Retirement Financing: An Optimal Reform Approach

Roozbeh Hosseini Ali Shourideh

University of Georgia

Wharton School

QSPS Summer Workshop 2016 May 19-21

Background and Motivation

- U.S. government has a big role in retirement financing
- Social security benefits are
 - o 40 percent of all elderly income
 - o main source of income for almost half of elderly
 - \circ 30 percent of federal expenditures
- Social security taxes are 30 percent of federal tax receipts
- Demographic changes pose serious fiscal challenge

Background and Motivation

- U.S. government has a big role in retirement financing
- Social security benefits are
 - o 40 percent of all elderly income
 - o main source of income for almost half of elderly
 - 30 percent of federal expenditures
- Social security taxes are 30 percent of federal tax receipts
- Demographic changes pose serious fiscal challenge
- \Rightarrow reform needed

Question

- Question: How do we reform retirement system?
- We propose *optimal reform*:

Question

- Question: How do we reform retirement system?
- We propose *optimal reform*: Polices that
 - minimize cost of tax and transfers to the government, while
 - respect individual behavioral responses
 - respect distribution of welfare in the economy

Question

- Question: How do we reform retirement system?
- We propose *optimal reform*: Polices that
 - minimize cost of tax and transfers to the government, while
 - respect individual behavioral responses
 - respect distribution of welfare in the economy
- To do this, we need:
 - a model that is a good description of the US economy
 - o an approach that puts no ad hoc restriction on policy instruments

- OLG model with many periods and heterogeneous agent
 - o heterogeneous in labor productivity and mortality
 - labor productivity and mortality are correlated
 - no annuity market
 - US tax and transfer, and social security
- Model is calibrated to US aggregates
 - Consistent with distributional aspects
- We use the model to compute
 - o lifetime welfare for each individual, i.e. status-quo welfare

- A Mirrlees optimal nonlinear tax exercise
 - o taxes cannot be conditioned on individual characteristics
 - no other restrictions on tax instruments
- We look for policies that
 - 1. minimize the NPDV of transfers to each generation
 - 2. do not lower anyones lifetime welfare relative to status-quo

- A Mirrlees optimal nonlinear tax exercise
 - o taxes cannot be conditioned on individual characteristics
 - $\circ~$ no other restrictions on tax instruments
- We look for policies that
 - 1. minimize the NPDV of transfers to each generation
 - 2. do not lower anyones lifetime welfare relative to status-quo
- Our approach separates improving efficiency from redistribution

- A Mirrlees optimal nonlinear tax exercise
 - o taxes cannot be conditioned on individual characteristics
 - $\circ~$ no other restrictions on tax instruments
- We look for policies that
 - 1. minimize the NPDV of transfers to each generation
 - 2. do not lower anyones lifetime welfare relative to status-quo
- Our approach separates improving efficiency from redistribution

• *Progressive* asset *Subsidies* – especially post retirement average marginal subsidy post retirement: 5%

- *Progressive* asset *Subsidies* especially post retirement average marginal subsidy post retirement: 5%
- Ignoring asset subsidies are costly

cannot improve upon status-quo using only tax and transfer reform

• Ignoring progressivity is costly

linear asset subsidies achieve only a fraction of cost saving

- *Progressive* asset *Subsidies* especially post retirement average marginal subsidy post retirement: 5%
- Ignoring asset subsidies are costly

cannot improve upon status-quo using only tax and transfer reform

• Ignoring progressivity is costly

linear asset subsidies achieve only a fraction of cost saving

• Optimal labor income taxes are as progressive as status-quo rates are higher than status-quo (not by much)

- *Progressive* asset *Subsidies* especially post retirement average marginal subsidy post retirement: 5%
- Ignoring asset subsidies are costly

cannot improve upon status-quo using only tax and transfer reform

• Ignoring progressivity is costly

linear asset subsidies achieve only a fraction of cost saving

• Optimal labor income taxes are as progressive as status-quo rates are higher than status-quo (not by much)

Related Literature

- **Retirement reform:** Huggett-Ventura(1999), Nishiyama-Smetters (2007), Kitao (2005), McGrattan and Prescott (2013), Blandin (2016),... study reforms in limited set of instruments, not necessarily optimal
- **Optimal taxation: (Ramsey approach)** Conesa-Krueger (2006), Heathcote et al. (2014), ... (Mirrlees approach:) Huggett-Parra (2010), Fukushima (2011), Heathcote-Tsujiyama(2015), Weinzierl (2011), Golosov et al. (forthcoming), Farhi-Werning (2013), Golosov-Tsyvinski (2006), Shourideh-Troshkin (2015), Bellofatto (2015)

maximize social welfare \Rightarrow mix redistribution with improving efficiency

• Pareto efficient taxation: Werning (2007)

theoretical framework, static model

• Imperfect annuity market and the effect of social security: Hubbard-Judd (1987), Hong and Rios-Rull (2007), Hosseini (2015), Caliendo et al. (2014), ...

