Wealth, Portfolio Shares, and Risk Preference

Joseph Briggs NYU David Cesarini NYU

Erik Lindqvist Robert Östling SSE IIES

QSPS at Utah State University

May 19, 2016

Introduction

• Questions:

- What is the causal effect of wealth on the share of risky assets held in a household's financial portfolio?
- 2 What inferences can we make about risk aversion from these results?
- Many papers in last 10 years study these questions:
 - Brunnermeier Nagel (2008), Calvet Campbell Sodini (2009), Chiappori Paiella (2010), Calvet Sodini (2014), Paravasini Rappaport Ravina (2015), Cai Liu Yang (2016)
- Contributions:
 - New data
 - 2 New statistical findings
 - 3 New interpretation

Motivation

- Relationship between wealth and financial risk taking has important implications for asset prices:
 - Countercyclicality in risk aversion contributes to countercyclicality in risk premia (Constantinides (1990), Jermann (1998), Campbell Cochrane (1999)).
- Habit models, consumption commitments used to generate decreasing relative risk aversion (e.g. Constantinides (1990); Chetty Szeidl (2005))
- Precise estimates of the effect of wealth on risky asset share inform mechanisms behind behavior

Empirical Challenge

- 1 Wealth shocks are rarely exogenous
- 2 Wealth is hard to measure accurately

"The ideal experiment would be to exogenously dump a large amount of wealth on a random sample of households and examine the effect ... on their risk-taking behavior"

- Chris Carroll (2002)

Addressing this Challenge

- Sample of Swedish lottery players matched to administrative wealth records
 - \$500 million assigned to more than 300,000 individuals, underlying participant pool of \approx 4 million
 - Three distinct lottery subsamples with different selection criteria
 - Institutional features that permit identification of causal effect
 - High quality wealth measures
 - High quality demographic and income measures and no attrition

Empirical Results

- What is the causal effect of a wealth shock on the share of risky assets in a household's portfolio?
 - 150K USD causes 9 percentage point decrease in risky portfolio share among pre-lottery equity market participants
 - Negative effect robust across subpopulations and lotteries
- First paper to find empirical evidence that increases in wealth cause a decrease in risky portfolio share
 - Brunnermeier et.al (2008): wealth causes no change
 - Calvet et.al (2009): wealth causes an increase
 - Chiappori et.al (2011): wealth causes no change
 - Paravisini et.al (2015): wealth causes an increase

Interpreting Results

- Quantitative lifecycle portfolio choice model comparable to Gomes Michaelides (2005)
- Calibrate to match historical Swedish data, simulate lottery winnings, and examine model predictions
 - Model predicts effects of wealth on risky portfolio share qualitative and quantitatively consistent with empirical estimates
 - Non-tradable human capital generates negative effect of wealth on risky portfolio share - households consider all wealth when making portfolio decisions

Literature

- Portfolio share Brunnermeir Nagel (2008), Calvet Campbell Sodini (2007,2009), Chiappori Paiella (2011), Calvet Sodini (2014), Paravisini Rappaport Ravina (2015), Cai Liu Yang (2016)
- Structural portfolio choice models Samuelson (1969), Merton (1971), Viceira (2001), Gomes Michaelides (2005), Cocco (2005), Cocco Gomes Maenhout (2005), Davis Kubler Willen (2006), Khorunzhina (2013), Fagerang Gottlieb Guiso (2013)
- Behavioral Finance Guiso Japelli (2002, 2005), Vissing-Jørgensen (2003), Campbell (2006), Calvet Campbell Sodini (2007), Guiso Sapienza Zingales (2008), Grinblatt Keloharju Linnainmaa (2011)

2 Selected Statistical Analyses

Lottery Data

Kombi

- Subscription lottery run by Swedish Social Democrats
- Selection by political ideology

PLS

- Prize linked savings accounts
- Selection by bank account ownership

TV-Triss

- Scratch-ticket game/TV show
- Selection by lottery ticket purchase

Registry data

- Year-end records of financial variables from 1999-2007
 - pprox 86% of all wealth
 - Stocks
 - Mutual Funds
 - Bonds
 - Bank Accounts
 - Debt
 - Real Assets
- Other demographic covariates, Z_{i,-1}
 - Income
 - Age
 - Gender
 - Education
- All-Year and Post-1999 samples

