Reforming the Social Security Earnings Cap: The Role of Endogenous Human Capital

Adam Blandin

Arizona State University

May 20, 2016

Motivation

- ► Social Security payroll tax "capped" at \$118,500
- Policy makers have proposed eliminating cap
 - ► US Congress (six bills 2013-14)
 - ▶ 2016 presidential candidates
- Main goals
 - Extend solvency
 - Fund benefit increases
- Likely to be quantitatively important
 - $\blacktriangleright~7\%$ of workers earn above cap, 16% of earnings above cap
 - ► These workers have high hourly wages, tend to save a lot
 - ► Decrease in marginal after-tax wages would be large

What would be the long run impact of eliminating the cap?

- Aggregate output
 - ► Savings
 - ► Labor supply
 - Human capital investment
- Government revenue
- Distribution of consumption, welfare

<u>What I do</u>

Construct OLG model with endogenous human capital

- Calibrate model to
 - ► Life-cycle earnings and hours data for US
 - ► US federal income tax and Social Security program

- Analyze steady state impact of three reforms:
 - 1. Eliminate cap. Government eats extra revenue.
 - 2. Eliminate cap. Lower payroll tax rate.
 - 3. Eliminate cap. Raise benefits lump sum.

Aggregate impact is large

► Increase in government revenues is small

Welfare effects are heterogenous

- Aggregate impact is large
 - Output, consumption fall 2.1 3.1%
 - Depressed human capital investment accounts for half
 - ► Non-convexity from cap magnifies effect

Increase in government revenues is small

► Welfare effects are heterogenous

- Aggregate impact is large
 - Output, consumption fall 2.1 3.1%
 - Depressed human capital investment accounts for half
 - ► Non-convexity from cap magnifies effect

- Increase in government revenues is small
 - Payroll tax revenues \uparrow . Federal income tax revenues \downarrow .
 - \blacktriangleright Total revenues never increase more than 1.2%

► Welfare effects are heterogenous

- Aggregate impact is large
 - Output, consumption fall 2.1 3.1%
 - Depressed human capital investment accounts for half
 - ► Non-convexity from cap magnifies effect

- Increase in government revenues is small
 - Payroll tax revenues \uparrow . Federal income tax revenues \downarrow .
 - \blacktriangleright Total revenues never increase more than 1.2%

- ► Welfare effects are heterogenous
 - $\blacktriangleright~\approx 70\%$ of newborns gain, gains small
 - $\blacktriangleright~\approx 30\%$ of newborns lose, losses large

<u>Outline</u>

1. Simple illustration: impact of eliminating cap

2. The full model

3. Calibrate the benchmark economy to the US

4. Analyze three reforms

Simple illustration: Impact of eliminating cap

Model setup

► 2-period model with a single worker

Endowments

- At birth, initial human capital h_1
- ► Each period, one unit of time

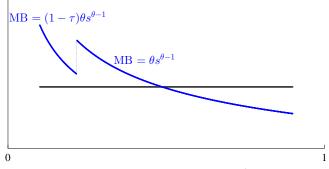
Decisions

- Human capital investment, s
- ▶ Production, 1 s
- \blacktriangleright Consumption, c
- ► Human capital technology: $h_{t+1} = h_t + s_t^{\theta}$

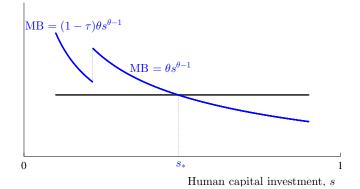
- Preferences: $u(c_1) + \beta u(c_2)$
- ▶ **Taxes**: Earnings below \hat{e} taxed at rate τ
- Budget constraint:

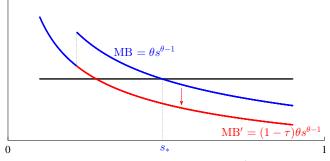
$$c_1 + c_2 \leq (1 - \tau) \min\{h_1(1 - s_1), \hat{e}\} + \max\{h_1(1 - s_1) - \hat{e}, 0\} + (1 - \tau) \min\{h_2, \hat{e}\} + \max\{h_2 - \hat{e}, 0\}$$

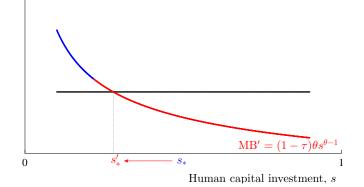
▶ Solution: Choose *s*¹ to maximize RHS of budget constraint

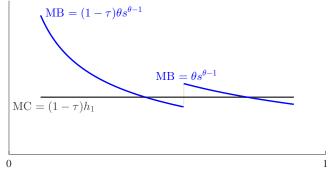

Budget constraint:

