESULTS

### VERSIONS OF MODEL STUDIED TODAY

- 1. Original Krusell & Smith (1998) [KS] economy (single discount factor + income risk + low  $\rho$ )
- 2. Economy 1. but with heterogenous  $\beta$ 's, survival risk  $\theta < 1$  and high  $\rho = 50\%$  [Benchmark]
- 3. (Later in the Talk, hopefully...): Economy 2. but with aggregate demand externality  $\omega > 0$

INEQUALITY IN THE BENCHMARK ECONOMY

| New Worth        | Da       | Mod     | els   |      |
|------------------|----------|---------|-------|------|
| % Share held by: | PSID, 06 | SCF, 07 | Bench | KS   |
| Q1               | -0.9     | -0.2    | 0.3   | 6.9  |
| Q2               | 0.8      | 1.2     | 1.2   | 11.7 |
| Q3               | 4.4      | 4.6     | 4.7   | 16.0 |
| Q4               | 13.0     | 11.9    | 16.0  | 22.3 |
| Q5               | 82.7     | 82.5    | 77.8  | 43.0 |
|                  |          |         |       |      |
| 90 - 95          | 13.7     | 11.1    | 17.9  | 10.5 |
| 95 - 99          | 22.8     | 25.3    | 26.0  | 11.8 |
| T1%              | 30.9     | 33.5    | 14.2  | 5.0  |
| Gini             | 0.77     | 0.78    | 0.77  | 0.35 |

- Benchmark economy does a good job matching bottom and top of wealth distribution, but still misses very top.
- ▶ Original KS economy does not produce enough inequality.

# Joint Distributions (2006): data v/s model

|            |      | % Sha |      |       |       |       |
|------------|------|-------|------|-------|-------|-------|
|            | у    |       | С    |       | % c/y |       |
| a Quintile | Data | Model | Data | Model | Data  | Model |
| Q1         | 8.6  | 6.0   | 11.3 | 6.6   | 92.2  | 90.4  |
| Q2         | 10.7 | 10.5  | 12.4 | 11.3  | 81.3  | 86.9  |
| Q3         | 16.6 | 16.6  | 16.8 | 16.6  | 70.9  | 81.1  |
| Q4         | 22.6 | 24.6  | 22.4 | 23.6  | 69.6  | 78.5  |
| Q5         | 41.4 | 42.7  | 37.2 | 42.0  | 63.1  | 79.6  |

- Model captures well that bottom 40% has almost no wealth but significant consumption share
- ▶ But overstates consumption shares and rates of the rich.
- ► Rudimentary life cycle is crucial for level of consumption rates and their decline with wealth.

# Dynamics of a, y, c/y During Recession (2006-2010) Across Wealth Quintiles: Data V/S Model

|      | $\Delta \epsilon$ | $\mathfrak{n}(\%)$ | $\Delta y$ | r(%)  | $\Delta { m c/y(pp)}$ |       |
|------|-------------------|--------------------|------------|-------|-----------------------|-------|
| a Q. | Data              | Model              | Data       | Model | Data                  | Model |
| Q1   | NA                | 24                 | 7.4        | 4.9   | -4.4                  | -0.4  |
| Q2   | 4                 | 15                 | 5.2        | 0.3   | -2.1                  | 0.8   |
| Q3   | 6                 | 8                  | 2.1        | -2.4  | -0.7                  | 2.2   |
| Q4   | 2                 | 4                  | 1.7        | -4.0  | -2.1                  | 3.2   |
| Q5   | -5                | -1                 | -1.1       | -6.4  | -1.6                  | 4.6   |

- ► Model's issues:
  - ▶ Model captures well that wealth-poor cut consumption rates the most.
  - Too much y fall for rich (too much mean reversion).
  - Too small decline in *a* at the top of wealth distribution in model (no price movements).
- ▶ Now: use the model to understand how wealth inequality matters for *C*, *I*, *Y* dynamics.

# INEQUALITY AND THE AGGREGATE DYNAMICS OF A SEVERE CRISIS

In order to understand how wealth inequality matters for C, I, Y dynamics, we compare:

- ► KS economy, with low wealth inequality (behaves ≈ as RA economy)
- The calibrated heterogenous  $\beta$  (baseline) economy
- ▶ Note: calibration insures both economies have same average K/Y ratio.
- ► Focus on household heterogeneity and consumption dynamics in recessions shared with Guerrieri & Lorenzoni (2011), Berger & Vavra (2014), Glover, Heathcote, Krueger & Rios-Rull (2014), Heathcote & Perri (2014)

### IRF, 2 Economies: One Period Recession



Consumption drop: KS -1.9% vs Baseline -2.4.% Larger wealth inequality leads to  $\approx 26\%$  bigger consumption recession. WHY?