social security does not provide large efficiency gains

Outline

- Model
- Optimal Reform: Theory

qualitative properties of efficient allocation

- Calibration
- Optimal Reform: Numbers

distortions: efficient allocation vs status-quo optimal policies aggregate effects

• Conclusion

Individuals

- Large number of finitely lived individuals born each period
 - Population grows at constant rate *n*
 - There is a maximum age T
- Individuals are indexed by their type θ :
 - Drawn from distribution $F(\theta)$
 - Fixed through their lifetime
- Individual of type θ
 - Has deterministic earnings ability $\varphi_t(\theta)$ at age t
 - Has survival rate $p_{t+1}(\theta)$ at age t
- Assumption: $\varphi'_t(\theta) > 0$ and $p'_{t+1}(\theta) > 0$ for all t, θ

• Individual θ has preference over consumption and leisure

$$\sum_{t=0}^{T} \beta^{t} P_{t}\left(\theta\right) \left[u(c_{t}) - v(l_{t})\right]$$

where $P_t(\theta) = \prod_{s=0}^t p_s(\theta)$

• Individual θ has preference over consumption and leisure

$$\sum_{t=0}^{T} \beta^{t} \underline{P}_{t} \left(\theta \right) \left[u(c_{t}) - v(l_{t}) \right]$$

where $P_t(\theta) = \prod_{s=0}^t p_s(\theta)$

• Individual θ has preference over consumption and leisure

$$\sum_{t=0}^{T} \beta^{t} \underline{P}_{t} \left(\theta \right) \left[u(c_{t}) - v(l_{t}) \right]$$

where $P_t(\theta) = \prod_{s=0}^t p_s(\theta)$

• Everyone retires at age R: $\varphi_t(\theta) = 0$ for t > R for all θ

• Individual θ has preference over consumption and leisure

$$\sum_{t=0}^{T} \beta^{t} \underline{P}_{t} \left(\theta \right) \left[u(c_{t}) - v(l_{t}) \right]$$

where $P_t(\theta) = \prod_{s=0}^t p_s(\theta)$

- Everyone retires at age *R*: $\varphi_t(\theta) = 0$ for t > R for all θ
- Aggregate production function

$$Y = (\tilde{r} + \delta)K + L$$

δ : depreciation rate

 \tilde{r} : pre-tax rate of return net of depreciation

- There is no annuity and/or life insurance, only risk free assets
 - upon death, the risk-free assets convert to bequest
 - bequest is transferred equality to all individuals alive
- Government
 - Collects taxes on labor earnings, consumption and corporate profit
 - Makes transfers to individuals in pre- and post- retirement ages
 - Makes exogenously given purchases

- There is no annuity and/or life insurance, only risk free assets
 - upon death, the risk-free assets convert to bequest
 - bequest is transferred equality to all individuals alive
- Government
 - · Collects taxes on labor earnings, consumption and corporate profit
 - Makes transfers to individuals in pre- and post- retirement ages
 - Makes exogenously given purchases
- Budget constraint of the government

$$G + (r - n)D + All Transfers = All Taxes$$

- There is no annuity and/or life insurance, only risk free assets
 - upon death, the risk-free assets convert to bequest
 - bequest is transferred equality to all individuals alive
- Government
 - · Collects taxes on labor earnings, consumption and corporate profit
 - Makes transfers to individuals in pre- and post- retirement ages
 - Makes exogenously given purchases
- Budget constraint of the government

G + (r - n)D + All Transfers = All Taxes

government consumption purchases - exogenous

- There is no annuity and/or life insurance, only risk free assets
 - upon death, the risk-free assets convert to bequest
 - bequest is transfered equality to all individuals alive
- Government
 - · Collects taxes on labor earnings, consumption and corporate profit
 - Makes transfers to individuals in pre- and post- retirement ages
 - Makes exogenously given purchases
- Budget constraint of the government