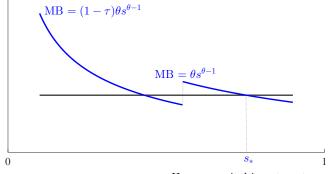
$$(1-\tau)\min\{h_1(1-s_1), \hat{e}\} + (1-\tau)\max\{h_1(1-s_1) - \hat{e}, 0\} + (1-\tau)\min\{h_2, \hat{e}\} + (1-\tau)\max\{h_2 - \hat{e}, 0\}$$


Three cases:

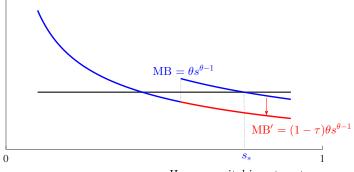

- 1. Very low h_1 (no impact)
- 2. Very high h_1 (no impact)
- 3. Intermediate h_1

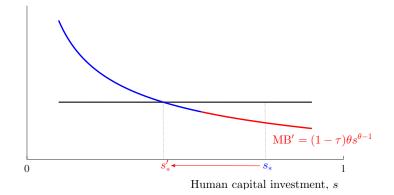



Human capital investment, s



Human capital investment, s




Human capital investment, s

Human capital investment, s

Human capital investment, s

The upshot

Eliminating the tax cap...

- Depresses labor supply and savings of high earners
 - Standard

- Depresses human capital investment of future high earners
 - Badel,Huggett('14); Guvenen,Kuruscu,Ozkan('14); Krueger,Ludwig('16) make similar points related to progressive taxes

- May push earnings discretely below \hat{e}
 - Seems new

The Full Model

Demographics and Endowments

- ► Unit measure of individuals born each period
 - Individuals live for J periods and work for $J_{SS} 1$ periods

Endowments

- Initial human capital, h_1
- \blacktriangleright Learning ability, a
- Unit of time in each period

Decisions

- \blacktriangleright Production, n
- \blacktriangleright On the job human capital investment, s
- ▶ Leisure, 1 n s
- \blacktriangleright Consumption, c
- ▶ Saving, $k' \ge \underline{k}$

Preferences and Human Capital Accumulation

• Preferences over consumption and leisure:

$$\sum_{j=1}^{J} \beta^{j-1} u_j(c_j, 1 - n_j - s_j)$$

• Human capital evolves via a Ben-Porath technology:

$$h_{j+1} = (1 - \delta^h)h_j + ah_j^\phi s_j^\theta$$

• **Output** produced by stand-in firm operating CRS technology:

$$Y = F(K, H) = K^{\alpha} H^{1-\alpha}$$

- ▶ Note: *H* is aggregate supply of human capital
 - "efficiency units"
- Physical capital depreciates at rate δ^k

Government Policies (1/2)

Government runs a pay-as-you-go **pension system**:

► Payroll tax

- Proportional rate τ^{SS} up to a taxable earnings cap \hat{e}
- ► Old age benefit rule
 - Retirees are paid a benefit each period which is a function of their average lifetime earnings at the year they retire:

$$b(\bar{e}_{J_{SS}})$$

Average earnings of workers evolve according to:

$$\bar{e}' = \frac{j\bar{e} + \min\{e, \hat{e}\}}{j+1}$$

Federal income tax

- Average tax rate: $t(y/\bar{y}) = \eta_0 + \eta_1 \log(y/\bar{y})$
 - Estimated by Guner, Kaygusuz, Ventura ('14)

Government consumption balances government budget

Decision problem of a worker, $j < J_{SS}$

State of a worker given by $z = (k, h, \bar{e}, a)$.

Stationary Equilibrium

A **Stationary Equilibrium** for the closed economy is a collection of individual decisions, aggregate variables, factor prices, government policy variables, and a measure of individuals $\Lambda(x) = (\Lambda_j(x))$ that satisfy the following conditions:

- 1. Individual decisions solve their corresponding decision problems given factor prices
- 2. Factor prices are determined competitively
- 3. Labor and capital markets clear
- 4. The output market clears
- 5. The government's budget is balanced
- 6. The age vector of distributions is stationary

Calibrating Benchmark Economy to US

Calibration strategy

- Technology parameters
 - ► Standard

- ► Federal income tax
 - $t(y/\bar{y}) = \eta_0 + \eta_1 \log(y/\bar{y})$
 - $\eta_0 = .099$, and $\eta_1 = .035$

- Household parameters
 - Jointly target to life-cycle profiles for the mean and variance of annual earnings, hourly wages, and hours worked
 - Sample: Employed heads of household in PSID (1990 2013)

Benchmark government policy

- Payroll tax, $\tau^{SS} = .106$
- Old age benefit rule, $b(\bar{e})$
 - 90% of the first BP_1 average earnings,
 - ▶ 32% of the next $BP_2 BP_1$ average earnings,
 - ▶ 15% of the remaining $\hat{e} BP_2$ average earnings
- $BP_1 = 0.18 \times Mean \ Earnings$
- ▶ $BP_2 = 1.09 \times Mean \ Earnings$
- $\hat{e} = 2.21 \times Mean \ Earnings$