# Consumption Functions & Wealth Distribution KS Het $\beta$



- ► KS: more concave consumption function (mainly because of  $\rho = 0.01$ ), but little mass close to  $a \approx 0$
- Benchmark puts significant mass where consumption falls the most in recessions
- ▶ Note: households with  $a \approx 0$  do not all act as hand-to-mouth (HtM) consumers. Those without job losses cut *c* more than *y*.
- ► Alternatives for generating high MPC households: Wealthy HtM [Kaplan & Violante 2014], Durables [Berger & Vavra 2015]

# Dynamics of a, y, c/y During Recession (2006-2010) Across Wealth Quintiles: Data V/S Model

|      | $\Delta \epsilon$ | $\mathfrak{n}(\%)$ | $\Delta \mathrm{y}(\%)$ |       | $\Delta { m c/y(pp)}$ |       |
|------|-------------------|--------------------|-------------------------|-------|-----------------------|-------|
| a Q. | Data              | Model              | Data                    | Model | Data                  | Model |
| Q1   | NA                | 24                 | 7.4                     | 4.9   | -4.4                  | -0.4  |
| Q2   | 4                 | 15                 | 5.2                     | 0.3   | -2.1                  | 0.8   |
| Q3   | 6                 | 8                  | 2.1                     | -2.4  | -0.7                  | 2.2   |
| Q4   | 2                 | 4                  | 1.7                     | -4.0  | -2.1                  | 3.2   |
| Q5   | -5                | -1                 | -1.1                    | -6.4  | -1.6                  | 4.6   |

▶ Model captures well that wealth-poor cut consumption rates the most.

# NET WORTH DISTRIBUTIONS AND CONSUMPTION DECLINE: DIFFERENT VERSIONS OF THE MODEL

|             |       |              | Models* |                  |       |              |
|-------------|-------|--------------|---------|------------------|-------|--------------|
| % Share:    | KS    | $+\sigma(y)$ | +Ret.   | $+\sigma(\beta)$ | +UI   | KS+Top $1\%$ |
| Q1          | 6.9   | 0.7          | 0.7     | 0.7              | 0.3   | 5.0          |
| Q2          | 11.7  | 2.2          | 2.4     | 2.0              | 1.2   | 8.6          |
| Q3          | 16.0  | 6.1          | 6.7     | 5.3              | 4.7   | 11.9         |
| Q4          | 22.3  | 17.8         | 19.0    | 15.9             | 16.0  | 16.5         |
| Q5          | 43.0  | 73.3         | 71.1    | 76.1             | 77.8  | 57.9         |
|             |       |              |         |                  |       |              |
| 90 - 95     | 10.5  | 17.5         | 17.1    | 17.5             | 17.9  | 7.4          |
| 95 - 99     | 11.8  | 23.7         | 22.6    | 25.4             | 26.0  | 8.8          |
| T1%         | 5.0   | 11.2         | 10.7    | 13.9             | 14.2  | 30.4         |
|             |       |              |         |                  |       |              |
| Wealth Gini | 0.350 | 0.699        | 0.703   | 0.745            | 0.767 | 0.525        |
|             |       |              |         |                  |       |              |
| $\Delta C$  | -1.9% | -2.5%        | -2.6%   | -2.9%            | -2.4% | -2.0%        |

# Consumption Recessions in Various Versions of the Model



- ► How does presence of unemployment insurance (UI) affect the response of macro economy to aggregate shock?
- ► Two effects:
  - ▶ UI moderates individual consumption decline for given wealth
  - ▶ UI changes precautionary savings incentives and thus modifies the wealth distribution
- ► Two experiments:
  - ▶ (I) Run  $\rho = 0.5$  v/s  $\rho = 0.1$  in benchmark economy. Both effects present.
  - (II) Hit both  $\rho = 0.5 \text{ v/s } \rho = 0.1$  economies with recession, starting with *same* wealth distribution. Isolates the first effect.