G + (r - n)D + All Transfers = All Taxes

steady state government debt - exogenous

• Individual of type θ solves

$$U(\theta) = \max \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \left[u(c_{t}) - v(l_{t}) \right]$$

subject to

$$(1+\tau_c)c_t + a_{t+1} = \varphi_t(\theta)l_t - T_y\left(\varphi_t(\theta)l_t\right) + Tr_t + S_t\left(E_t\right)$$

$$(1+r)a_t - T_a\left((1+r)a_t\right)$$

Þ

• Individual of type θ solves

$$U(\theta) = \max \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \left[u(c_{t}) - v(l_{t}) \right]$$

subject to

$$(1+\tau_c)c_t + a_{t+1} = \varphi_t(\theta)l_t - T_y\left(\varphi_t(\theta)l_t\right) + Tr_t + S_t\left(E_t\right)$$

$$(1+r)a_t - T_a\left((1+r)a_t\right)$$

 a_{t+1} : asset holding

• Individual of type θ solves

$$U(\theta) = \max \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \left[u(c_{t}) - v(l_{t}) \right]$$

subject to

$$(1+\tau_c)c_t + a_{t+1} = \frac{\varphi_t(\theta)l_t - T_y\left(\varphi_t(\theta)l_t\right) + Tr_t + S_t\left(E_t\right)}{(1+r)a_t - T_a\left((1+r)a_t\right)}$$

 $\varphi_t(\theta) l_t$: labor earning

• Individual of type θ solves

$$U(\theta) = \max \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \left[u(c_{t}) - v(l_{t}) \right]$$

subject to

$$(1+\tau_c)c_t + a_{t+1} = \varphi_t(\theta)l_t - T_y\left(\varphi_t(\theta)l_t\right) + Tr_t + S_t\left(E_t\right)$$

$$(1+r)a_t - T_a\left((1+r)a_t\right)$$

 Tr_t : transfer to workers pre-retirement

• Individual of type θ solves

$$U(\theta) = \max \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \left[u(c_{t}) - v(l_{t}) \right]$$

subject to

$$(1+\tau_c)c_t + a_{t+1} = \varphi_t(\theta)l_t - T_y\left(\varphi_t(\theta)l_t\right) + Tr_t + S_t\left(\frac{E_t}{E_t}\right)$$
$$(1+r)a_t - T_a\left((1+r)a_t\right)$$

 E_t : the average labor earning history

• Individual of type θ solves

$$U(\theta) = \max \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \left[u(c_{t}) - v(l_{t}) \right]$$

subject to

$$(1+\tau_c)c_t + a_{t+1} = \varphi_t(\theta)l_t - T_y\left(\varphi_t(\theta)l_t\right) + Tr_t + S_t\left(E_t\right)$$

$$(1+r)a_t - T_a\left((1+r)a_t\right)$$

 S_t : social security benefit – paid only after retirement

• Individual of type θ solves

$$U(\theta) = \max \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \left[u(c_{t}) - v(l_{t}) \right]$$

subject to

$$(1+\tau_c)c_t + a_{t+1} = \varphi_t(\theta)l_t - T_y\left(\varphi_t(\theta)l_t\right) + Tr_t + S_t\left(E_t\right)$$

$$(1+r)a_t - T_a\left((1+r)a_t\right)$$

r : after tax return on asset

• Individual of type θ solves

$$U(\theta) = \max \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \left[u(c_{t}) - v(l_{t}) \right]$$

subject to

$$(1+\tau_c)c_t + a_{t+1} = \varphi_t(\theta)l_t - T_y\left(\varphi_t(\theta)l_t\right) + Tr_t + S_t\left(E_t\right)$$

$$(1+r)a_t - T_a\left((1+r)a_t\right)$$

• There is a corporate tax profit τ_K

$$r = (1 - \tau_K)\tilde{r}$$

Equilibrium

- Equilibrium is set of allocations, factor prices and policies such that
 - Individuals optimize taking policies as given
 - factors are paid marginal product
 - government budget holds
 - o markets clear and allocations are feasible

• Once we know equilibrium allocations we can find status-quo welfare

$$W_{s}(\theta) \equiv \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \left[u(c_{t}) - v(l_{t}) \right]$$

Optimal Policy Reform

- So far we have imposed no restriction on policies
- We can choose them to match he US system
- Or, we can choose them to be *optimal*
- Optimal means

they deliver status-quo welfare at the lowest cost

• We characterize optimal policies next

A Cost Minimization Problem

 $\min_{\left\{T_{y}(\cdot), T_{a}(\cdot), \dots\right\}} PDV \text{ of Net Transfers to a Generation}$

s.t.

1- given policies $\{T_y(\cdot), T_a(\cdot), ...\}$, individual optimize

2- resulting allocation delivers no less welfare than status-quo
A Cost Minimization Problem

 $\min_{\left\{T_{y}(\cdot), T_{a}(\cdot), \dots\right\}} PDV \text{ of Net Transfers to a Generation}$

s.t.

1- given policies $\{T_y(\cdot), T_a(\cdot), ...\}$, individual optimize 2- resulting allocation delivers no less welfare than status-quo

• This is a very complicated problem

choice variables are functions

constraint set is function of those functions!