Definitions

For remainder of talk:

- Risky asset share = (Stocks+Mutual Funds)/Total Financial Wealth
- Household = Winner (+ Spouse if present)

Post-1	999	Post-1999 by L	ottery
Pooled Pop		PLS Kombi	Triss
<u>(1)</u>	(2)	<u>(3)</u> <u>(4)</u>	(5)
.516	.516	.575 .436	.558
56.3	56.3	63.2 62.2	51.9
1.97	1.97	1.75 1.81	2.13
38	37	28 31	43
.519	.525	.518 .483	.543
.311	.279	.481 .425	.217
.046	.059	.026 .003	.040
.026	.032	.032 .078	.052
.193	.257	.229 .153	.216
131	161	220 124	127
54	52	35 37	67
.702	.630	.666 .732	.686
.591	.558	.682 .625	.560
.536	.586	.525 .549	.573
	Post-1 Pooled (1) .516 56.3 1.97 38 .519 .311 .046 .026 .193 131 54 .702 .591 .536	Post-J99 Pooled Pop (1) (2) .516 .516 56.3 56.3 1.97 1.97 38 37 .519 .525 .311 .279 .046 .059 .026 .032 .193 .257 131 161 54 52 .702 .630 .591 .558 .536 .586	Post-1999 Post-1999 by L Pooled Pop PLS Kombi (1) (2) (3) (4) .516 .516 .575 .436 56.3 56.3 63.2 62.2 1.97 1.97 1.75 1.81 38 37 28 31 .519 .525 .518 .483 .311 .279 .481 .425 .046 .059 .026 .003 .026 .032 .078 .153 .193 .257 .229 .153 .131 161 220 124 .54 .52 .35 .37 .702 .630 .666 .732 .591 .558 .682 .625 .536 .586 .525 .549

	Post-1	999	Post-	1999 by I	Lottery
	Pooled (1)	Pop (2)	PLS (3)	Kombi (4)	Triss (5)
Demographic	<u>. ,</u>	<u>. ,</u>	<u>. ,</u>	<u>. ,</u>	<u>. ,</u>
Female	.516	.516	.575	.436	.558
Age (years)	56.3	56.3	63.2	62.2	51.9
Household Members (#)	1.97	1.97	1.75	1.81	2.13
Household Income (K USD)	38	37	28	31	43
Married	.519	.525	.518	.483	.543
Retired	.311	.279	.481	.425	.217
Self-Employed	.046	.059	.026	.003	.040
Student	.026	.032	.032	.078	.052
College	.193	.257	.229	.153	.216
Financial					
Net Wealth (K USD)	131	161	220	124	127
Gross Debt (K USD)	54	52	35	37	67
Home Owner	.702	.630	.666	.732	.686
Equity Participant	.591	.558	.682	.625	.560
Risky Share	.536	.586	.525	.549	.573

	Doct_1	000	Poet-	Post-1999 by Lottery			
	POSI-I	333	Post-	FOSE 1339 Dy LOLLETY			
	Pooled	Рор	PLS	Kombi	Triss		
	(1)	(2)	(3)	(4)	(5)		
Demographic							
Female	.516	.516	.575	.436	.558		
Age (years)	56.3	56.3	63.2	62.2	51.9		
Household Members (#)	1.97	1.97	1.75	1.81	2.13		
Household Income (K USD)	38	37	28	31	43		
Married	.519	.525	.518	.483	.543		
Retired	.311	.279	.481	.425	.217		
Self-Employed	.046	.059	.026	.003	.040		
Student	.026	.032	.032	.078	.052		
College	.193	.257	.229	.153	.216		
Financial							
Net Wealth (K USD)	131	161	220	124	127		
Gross Debt (K USD)	54	52	35	37	67		
Home Owner	.702	.630	.666	.732	.686		
Equity Participant	.591	.558	.682	.625	.560		
Risky Share	.536	.586	.525	.549	.573		