Fit of the benchmark economy

Life-cycle mean earnings and wages

Life-cycle variance of log earnings

► Fraction of earners above earnings cap:

- ► Model: 9%
- ► Sample: 11%

Fraction of earnings above earnings cap:

- ▶ Model: 12%
- ► Sample: 16%

The Impact of Eliminating the Taxable Earnings Cap

Three reforms

1. Eliminate cap. Government consumes additional revenue.

2. Eliminate cap. Lower payroll tax rate.

3. Eliminate cap. Raise benefits lump sum.

Impact of reforms on economic aggregates

	R1	R2	R3
	$(\uparrow G)$	$(\downarrow \tau^{SS})$	$(\uparrow b)$
Consumption	-2.9%		
Output	-2.1%		
Physical Capital	-1.3%		
Human Capital	-2.5%		
Hours Worked	-1.2%		
H.C. Investment	-5.1%		

What drives the change in human capital? (1/2)

Impact of Reform 1

	Endog. HC	Exog. HC
Consumption	-2.9%	-1.3%
Output	-2.1%	-1.2%
Physical Capital	-1.3%	-0.9%
Human Capital	-2.5%	-1.3%
Hours Worked	-1.2%	-1.0%
H.C. Investment	-5.1%	NA

What drives the change in human capital? (2/2)

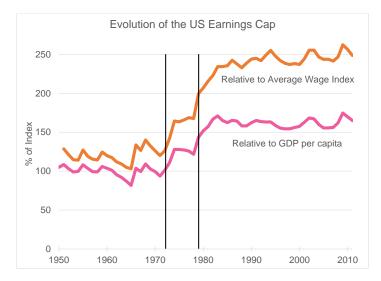
Eliminating cap eliminates non-convexity in budget set

- ► 4% of population earned discretely above ê in baseline, and discretely below ê after R1
 - ► By "discretely", I mean 5%
- How to interpret impact?
 - ▶ 1 out of 7 workers earning above cap are affected
 - \blacktriangleright Ball park impact: lowers aggregate output by 0.5%

	R1	R2	R3
	$(\uparrow G)$	$(\downarrow \tau^{SS})$	$(\uparrow b)$
Payroll tax revenue	+11.8%	-0.5%	+11.0%
Income tax revenue	-2.9%	-2.5%	-4.5%
Total tax revenue	+1.2%	-2.0%	-0.2%

	R1	R2	R3
	$(\uparrow G)$	$(\downarrow \tau^{SS})$	$(\uparrow b)$
Share of workers benefiting	.73		
Conditional welfare gain (CEV)	+0.1%		
Conditional welfare loss (CEV)	-2.4%		
Average welfare change (CEV)	-0.7%		

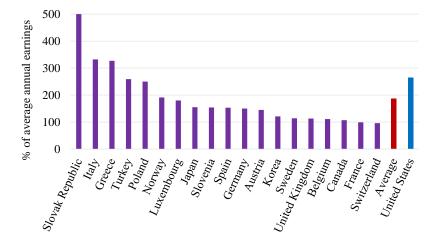
	R1	R2	R3
	$(\uparrow G)$	$(\downarrow \tau^{SS})$	(† b)
Share of workers benefiting	.73	.78	.63
Conditional welfare gain (CEV)	+0.1%	+1.6%	+0.4%
Conditional welfare loss (CEV)	-2.4%	-2.1%	-2.3%
Average welfare change (CEV)	-0.7%	+0.9%	-0.6%


Conclusion

Conclusion

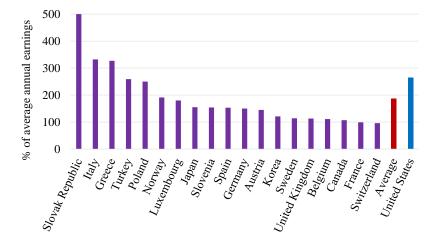
I study the long run impact of reforming the taxable earnings cap in the context of an endogenous human capital model

- ► I find:
 - Aggregate impact is large
 - Depressed human capital investment accounts for half
 - ► Non-convexity from cap pushes some discretely below cap
 - Increase in government revenues is small
 - Welfare effects heterogeneous


Earnings Cap Over Time

Data source: SSA: "The Evolution of Social Security's Taxable Maximum"

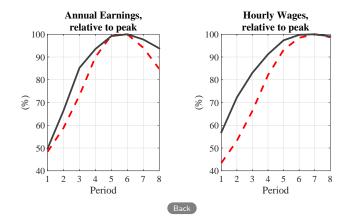
Back


Taxable earnings caps across the OECD

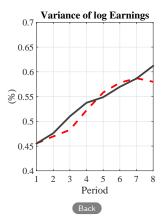
Data source: OECD: "Pensions at a Glance 2013"