A Cost Minimization Problem

 $\min_{\{T_y(\cdot), T_a(\cdot), \dots\}} \text{PDV of Net Transfers to a Generation}$

s.t.

1- given policies $\{T_y(\cdot), T_a(\cdot), ...\}$, individual optimize 2- resulting allocation delivers no less welfare than status-quo

• This is a very complicated problem

choice variables are functions constraint set is function of those functions!

• Instead, we use *primal approach*

write the problem only in terms of allocations

Show details

$$\min \int \sum_{t=0}^{T} \frac{P_t(\theta)}{(1+r)^t} \left[c_t(\theta) - \varphi_t(\theta) l_t(\theta) \right] dF(\theta)$$

$$\min \int \sum_{t=0}^{T} \frac{P_t(\theta)}{(1+r)^t} \left[c_t(\theta) - \varphi_t(\theta) l_t(\theta) \right] dF(\theta)$$

$$U(\theta) = \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \left[u(c_{t}(\theta)) - v(l_{t}(\theta)) \right]$$

$$\min \int \sum_{t=0}^{T} \frac{P_t(\theta)}{(1+r)^t} \left[c_t(\theta) - \varphi_t(\theta) l_t(\theta) \right] dF(\theta)$$

$$U(\theta) = \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \left[u(c_{t}(\theta)) - v(l_{t}(\theta)) \right]$$

$$U'(\theta) = \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \frac{\varphi_{t}'(\theta) l_{t}(\theta)}{\varphi_{t}(\theta)} v'(l_{t}(\theta)) + \sum_{t=0}^{T} \beta^{t} P_{t}'(\theta) \left[u\left(c_{t}(\theta)\right) - v\left(l_{t}(\theta)\right) \right]$$

$$\min \int \sum_{t=0}^{T} \frac{P_t(\theta)}{(1+r)^t} \left[c_t(\theta) - \varphi_t(\theta) l_t(\theta) \right] dF(\theta)$$

$$U(\theta) = \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \left[u(c_{t}(\theta)) - v(l_{t}(\theta)) \right]$$

$$U'(\theta) = \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \frac{\varphi_{t}'(\theta) l_{t}(\theta)}{\varphi_{t}(\theta)} v'(l_{t}(\theta)) + \sum_{t=0}^{T} \beta^{t} P_{t}'(\theta) \left[u\left(c_{t}(\theta)\right) - v\left(l_{t}(\theta)\right) \right]$$

$$\min \int \sum_{t=0}^{T} \frac{P_t(\theta)}{(1+r)^t} \left[c_t(\theta) - \varphi_t(\theta) l_t(\theta) \right] dF(\theta)$$

$$U(\theta) = \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \left[u(c_{t}(\theta)) - v(l_{t}(\theta)) \right]$$

$$U'(\theta) = \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \frac{\varphi'_{t}(\theta) l_{t}(\theta)}{\varphi_{t}(\theta)} v'(l_{t}(\theta)) + \sum_{t=0}^{T} \beta^{t} P'_{t}(\theta) \left[u(c_{t}(\theta)) - v(l_{t}(\theta)) \right]$$
$$U(\theta) \ge W_{s}(\theta)$$

$$\min \int \sum_{t=0}^{T} \frac{P_t(\theta)}{(1+r)^t} \left[c_t(\theta) - \varphi_t(\theta) l_t(\theta) \right] dF(\theta)$$

s.t.

$$U(\theta) = \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \left[u(c_{t}(\theta)) - v(l_{t}(\theta)) \right]$$

$$U'(\theta) = \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \frac{\varphi'_{t}(\theta) l_{t}(\theta)}{\varphi_{t}(\theta)} v'(l_{t}(\theta)) + \sum_{t=0}^{T} \beta^{t} P'_{t}(\theta) \left[u\left(c_{t}(\theta)\right) - v\left(l_{t}(\theta)\right) \right]$$
$$U(\theta) \ge W_{s}(\theta)$$

status-quo welfare for each θ

Properties of the Efficient Allocations

- Next, we investigate some properties of efficient allocations
- What margins should be distorted and why?
- Note that distortions \neq taxes necessarily
- But are informative statistics about efficient allocations

Distortions

• Intra-temporal distortion: distorting labor supply margin

$$1 - \tau_{\text{labor}} = \frac{v'\left(l_t\left(\theta\right)\right)}{\varphi_t\left(\theta\right)u'\left(c_t\left(\theta\right)\right)}$$

• Inter-temporal distortion: distorting "annuity margin"

$$1 - \tau_{\text{annuity}} = \frac{u'\left(c_t\left(\theta\right)\right)}{\beta(1+r)u'\left(c_{t+1}\left(\theta\right)\right)}$$