	Post-1	999	Post-1999 by Lottery			
	Pooled	Рор	PLS	Kombi	Triss	
	<u>(1)</u>	(2)	(3)	(4)	(5)	
Demographic						
Female	.516	.516	.575	.436	.558	
Age (years)	56.3	56.3	63.2	62.2	51.9	
Household Members (#)	1.97	1.97	1.75	1.81	2.13	
Household Income (K USD)	38	37	28	31	43	
Married	.519	.525	.518	.483	.543	
Retired	.311	.279	.481	.425	.217	
Self-Employed	.046	.059	.026	.003	.040	
Student	.026	.032	.032	.078	.052	
College	.193	.257	.229	.153	.216	
Financial						
Net Wealth (K USD)	131	161	220	124	127	
Gross Debt (K USD)	54	52	35	37	67	
Home Owner	.702	.630	.666	.732	.686	
Equity Participant	.591	.558	.682	.625	.560	
Risky Share	.536	.586	.525	.549	.573	
Equity Participant Risky Share	.591 .536	.558 .586	.682 .525	.625 .549	.560 .573	

	Post-1	999	Post-	1999 by l	ottery
	Pooled	Рор	PLS	Kombi	Triss
	(1)	(2)	(3)	(4)	(5)
Demographic					
Female	.516	.516	.575	.436	.558
Age (years)	56.3	56.3	63.2	62.2	51.9
Household Members (#)	1.97	1.97	1.75	1.81	2.13
Household Income (K USD)	38	37	28	31	43
Married	.519	.525	.518	.483	.543
Retired	.311	.279	.481	.425	.217
Self-Employed	.046	.059	.026	.003	.040
Student	.026	.032	.032	.078	.052
College	.193	.257	.229	.153	.216
<u>Financial</u>					
Net Wealth (K USD)	131	161	220	124	127
Gross Debt (K USD)	54	52	35	37	67
Home Owner	.702	.630	.666	.732	.686
Equity Participant	.591	.558	.682	.625	.560
Risky Share	.536	.586	.525	.549	.573

Prize Distribution

Prize Amount (USD)	A. All-Year	B. Post-1999
$L_i \leq 1.5K$	293,470	71,211
$1.5K < L_i \leq 15K$	16,020	742
$15K < L_i \leq 75K$	3,348	1,240
$75K < L_i \le 150K$	232	89
$150K < L_i \leq 300K$	605	298
$300K < L_i$	190	78
Total	313,865	73,658

Identification

Identification

- Use institutional knowledge of lotteries to construct cells X_i in which wealth is randomly assigned
- Control for for cell-fixed effects in statistical analyses

Estimating equation

$$Y_{i,s} = L_{i,0} \times \beta_s + \mathbf{Z}_{i,-1} \times \gamma_s + \mathbf{X}_i \times M_s + \eta_{i,s}$$

- *L_{i,0}*: assigned wealth normalized by 1M SEK (150K USD)
- Z_i : controls observed the year before the lottery
- Causal interpretation of β_s: Lottery wealth is randomly assigned conditional on X_i

Identification

Testing for Random Assignment

All-	Year	Post	-1999					
Poo	oled	Poo	oled					
<u>(1)</u>	(2)	<u>(3)</u>	<u>(4)</u>					
Cells	None	Cells	None					
Controls	;							
.69	11.54	.87	10.01					
.74	<.001	.56	<.001					
trols								
_		1.81	12.80					
—	_	.14	<.001					
Demographic+Financial Controls								
_	_	1.29	15.20					
_	—	.22	<.001					
	All- Poc (1) Cells Controls .69 .74 trols 	All-Year Pooled (1) (2) Cells None Controls .69 .69 11.54 .74 <.001	All-Year Post Pooled Pool (1) (2) (3) Cells None Cells Controls .69 11.54 .87 .74 <.001					

Identification

Testing for Random Assignment

	All-	Year	Pos	t-1999			
	Poe	oled	Po	oled			
	<u>(1)</u>	(3)	(4)	(8)			
Fixed Effects	Cells	None	Cells	None			
Demographic	Controls	3					
F-stat	.69	11.54	.87	10.01			
p	.74	<.001	.56	<.001			
Financial Cont	trols						
F-stat	_	_	1.81	12.80			
p	_	_	.14	<.001			
Demographic+Financial Controls							
F-stat	_	_	1.29	15.20			
p	_	_	.22	<.001			

2 Selected Statistical Analyses

3 Interpretation/Structural Model

Questions

- 1 What is the effect of wealth on risky portfolio share?
- What is the effect of wealth on risky portfolio share among pre-lottery equity owners?
- 3 Is the effect similar across lottery subamples?
- 4 Are the effects non-linear in prize size?
- 6 How does the effect compare to non-experimental estimates?
- 6 How are lottery winnings allocated across wealth categories?