- ► How does presence of unemployment insurance (UI) affect the response of macro economy to aggregate shock?
- ► Two effects:
  - ▶ UI moderates individual consumption decline for given wealth
  - ▶ UI changes precautionary savings incentives and thus modifies the wealth distribution
- ► Two experiments:
  - ▶ (I) Run  $\rho = 0.5$  v/s  $\rho = 0.1$  in benchmark economy. Both effects present.
  - (II) Hit both  $\rho = 0.5 \text{ v/s } \rho = 0.1$  economies with recession, starting with *same* wealth distribution. Isolates the first effect.
- ▶ Important caveat: UI does not impact individual/firm incentives to seek/create jobs [Hagedorn, Karahan, Manovskii and Mitman 2015]

- ► How does presence of unemployment insurance (UI) affect the response of macro economy to aggregate shock?
- ► Two effects:
  - ▶ UI moderates individual consumption decline for given wealth
  - ▶ UI changes precautionary savings incentives and thus modifies the wealth distribution
- ► Two experiments:
  - ▶ (I) Run  $\rho = 0.5$  v/s  $\rho = 0.1$  in benchmark economy. Both effects present.
  - (II) Hit both  $\rho = 0.5$  v/s  $\rho = 0.1$  economies with recession, starting with *same* wealth distribution. Isolates the first effect.
- Analysis complements literature on impact of social insurance/tax policy on aggregate consumption dynamics in heterogeneous household models [Heathcote 2005, Krusell & Smith 2006, McKay & Reis 2014, Kaplan & Violante 2014, Carroll, Slacalek & Tokuoka 2014, Jappelli & Pistaferri 2014, Brinca, Holter, Krusell & Malafry 2015]

- ► How does presence of unemployment insurance (UI) affect the response of macro economy to aggregate shock?
- ► Two effects:
  - ▶ UI moderates individual consumption decline for given wealth
  - ▶ UI changes precautionary savings incentives and thus modifies the wealth distribution
- ► Two experiments:
  - ▶ (I) Run  $\rho = 0.5$  v/s  $\rho = 0.1$  in benchmark economy. Both effects present.
  - ▶ (II) Hit both  $\rho = 0.5$  v/s  $\rho = 0.1$  economies with recession, starting with *same* wealth distribution. Isolates the first effect.
- Next step would be optimal social insurance policy analyses in quantitative incomplete markets models [e.g. Domeij & Heathcote 2005, Conesa, Kitao & Krueger 2009, Peterman 2013, Storesletten, Heathcote & Violante 2014, Karababounis 2015, Bakis, Kaymak & Poschke 2015, Krueger & Ludwig 2015, Mitman & Rabinovich 2015]

# EXPERIMENT I: ONE TIME SHOCK, TWO LEVELS OF UI



Consumption drop: Low UI -2.9% vs Baseline -2.4%. Difference moderated by adjustment of wealth distribution.

# CONSUMPTION FUNCTIONS & WEALTH DISTRIBUTION High UI Low UI



- ▶ Benchmark: 25% with close to zero NW, compared to 15% with low UI
- ▶ Impact of UI on aggregate consumption response is muted because low UI shifts wealth distribution to right.
- ► How important is this effect? Suppose wealth distribution would *NOT* respond: Consumption disaster!

# IRF, FIXED DISTRIBUTION: ONE TIME SHOCK



Consumption drop: Low UI -4.4% vs Baseline -2.4%. Note: consumption would drop almost as much as output! But faster

## INEQUALITY AND AGGREGATE ECONOMIC ACTIVITY

- $\blacktriangleright$  So far, output Y was predetermined in the short-run
  - $Z^*$  and N fluctuating exogenously.
  - $\blacktriangleright~K$  predetermined in short run

$$Y = Z^* K^\alpha N^{1-\alpha}$$

- ▶ Focus was on consumption C. Now: model supply and demand-side determinants of Y:
  - ▶ The supply side: Endogenizing labor supply N [not today, see also Chang & Kim 2007]
  - ► The demand side: Consumption Externality  $Z^* = ZC^{\omega}$ . Reduction in C feeds back into TFP
- ▶ Key question again: how does wealth distribution affect output dynamics now that Y is meaningfully endogenous.