Distortions

• Intra-temporal distortion: distorting labor supply margin

$$1 - \tau_{\text{labor}} = \frac{v'\left(l_t\left(\theta\right)\right)}{\varphi_t\left(\theta\right)u'\left(c_t\left(\theta\right)\right)}$$

• Inter-temporal distortion: distorting MRS b/w c_t and c_{t+1}

$$1 - \tau_{\text{annuity}} = \frac{u'\left(c_t\left(\theta\right)\right)}{\beta(1+r)u'\left(c_{t+1}\left(\theta\right)\right)}$$

• Mirrlees-Diamond-Saez formula (Standard)

$$\frac{\tau_{\text{labor}}}{1 - \tau_{\text{labor}}} = \left(\frac{1}{\epsilon(\theta)} + 1\right) \frac{1 - F(\theta)}{\theta f(\theta)} g(\theta)$$

• Mirrlees-Diamond-Saez formula (Standard)

$$\frac{\tau_{\text{labor}}}{1 - \tau_{\text{labor}}} = \left(\frac{1}{\epsilon(\theta)} + 1\right) \frac{1 - F(\theta)}{\theta f(\theta)} g(\theta)$$

Behavioral response: captured by elasticity of labor supply

• Mirrlees-Diamond-Saez formula (Standard)

$$\frac{\tau_{\text{labor}}}{1 - \tau_{\text{labor}}} = \left(\frac{1}{\epsilon(\theta)} + 1\right) \frac{1 - F(\theta)}{\theta f(\theta)} g(\theta)$$

Tail trade-off: taxing type θ :

reduces output in proportion to $\theta f(\theta)$,

but relaxes incentive constraints for all types above

• Mirrlees-Diamond-Saez formula (Standard)

$$\frac{\tau_{\text{labor}}}{1 - \tau_{\text{labor}}} = \left(\frac{1}{\epsilon(\theta)} + 1\right) \frac{1 - F(\theta)}{\theta f(\theta)} g(\theta)$$

Social value of resource extraction from type θ and above

$$g_t(\theta) = \int_{\theta}^{\theta} \frac{u'(c(\theta))}{u'(c_0(\theta'))} \left[1 - \frac{u'(c_0(\theta'))}{\lambda} \right] \frac{dF(\theta')}{1 - F(\theta)}$$

• Annuity margin (New)

$$1 - \tau_{\text{annuity}}(\theta) = \frac{u'(c_t(\theta))}{\beta(1+r)u'(c_{t+1}(\theta))} = 1 - \frac{p'_{t+1}(\theta)}{p_{t+1}(\theta)} \frac{1 - F(\theta)}{f(\theta)}g(\theta)$$

• Annuity margin (New)

$$1 - \tau_{\text{annuity}}(\theta) = \frac{u'(c_t(\theta))}{\beta(1+r)u'(c_{t+1}(\theta))} = 1 - \frac{p'_{t+1}(\theta)}{p_{t+1}(\theta)} \frac{1 - F(\theta)}{f(\theta)}g(\theta)$$

 $p_{t+1}'(\theta) > 0 \Rightarrow \text{annuity is "taxed"}$

• Annuity margin (New)

$$1 - \tau_{\text{annuity}}(\theta) = \frac{u'(c_t(\theta))}{\beta(1+r)u'(c_{t+1}(\theta))} = 1 - \frac{p'_{t+1}(\theta)}{p_{t+1}(\theta)} \frac{1 - F(\theta)}{f(\theta)}g(\theta)$$

 $p_{t+1}'(\theta) > 0 \Rightarrow$ under-insurance is optimal

• Annuity margin (New)

$$1 - \tau_{\text{annuity}}(\theta) = \frac{u'(c_t(\theta))}{\beta(1+r)u'(c_{t+1}(\theta))} = 1 - \frac{p'_{t+1}(\theta)}{p_{t+1}(\theta)} \frac{1 - F(\theta)}{f(\theta)}g(\theta)$$

 $p_{t+1}'(\theta) > 0 \Rightarrow$ under-insurance is optimal

• Intuition: for higher ability future consumption has higher weight

- So far we only talked about distortions
 - these are properties of allocations
 - they are not tax functions

- So far we only talked about distortions
 - these are properties of allocations
 - they are not tax functions
- Tax function: a map between a tax base and tax obligations

- So far we only talked about distortions
 - these are properties of allocations
 - they are not tax functions
- Tax function: a map between a tax base and tax obligations
- We propose a set of taxes
 - A nonlinear tax (subsidy) on assets: $T_{a,t}((1+r)a_t)$
 - A nonlinear tax on labor earnings: $T_{y,t}(y_t)$
 - A type-independent retirement transfer: S_t