What is the effect of wealth on risky portfolio share?

What is the effect of wealth on risky portfolio share among pre-lottery equity owners?

Are the effects similar across subsamples stratified by lottery?

Are the effects nonlinear in prize size?

Categories (in K USD): 0-1.5, 1.5-15, 15-150, 150-300, 300+

How do the estimates compare to non-experimental estimates?

$$\Delta_{s}\alpha_{t} = \beta_{s}\Delta_{s}w_{t} + \rho q_{t-s} + \gamma \Delta_{s}h_{t} + \epsilon_{t}$$

	s = 2 Year			<i>s</i> = 5	Year			
	OLS	TSLS		OLS	TSLS			
	(1)	(2)		(3)	(4)			
Lotter	y Sampl	e						
Δw_t	014	025		.003	.045			
SE	(.002)	(.069)	(.069)		(.083)			
Brunnermeier Nagel (2008)								
Δw_t	.023	136		013	012			
SE	(.011)	(.076)		(.009)	(.058)			

How are the lottery winnings allocated across various wealth categories?

2 Selected Statistical Analyses

- Literature:
 - Brunnermeier Nagel (2008) wealth causes no change in portfolio share
 - Calvet et.al. (2009) wealth causes an increase in portfolio share
 - Chiappori Paiella (2011) wealth causes no change in portfolio share
 - Paravisini et.al. (2015) wealth causes an increase in portfolio share
- This study:
 - Change in wealth causes a decrease in portfolio share

Simplest Problem:

$$V(W) = \max_{\alpha} \mathbb{E}[U(C)]$$

s.t. $C = W((r - r_f)\alpha + (1 + r_f))$

If relative risk aversion is constant, then $\alpha^{\star} = \bar{\alpha}$ independent of wealth.

Simpler Problem:

$$V(W) = \max_{\alpha} \mathbb{E} \left[U(C - X) \right]$$

s.t. $C = W \left((r - r_f) \alpha + (1 + r_f) \right)$

If relative risk aversion is constant, then $\alpha^{\star} = \bar{\alpha}$ independent of wealth.

Allowing for consumption habit X, the allocation becomes

$$\alpha^{\star} = \bar{\alpha} \left(1 - \frac{X}{W(1 + r_f)} \right)$$

• Plausible explanation for findings in prior studies.

Simple Problem:

$$V(W) = \max_{\alpha} \mathbb{E} \left[U(C - X) \right]$$

s.t. $C = W \left((r - r_f) \alpha + (1 + r_f) \right) + H$

If relative risk aversion is constant, then $\alpha^{\star} = \bar{\alpha}$ independent of wealth.

Allowing for habit X and risky labor income H, the allocation becomes

$$\alpha^{\star} = \left(1 - \frac{X}{W(1 + r_f)} + \frac{\overline{H}}{W}\right) \left(\bar{\alpha} - \frac{\sigma_{h,r}}{\sigma_r^2}\right) + \frac{\sigma_{h,r}}{\sigma_r^2} \left(1 - \frac{X}{W(1 + r_f)}\right)$$

- Plausible explanation for findings in this study
- · Plausible explanation for sensitivity to choice of instrument

Can a structural model of lifecycle portfolio choice replicate the effects on stock market participation and portfolio choice?