# A Model with an Aggregate Consumption Externality

- Now  $Z^* = ZC^{\omega}$  with  $\omega > 0$ .
- Reduced form version of real aggregate demand externalities [e.g. Bai, Rios-Rull & Storesletten 2012, Huo & Rios-Rull 2013, Kaplan & Menzio 2014]
- ► Alternatively, could have introduced nominal rigidities making output partially demand determined [Het. HH New Keynesian models: Görnemann, Küster, Nakajima 2014, Challe, Matheron, Ragot, Rubio-Ramirez 2014, Auclert 2015]
- "Demand management" may be called for even in absence of household heterogeneity
- ► Social insurance policies (such as UI) may be desirable from individual insurance and aggregate point of view

# THOUGHT EXPERIMENTS

- ▶ Re-calibrate  $Z, \omega$  to match output volatility
- ➤ Simulate Great Recession with externality turned on, off. Question I: How much amplification?
- Repeat low-UI thought experiment in  $\omega > 0$  economy. *Question II*: How important is aggregate demand stabilization through UI?
- Measure welfare losses of falling into a great recession and losing job. Question III: How do losses depend on household characteristics, ω, UI?

# THOUGHT EXPERIMENTS: EXECUTIVE SUMMARY OF Answers

- ▶ Simulate Great Recession with externality turned on, off.
  - ► Question I: How much amplification?
  - $\blacktriangleright$  Answer: Recession 2-3 pp deeper. Gap increasing over time
- ▶ Repeat low-UI thought experiment in  $\omega > 0$  economy.
  - ► *Question II*: How important is aggregate demand stabilization through UI?
  - ▶ Answer: Avoids additional output recession of 1%
- ▶ Measure welfare losses of falling into a great recession and losing job.
  - Question III: How do losses depend on household characteristics, ω, UI?
  - Answer: Welfare losses very heterogeneous and large (1.5% to 11%). Have significant aggregate component. Much larger for wealth-poor if UI is small. Amplified by  $\omega > 0$ .

# Question I: How much Amplification from $\omega > 0$ ?



Recession 2-3 pp deeper with  $\omega > 0$ . Gap increasing over time.

QUESTION II: DIFFERENCE IN C, Y IRF WITH HIGH, LOW UI ( $\omega = 0, \omega > 0$ ), FIXED WEALTH DISTRIBUTION?



- Baseline (left panel): Low UI makes consumption recession much more severe, but no impact on output dynamics.
- ► Demand externality economy (right panel): Now low UI also has persistent negative effect on output.

# QUESTION III: WHAT IS THE SIZE, SOURCE OF WELFARE LOSSES FROM GREAT RECESSIONS

- ► Welfare losses (% of lifetime consumption) from a great recession  $(Z_h \Rightarrow Z_l)$  with job loss  $(e \Rightarrow u)$ 
  - ► Are large (1.5%-6%)
  - ► Are strongly decreasing in wealth, especially with low UI
  - ► Have significant aggregate component (captures aggregate wage losses and increased future unemployment risk)
  - Get larger with consumption externality and low UI (up to 11% for households with  $a \approx 0$ ).
- ► Approach of calculating welfare losses of recession follows Glover, Heathcote, Krueger & Rios-Rull 2014, Hur 2014.
- Different question than welfare cost of business cycles [Lucas 1987, Krebs 2003, Krusell, Mukoyama, Sahin & Smith 2009]

# Welfare Loss from Recession and Job Loss: $\omega > 0 \text{ with High and Low UI}$



 $g_{eu,Z_hZ_l}(y,a,\beta) \approx g_{ee,Z_hZ_l}(y,a,\beta) + g_{eu,Z_lZ_l}(y,a,\beta)$ 

# CONCLUSIONS: WHERE DO WE STAND?

- ► A standard Krusell-Smith model augmented by permanent preference heterogeneity does good job in matching cross-sectional wealth distribution (at bottom and at top).
- ► That model with realistic wealth inequality has significantly stronger aggregate consumption recession than low wealth inequality (or RA) economy.
- ► Size of social insurance policies can have big impact on aggregate consumption dynamics...
- ...and on aggregate output if it partially demand determined.

# CONCLUSIONS: MOVING FORWARD

- ▶ Great new data
  - ► Administrative individual income data from social security, tax records
  - ▶ Panel household data on y, c, a
- ► "Great" new macro shocks experienced by households; big changes in cross-sectional distributions of y, c, a
- ▶ Great new challenges: Combine data and theory to...
  - ► ...Evaluate existing theories (e.g. ∆c behavior at very top and at very bottom of the distribution when macro economy hits the wall)
  - ► ...If needed, develop new models and computational tools to solve them
  - ► ...Re-evaluate social insurance policies in light of these insights

THANK YOU FOR COMING AND LISTENING!