- So far we only talked about distortions
 - these are properties of allocations
 - they are not tax functions
- Tax function: a map between a tax base and tax obligations
- We propose a set of taxes
 - A nonlinear tax (subsidy) on assets: $T_{a,t}((1+r)a_t)$
 - A nonlinear tax on labor earnings: $T_{y,t}(y_t)$
 - A type-independent retirement transfer: S_t
- We can solve these tax functions numerically

Show details

Calibration

- 1. Parametrize and estimate earning ability $\varphi_t(\theta)$
- 2. Parametrize and calibrate model of mortality $P_t(\theta)$
- 3. Parametrize and calibrate government policy to US status-quo
- 4. Parametrize and calibrate preference and technology

Calibration

- 1. Parametrize and estimate earning ability $\varphi_t(\theta)$
- 2. Parametrize and calibrate model of mortality $P_t(\theta)$
- 3. Parametrize and calibrate government policy to US status-quo
- 4. Parametrize and calibrate preference and technology

- Do 1, 2 and 3 independent of the model
- Use the model to do 4

Earning Ability Profiles

• Use labor income per hour as proxy for working ability (PSID)

• Assume

$$\log \varphi_t(\theta) = \log \theta + \log \tilde{\varphi}_t$$

with

$$\log \tilde{\varphi}_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3$$

• θ has Pareto-Lognormal distribution w/ parameters ($\mu_{\theta}, \sigma_{\theta}, a_{\theta}$)

$$a_{\theta} = 3$$
 is tail parameter \rightarrow standard
 $\sigma_{\theta} = 0.6$ is variance parameter \rightarrow variance of log wage in CPS
 $\mu_{\theta} = -1/a_{\theta}$ is location parameter

Show Profiles

Survival Profiles

• Assume Gompertz force of mortality hazard

$$\lambda_t(\theta) = \frac{m_0}{\theta^{m_1}} \left(\exp(m_2 t) / m_2 - 1 \right)$$

and

$$P_t(\theta) = \exp(-\lambda_t(\theta))$$

- m_1 which determines ability gradient m_2 determines overall age pattern of mortality m_0 is location parameter
- Use SSA's male mortality for 1940 birth cohort
- Use Waldron (2013) death rates (for ages 67-71)

Death Rates by Lifetime Earning Deciles

Status-quo Government Policies

- Government collects three types of taxes
 - o non-linear progressive tax on taxable income we use

$$\mathcal{T}(y) = y - \phi y^{1-\tau},$$

the HSV tax function ($\tau = 0.151, \phi = 4.74$)

- FICA payroll tax we use SSA's tax rates
- linear consumption tax McDaniel (2007)
- there is also a social security and Medicare benefit
 - we use SSA's benefit formula
 - 3% of GDP, paid equally to all retirees

Preferences

• Utility over consumption and hours

$$u(c) - v(l) = \log(c) - \psi \frac{l^{1+\frac{1}{\epsilon}}}{1+\frac{1}{\epsilon}}$$

- We choose $\epsilon = 0.5$
- ψ and β are chosen to match aggregate moments.

Parameters Chosen Outside the Model

Parameter	Description	Values/source		
Demographics				
Т	maximum age	75 (100 y/o)		
R	retirement age	40 (65 y/o)		
п	population growth rate	0.01		
Preferences				
ϵ	elasticity of labor supply	0.5		
Productivity				
$\sigma_{\theta}, a_{\theta}, \mu_{\theta}$	PLN parameters	0.5,3,-0.33		
Technology				
r	return on capital/assets	0.04		
Government policies				
$\tau_{ss}, \tau_{med}, \tau_c$	tax rates	0.124,0.029,0.055		
G	government expenditure	$0.09 \times GDP$		
D	government debt	0.5 imes GDP		

Parameters Calibrated Using the Model

Moments		Data	Model
Wealth-income ratio		3	3
Average annual hours		2000	2000
Parameter	Description		Values/source
β	discount factor		0.981
ψ	weight on leisure		0.74

Show Distribution of Earnings, Assets

Optimal Policy Reform

- We can now use our calibrated model to
 - Solve for status-quo allocations
 - Solve for efficient allocations
- Under both set of allocations we can calculate distortions
- The difference between two sets of distortions motivates policy reform
- We can also use the model to compute optimal tax functions

Inter-Temporal Distortions: Annuitization Margin

Intra-Temporal Distortions: Labor Supply Margin

Optimal Asset Taxes (Subsidies)

Optimal Labor Income Taxes

Aggregate Effects

Shares of GDP	Status-quo	Reform (efficient)
Consumption	0.70	0.65
Capital	3.00	3.67
Government Debt	0.50	0.07
Net worth	3.53	3.78
Tax Revenue (Total)	0.25	0.27
Labor income tax	0.15	0.16
Consumption tax	0.04	0.04
Capital tax	0.06	0.07
Government Transfers (Total)	0.14	0.10
To retirees	0.09	0.06
To workers	0.05	0.04
Asset subsidy	0	0.07

PDV of net transfers to each cohort falls by 9.3%

• What is the best that can be achieved without them?