- Lifecycle portfolio choice model comparable to Gomes Michaelides (2005) (and others)
 - Preferences: Epstein-Zin utility
 - Two assets: risk free and equity
 - Equity returns: lognormal distribution
 - Income: stochastic permanent and transitory component
 - Mortality: age specific survival probability s_t
 - State variables: wealth, permanent income, prior participation
 - Choices: consumption, saving, participation, equity share
 - Costs: one-time entry cost, per-period participation cost

Preferences

Epstein-Zin utility with coefficient of RRA ρ, IES ψ, discount factor β, and age t survival probability s_t

$$V_t = \left\{ (1 - \beta \boldsymbol{s}_t) \boldsymbol{C}_t^{1 - 1/\psi} + \mathbb{E} \left[\boldsymbol{s}_t \boldsymbol{V}_{t+1}^{1 - \rho} \right]^{\frac{1 - 1/\psi}{1 - \rho}} \right\}^{\frac{1}{1 - 1/\psi}}$$

Income

 For ages t = t₀...65, income has a permanent component P_t and transitory component U_t

$$H_t = P_t U_t$$

$$P_t = exp(f(t, Z_t))P_{t-1}N_t$$

- U_t , N_t lognormal with standard deviations σ_U , σ_N respectively.
- For ages *t* = 66...*T*, income is a constant fraction of age 65 income

$$H_t = \lambda P_{65}$$

• $f(t, Z_t)$ is a function of age and marital status

Assets

- Risk-free bond
 - Risk-free return rf
- Risky equity
 - · Calibrated to historical Swedish equity returns
 - Excess return μ_s = .065
 - Standard deviation σ_s = .21
 - $cov(N_t, r_t) = \sigma_{n,s}$
- Equity market participation costs
 - $I_t = 1$ if no prior participation.
 - One time entry cost $\chi \times P_t \times I_t$
 - Per-period participation cost $\kappa \times P_t$

4

Decision Problem:

• Nonparticipant

$$V_{t}^{NP}(W_{t}, P_{t}, I_{t}) = \max_{C_{t}} \left\{ (1 - \beta s_{t}) C_{t}^{1 - 1/\psi} + \mathbb{E} \left[s_{t} V_{t+1}^{1 - \rho} \right]^{\frac{1 - 1/\psi}{1 - \rho}} \right\}^{\frac{1 - 1/\psi}{1 - \rho}} W_{t+1} = r_{t} (W_{t} - C_{t}) + H_{t+1}$$

$$I_{t+1} = I_{t}$$

Participant

$$V_{t}^{P}(W_{t}, P_{t}, l_{t}) = \max_{C_{t}, \alpha_{t}} \left\{ (1 - \beta s_{t}) C_{t}^{1 - 1/\psi} + \mathbb{E} \left[s_{t} V_{t+1}^{1 - \rho} \right]^{\frac{1 - 1/\psi}{1 - \rho}} \right\}^{\frac{1}{1 - 1/\psi}} W_{t+1} = r_{f} (W_{t} - C_{t} - \kappa P_{t}) + \alpha_{t} (r_{s,t+1} - r_{f}) (W_{t} - C_{t} - \kappa P_{t}) + H_{t+1}$$

$$0 \le \alpha_{t} \le 1$$

$$l_{t+1} = 0$$

• Final decision problem

$$V_{t}(W_{t}, P_{t}, I_{t}) = \max\{V_{t}^{NP}(W_{t}, P_{t}, I_{t}), V_{t}^{P}(W_{t} - \chi P_{t}I_{t}, P_{t}, I_{t})\}$$

Baseline Calibration

Parameters							
Initial Age	<i>t</i> ₀ = 18	Death Age	<i>T</i> = 108				
Intertemporal Elast. of Sub.	$\psi = .2$	Relative Risk Aversion	ho= 5				
Transitory Risk	$\sigma_U = .23$	Permanent Risk	$\sigma_N = .09$				
Income/Asset Covariance	$\sigma_{n,s} =04$	Retirement Rep. Rate	$\lambda = .60$				
Discount Factor	$\beta = .96$	Risk Free Return	$r_{f} = .02$				
Mean Excess Return	$\mu_{m{s}}=.065$	Return St. Dev.	$\sigma_{s} = .21$				
Entry cost	$\chi = .025$	Per-period cost	$\kappa = 0$				

- Preference parameters taken from Gomes Michaelides (2005)
- Income process estimated from lottery sample using income observations prior to lottery

Experiment:

- 1 Solve model and save policy functions
- Por every member of the lottery data set, simulate windfall gain and subsequent participation and portfolio choices
- 3 Repeat statistical analysis on simulated data set