# APPENDIX SLIDES

# CONCLUSIONS: MOVING FORWARD

- ▶ Model has some problems, especially at top of wealth distribution:
  - ► Too much mean reversion in labor earnings/income. Wealth rich are too income poor.
  - $\blacktriangleright$  Missing asset valuation effects
  - ► Rich have larger consumption share than in data. Since wealth-rich households ~ PI consumers (with low MPC's), this likely understates aggregate consumption decline.
- ► Potential fixes:
  - ► Reduce mean revision: introduce ex ante heterogeneous types, increase persistence in earnings.
  - ► Higher saving rates for wealth rich: life cycle elements, including bequest motives.

### Related Literature 1 of 2 $\,$

- Surveys of Heterogeneous Household Macro: Attanasio (1999), Krusell & Smith (2006), Heathcote, Storesletten & Violante (2009), Attanasio & Weber (2010), Quadrini & Rios-Rull (2014), Guvenen (2014)
- ▶ Mechanisms to Generate Plausible Wealth Inequality: Quadrini (1997), Krusell & Smith (1998), Castaneda, Diaz-Gimenez & Rios-Rull (2003), Cagetti & De Nardi (2006), Hintermaier & Koeniger (2011), Carroll, Slacalek & Tokuoka (2014), Benhabib, Bisin & Zhu (2014)
- Household Heterogeneity and Consumption Dynamics in Recessions: Guerrieri & Lorenzoni (2011), Berger & Vavra (2014), Glover, Heathcote, Krueger & Rios-Rull (2014)
- Documenting Inequality: Diaz-Gimenez, Glover, & Rios-Rull (2011), Kuhn & Rios-Rull (2015)

#### Related Literature 2 of 2 $\,$

- Role of Unemployment Risk in Heterogenous Agent Models: Krusell, Mukoyama & Sahin (2010), Ravn & Sterk (2015), den Haan, Rendahl & Riegler (2015)
- Role of Social Insurance Policies in Macroeconomic Stabilization: Kaplan & Violante (2014), McKay & Reis (2014), Jappelli & Pistaferri (2014), Jung & Kuester (2014), Mitman & Rabinovich (2014)
- ▶ Household Heterogeneity and Demand-Determined Recessions: Bai, Rios-Rull & Storesletten (2012), Huo & Rios-Rull (2013), Challe, Matheron, Ragot & Rubio-Ramirez (2014), Gornemann, Kuester & Nakajima (2012)

# RECURSIVE COMPETITIVE EQUILIBRIUM

#### Definition

A recursive competitive equilibrium is given by value and policy functions of the household, v, c, k', pricing functions r, w and an aggregate law of motion H such that

- 1. Given the pricing functions r, w, the tax rate and the aggregate law of motion H, the value function v solves the household Bellman equation above and c, k' are the associated policy functions.
- 2. Factor prices are given by

$$w(Z, \Phi) = ZF_N(K, N)$$
  
 $r(Z, \Phi) = ZF_K(K, N)$ 

- 3. Budget balance in the unemployment system
- 4. Market clearing

#### RECURSIVE COMPETITIVE EQUILIBRIUM

5. Law of motion: for each Borel sets  $(\mathcal{S}, \mathcal{Y}, \mathcal{A}, \mathcal{B}) \in P(\mathcal{S}) \times P(\mathcal{Y}) \times B(\mathcal{A}) \times P(\mathcal{B})$ 

$$H(Z,\Phi,Z')(\mathcal{S},\mathcal{Y},\mathcal{A},\mathcal{B}) = \int Q_{(Z,\Phi,Z')}((s,y,a,\beta),(\mathcal{S},\mathcal{Y},\mathcal{A},\mathcal{B}))d\Phi$$