- What is the best that can be achieved without them?
- We can include the following restriction in our planning problem

 $P_t(\theta)u'(c_t) = \beta(1+r)P_{t+1}(\theta)u'(c_{t+1})$

- What is the best that can be achieved without them?
- We can include the following restriction in our planning problem

$$P_t(\theta)u'(c_t) = \beta(1+r)P_{t+1}(\theta)u'(c_{t+1})$$

• The resulting allocations cost 0.5% more than status-quo

- What is the best that can be achieved without them?
- We can include the following restriction in our planning problem

$$P_t(\theta)u'(c_t) = \beta(1+r)P_{t+1}(\theta)u'(c_{t+1})$$

- The resulting allocations cost 0.5% more than status-quo
- Implication:

IF proper asset subsidies are not in place, phasing out old-age transfers is not a good idea!

• Progressivity is a consequence of differential mortality

- Progressivity is a consequence of differential mortality
- How much of the cost saving can be achieved by linear subsidies?

- Progressivity is a consequence of differential mortality
- How much of the cost saving can be achieved by linear subsidies?
- We can include the following restriction in our planning problem

 $P_t(\theta)u'(c_t) = (1 - \tau_{t+1})\beta(1 + r)P_{t+1}(\theta)u'(c_{t+1})$

and find optimal τ_t 's

- Progressivity is a consequence of differential mortality
- How much of the cost saving can be achieved by linear subsidies?
- We can include the following restriction in our planning problem

$$P_t(\theta)u'(c_t) = (1 - \tau_{t+1})\beta(1+r)P_{t+1}(\theta)u'(c_{t+1})$$

and find optimal τ_t 's

• The resulting allocations cost 3% less than status-quo

i.e., one third of the cost saving, relative to fully optimal

- Progressivity is a consequence of differential mortality
- How much of the cost saving can be achieved by linear subsidies?
- We can include the following restriction in our planning problem

$$P_t(\theta)u'(c_t) = (1 - \tau_{t+1})\beta(1+r)P_{t+1}(\theta)u'(c_{t+1})$$

and find optimal τ_t 's

- The resulting allocations cost 3% less than status-quo i.e., one third of the cost saving, relative to fully optimal
- Implication: differential mortality matters for optimal policy!

Conclusion

- This paper has two main contributions:
- It develops a methodology to study optimal policy reform that does not rely on an arbitrary social welfare function allows separation of efficiency gains from redistribution
- It points to a novel reason for subsidizing assets
 To correct for in-efficiencies due to imperfect annuity markets

Conclusion

- This paper has two main contributions:
- It develops a methodology to study optimal policy reform that does not rely on an arbitrary social welfare function allows separation of efficiency gains from redistribution
- It points to a novel reason for subsidizing assets
 To correct for in-efficiencies due to imperfect annuity markets
- Contrast to asset subsidies in the current US system asset subsidies should not stop at retirement asset subsidies must be progressive

Distribution of Earnings

Distribution of Wealth

Roozbeh Hosseini(UGA)

- We start by writing objective in terms of allocations only
- From individual budget constraint PDV of Net Transfers is equal to

$$\min \int \sum_{t=0}^{T} \frac{P_t(\theta)}{(1+r)^t} \left[c_t(\theta) - \varphi_t(\theta) l_t(\theta) \right] dF(\theta)$$

for any set of tax and transfers

- We start by writing objective in terms of allocations only
- From individual budget constraint PDV of Net Transfers is equal to

$$\min \int \sum_{t=0}^{T} \frac{P_t(\theta)}{(1+r)^t} \left[c_t(\theta) - \varphi_t(\theta) l_t(\theta) \right] dF(\theta)$$

for any set of tax and transfers

$$c = \varphi(\theta)l - T$$

- We start by writing objective in terms of allocations only
- From individual budget constraint PDV of Net Transfers is equal to

$$\min \int \sum_{t=0}^{T} \frac{P_t(\theta)}{(1+r)^t} \left[c_t(\theta) - \varphi_t(\theta) l_t(\theta) \right] dF(\theta)$$

for any set of tax and transfers

$$c - \varphi(\theta)l = -T$$

- For any set of policies, let $\{c_t(\theta), l_t(\theta)\}$ individual choices
- Let $U(\theta)$ be utility associated with this allocation \bigcirc