Comparison of Model-Predicted Effect to Empirical Estimates

			Model Predictions				
		Estimate	Baseline	Habit	<i>σ_{n,s}</i> = .15	ho = 8	Lower Eq. Premium
Effect		(1)	(2)	(3)	(4)	(5)	(6)
Equity Owners	Baseline	091	123	104	081	143	112
Prize Size	10K to 100K	009	024	018	016	034	013
	100K to 1M	065	102	087	081	114	088
	1M to 2M	287	244	223	124	253	237
	2M+ (300K+)	300	273	246	253	297	259

Comparison of Model-Predicted Effect to Empirical Estimates

			Model Predictions				
		Estimate	Baseline	Habit	<i>σ_{n,s}</i> = .15	ho = 8	Lower Eq. Premium
Effect		<u>(1)</u>	(2)	(3)	<u>(4)</u>	(5)	(6)
Equity Owners	Baseline	091	123	104	081	143	112
Prize Size	10K to 100K	009	024	018	016	034	013
	100K to 1M	065	102	087	081	114	088
	1M to 2M	287	244	223	124	253	237
	2M+ (300K+)	300	273	246	253	297	259

Impose an external consumption habit

Comparison of Model-Predicted Effect to Empirical Estimates

			Model Predictions				
		Estimate	Baseline	Habit	<i>σ_{n,s}</i> = .15	ho = 8	Lower Eq. Premium
Effect		<u>(1)</u>	(2)	<u>(3)</u>	(4)	<u>(5)</u>	<u>(6)</u>
Equity Owners	Baseline	091	123	104	081	143	112
Prize Size	10K to 100K	009	024	018	016	034	013
	100K to 1M	065	102	087	081	114	088
	1M to 2M	287	244	223	124	253	237
	2M+ (300K+)	300	273	246	253	297	259

Higher correlation between income and equity returns

Comparison of Model-Predicted Effect to Empirical Estimates

			Model Predictions				
		Estimate	Baseline	Habit	<i>σ_{n,s}</i> = .15	ho = 8	Lower Eq. Premium
Effect		<u>(1)</u>	(2)	(3)	(4)	(5)	(6)
Equity Owners	Baseline	091	123	104	081	143	112
Prize Size	10K to 100K	009	024	018	016	034	013
	100K to 1M	065	102	087	081	114	088
	1M to 2M	287	244	223	124	253	237
	2M+ (300K+)	300	273	246	253	297	259

Higher risk aversion

Comparison of Model-Predicted Effect to Empirical Estimates

			Model Predictions				
Effect		Estimate (1)	Baseline (2)	Habit (3)	σ _{n,s} = .15 (4)	ρ = 8 (5)	Lower Eq. Premium (6)
Equity Owners	Baseline	091	123	104	081	143	112
Prize Size	10K to 100K 100K to 1M 1M to 2M 2M+ (300K+)	009 065 287 - 300	024 102 244 - 273	018 087 223 - 246	016 081 124 253	034 114 253 - 297	013 088 237 - 259

Reduce expected equity premium to .027

Additional Exercise

What if the windfall gain affects both wealth and income?

- Portfolio share increases in permanent income, decreases in financial wealth
- Experiment: Hold present discounted value of windfall gains constant, but assign half to an increase in *P*_t
 - Effect on risky asset share: -.017
- More closely replicates findings in other studies.

Conclusion

- Contributions/findings:
 - 1 New data set that permits credible causal estimates
 - 2 1M SEK (150K USD) causes s 9 percentage point decrease in risky portfolio share among pre-lottery equity owners
 - 3 Counterintuitive, but aligns with qualitative and quantitative predictions of standard model under multiple extensions
- Risky asset share can not be interpreted as proxy for risk aversion without carefully controlling for future labor income
- Next steps:
 - Model internal consumption habit
 - Improve calibration to better fit pre-lottery portfolio allocations
 - Improve replication of alternative estimation approaches
 - More to unify findings with literature

$L_{i,0} = X_i \times \Gamma + \mathbf{Z}_{i,-1} \times \rho_{-1} + \epsilon_i$

Marginal Propensity to Consume

Upper Bound of MPC from Lottery Wealth**

**Important caveat: Wealth measures cover only approximately 86% of total wealth. Furthermore, home improvements, car and other durables, donations, and money transferred to non-spouse family members are not accounted for.