The Markov transition function Q itself is defined as follows. For  $0 \notin \mathcal{A}$  and  $y_1 \notin \mathcal{Y}$ :

$$= \sum_{s' \in \mathcal{S}} \sum_{y' \in \mathcal{Y}} \sum_{\beta' \in \mathcal{B}} \begin{cases} \theta \pi(s'|s, Z', Z) \pi(y'|y) \pi(\beta'|\beta) : & a'(s, y, a, \beta; Z, \Phi) \in \mathcal{A} \\ 0 & else \end{cases}$$

and

$$\begin{aligned} Q_{(Z,\Phi,Z')}((s,y,a,\beta),(\mathcal{S},\{y_1\},\{0\},\mathcal{B})) &= (1-\theta)\sum_{s'\in\mathcal{S}}\Pi_Z(s')\sum_{\beta'\in\mathcal{B}}\Pi(\beta') \\ + & \sum_{s'\in\mathcal{S}}\sum_{\beta'\in\mathcal{B}} \left\{ \begin{array}{c} \theta\pi(s'|s,Z',Z)\pi(y_1|y)\pi(\beta'|\beta): & a'(s,y,a,\beta;Z,\Phi) = 0 \\ 0 & else \end{array} \right. \end{aligned}$$

### IDIOSYNCRATIC EMPLOYMENT STATUS TRANSITIONS

•  $\pi(s'|s, Z', Z)$  has the form:

$$\begin{array}{ccc} \pi^{Z,Z'}_{u,u} & \pi^{Z,Z'}_{u,e} \\ \pi^{Z,Z'}_{e,u} & \pi^{Z,Z'}_{e,e} \end{array}$$

- ► where, e.g. , π<sup>Z,Z'</sup><sub>e,u</sub> is the probability that unemployed individual finds a job between today and tomorrow, when aggregate productivity transits from Z to Z'.
- ► Targeted unemployment rates  $u(Z_l), u(Z_h)$  impose joint restriction on  $(\pi_{u,u}^{Z,Z'}, \pi_{e,u}^{Z,Z'})$ , for each (Z, Z') pair.
- ► Thus transition matrices are uniquely pinned down by the quarterly job finding rates
- ► Compute job-finding rate (using monthly job-finding and separation rates) and correct for time aggregation <a href="https://www.return">Return</a>

IRF, 2 Economies: "Typical" great recession



# Social Security

- ► Balanced budget PAYGO system
- ► Denote by N the number (share) of retired people (assuming total population normalized to 1)
- ► Replacement rate b(Z): Each household gets benefits b(Z)w(Z, Φ) independent of earnings history. Interpretation of replacement rate requires that conditional on having a job, avg. prod. is 1, so that avg earnings of workers are w(Z, Φ)
- ► Proportional labor income tax  $\tau_{SS}(Z, \Phi)$  on earnings, UI benefits:
- ► Define as  $LB(Z) = L(Z) + \rho \Pi_Z(u)$ . Budget balance:

 $\tau_{SS}(Z,\Phi)w(Z,\Phi)LB(Z)=Nb(Z)w(Z,\Phi)$ 

► Thus

$$\tau_{SS}(Z) = b(Z) * \frac{N}{LB(Z)}$$

# Social Security

• Suppose that working households have a constant hazard  $1 - \theta$  or retiring and retired households have a constant hazard  $1 - \nu$  of dying, then the share of retired people and working people in population is:

$$N = \frac{1 - \theta}{(1 - \theta) + (1 - \nu)}; 1 - N = \frac{1 - \nu}{(1 - \theta) + (1 - \nu)}$$

► Note that with a UI replacement rate of  $\rho = 1$  (and with average labor productivity productivity of working people equal to 1) we have

$$\frac{N}{LB(Z)} = \frac{N}{1-N} = \frac{1-\theta}{1-\nu}$$
$$\tau_{SS} = b * \frac{N}{1-N}$$

• In this case the social security tax rate is constant and equal to the replacement rate times the old age dependency ratio  $\frac{N}{1-N}$  as would be the case without aggregate risk.

#### Social Security: Numbers

• With expected working life of 160 quarters and retirement life of 60 quarters, as well as a tax rate of 15.3% we have  $1 - \theta = 1/160$  and  $1 - \nu = 1/60$  we get

$$\tau_{SS} = 15.3\% = b * \frac{60}{160}$$

- This delivers a plausible replacement rate of about 41%. With unemployment, ρ = 0.5 it is pro-cyclical (because of countercyclical unemployment rate) and 39% to 40%.
- Positive population growth would decrease the old-age dependency ratio and thus increase the replacement rate.
- ► With retirement hazard independent of wealth, the retired are not necessarily wealthier than the general population. In fact, the first period retired have same wealth distribution as the cross-sectional wealth distribution of working people. Thus retired in the model won't consume disproportionally more than rest of population and C/I ratios in model will fall for workers but not drastically.