- For any set of policies, let $\{c_t(\theta), l_t(\theta)\}$ individual choices
- Let $U(\theta)$ be utility associated with this allocation $\mathbf{\bullet}$
- Then

$$U'(\theta) = \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \frac{\varphi'_{t}(\theta) l_{t}(\theta)}{\varphi_{t}(\theta)} v'(l_{t}(\theta)) + \sum_{t=0}^{T} \beta^{t} P'_{t}(\theta) \left[u\left(c_{t}\left(\theta\right)\right) - v\left(l_{t}\left(\theta\right)\right) \right]$$

- For any set of policies, let $\{c_t(\theta), l_t(\theta)\}$ individual choices
- Let $U(\theta)$ be utility associated with this allocation $\mathbf{\bullet}$
- Then

$$U'(\theta) = \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \frac{\varphi_{t}'(\theta) l_{t}(\theta)}{\varphi_{t}(\theta)} v'(l_{t}(\theta)) + \sum_{t=0}^{T} \beta^{t} P_{t}'(\theta) \left[u\left(c_{t}\left(\theta\right)\right) - v\left(l_{t}\left(\theta\right)\right) \right]$$

• This is called *implementability constraint*

▶ Go to Planning Problem

- For any set of policies, let $\{c_t(\theta), l_t(\theta)\}$ individual choices
- Let $U(\theta)$ be utility associated with this allocation $\mathbf{\bullet}$
- Then

$$U'(\theta) = \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \frac{\varphi_{t}'(\theta) l_{t}(\theta)}{\varphi_{t}(\theta)} v'(l_{t}(\theta)) + \sum_{t=0}^{T} \beta^{t} P_{t}'(\theta) \left[u\left(c_{t}\left(\theta\right)\right) - v\left(l_{t}\left(\theta\right)\right) \right]$$

• This is called *implementability constraint*

Go to Planning Problem

$$U(\theta) = \max u(c) - v(l)$$
 s.t. $c = \varphi(\theta)l - T(\varphi(\theta)l)$

- For any set of policies, let $\{c_t(\theta), l_t(\theta)\}$ individual choices
- Let $U(\theta)$ be utility associated with this allocation $\mathbf{\bullet}$
- Then

$$U'(\theta) = \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \frac{\varphi_{t}'(\theta) l_{t}(\theta)}{\varphi_{t}(\theta)} v'(l_{t}(\theta)) + \sum_{t=0}^{T} \beta^{t} P_{t}'(\theta) \left[u\left(c_{t}\left(\theta\right)\right) - v\left(l_{t}\left(\theta\right)\right) \right]$$

• This is called *implementability constraint*

Go to Planning Problem

$$U(\theta) = \max u(c) - v\left(\frac{y}{\varphi(\theta)}\right)$$
 s.t. $c = y - T(y)$

- For any set of policies, let $\{c_t(\theta), l_t(\theta)\}$ individual choices
- Let $U(\theta)$ be utility associated with this allocation $\mathbf{\bullet}$
- Then

$$U'(\theta) = \sum_{t=0}^{T} \beta^{t} P_{t}(\theta) \frac{\varphi_{t}'(\theta) l_{t}(\theta)}{\varphi_{t}(\theta)} v'(l_{t}(\theta)) + \sum_{t=0}^{T} \beta^{t} P_{t}'(\theta) \left[u\left(c_{t}\left(\theta\right)\right) - v\left(l_{t}\left(\theta\right)\right) \right]$$

• This is called *implementability constraint*

Go to Planning Problem

$$U'(\theta) = \frac{\varphi'(\theta) l(\theta)}{\varphi(\theta)} v'(l(\theta))$$

Implementation: Finding Optimal Taxes

• We have set of individual FOC's

$$P_t(\theta)u'(c_t) = \beta(1+r)P_{t+1}(\theta)(1-T'_{a,t+1})u'(c_{t+1})$$

$$(1-T'_{y,t})\varphi_t(\theta)u'(c_t) = v'(l_t)$$

- We also have their budget constraints
- Using these equations we can back-out tax and transfers such that efficient allocations are implemented

Implementation: Finding Optimal Taxes

• We have set of individual FOC's

$$P_t(\theta)u'(c_t) = \beta(1+r)P_{t+1}(\theta)(1-T'_{a,t+1})u'(c_{t+1})$$

(1-T'_{y,t})\varphi_t(\theta)u'(c_t) = v'(l_t)

- We also have their budget constraints
- Using these equations we can back-out tax and transfers such that efficient allocations are implemented
- Before, doing that we need to calibrate the model
 Go to Calibration

Roozbeh Hosseini(UGA)

Unconditional Survival Probabilities

Earnings Ability Profiles

▶ Go Back

Source of Retirement Income

Consumption for pre- and post- Retirement

Optimal Replacement Ratio