Taxable earnings caps across the OECD

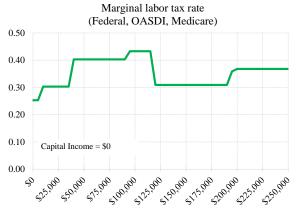
Data source: OECD: "Pensions at a Glance 2013"



Parameter	Description	Value
r	Real Interest rate	0.04
δ^k	Depreciation rate of physical capital	0.07
α	Physical capital share in Y	0.33

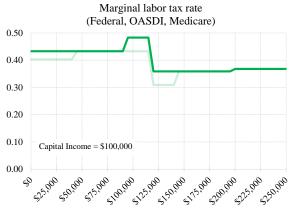

Calibration Results: Endogenous Parameters

Parameter	Description	Source	Value
J	Periods in life-cycle	80 years	12
J_{SS}	Retirement period	65 years	9
(μ_{h_1},μ_a)	Mean of $log(h_1, a)$	Initial, Peak mean earn	(5.81, 1.55)
(σ_{h_1},σ_a)	Variance of $log(h_1, a)$	Initial, Peak var. earn	(0.56, 0.35)
$ ho_{h_1a}$	Correlation of (h_1, a)	Middle age var. earn	0.95
heta	Curvature of ${\cal H}$ w.r.t. s	Browning et al. ('99)	0.70
ϕ	Curvature of ${\cal H}$ w.r.t. h	Blandin ('16)	0.60
δ^h	Depreciation rate	Blandin ('16)	0.01
eta	Time discount factor	Close model	0.96
γ	Curvature of leisure utility	Blandin ('16)	2
ψ	Leisure utility	Peak mean hours	0.69
$(1+g_\psi)^{J_{SS}-1}$	Growth in leisure utility	Minimum hours	1.15


Life-cycle Profile of Earnings and Wages

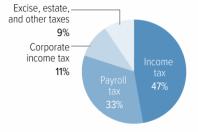
Life-cycle Variance of Earnings

Marginal tax rates and the taxable earnings cap


Labor income

Marginal tax rates and the taxable earnings cap

Labor income


Marginal tax rates and the taxable earnings cap

Labor income

Sources of federal revenue

Sources of Federal Tax Revenue, 2015

Note: "Other Taxes" category includes profits on assets held by the Federal Reserve.

Source: Office of Management and Budget

CENTER ON BUDGET AND POLICY PRIORITIES I CBPP.ORG

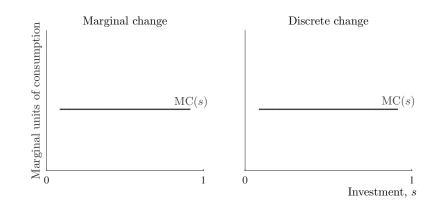
Preferences and Human Capital Accumulation

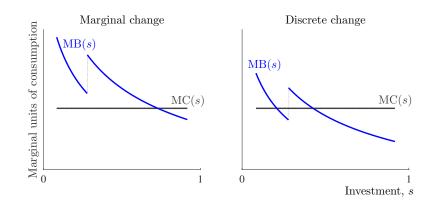
• Preferences over consumption and leisure:

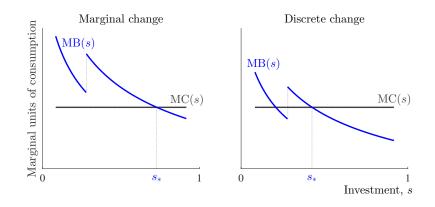
$$\underbrace{\sum_{j=1}^{J_{SS-1}} \beta^{j-1} u_j(c_j, 1 - n_j - s_j)}_{\text{Pre-retirement utility}} + \underbrace{\sum_{j=J_{SS}}^{J} \beta^{j-1} u_j(c_j, 1)}_{\text{Post-retirement utility}}$$

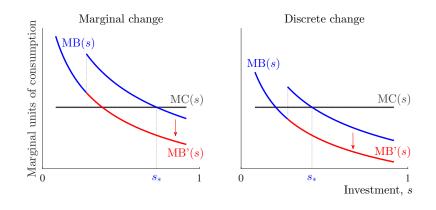
Human capital evolves via a Ben-Porath technology:

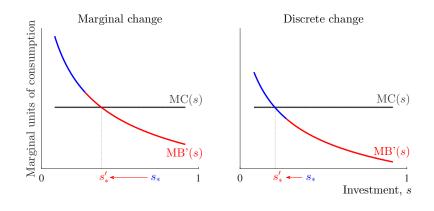
$$h_{j+1} = (1 - \delta^h)h_j + ah_j^\phi s_j^\theta$$


Government Policies (2/2)


► Federal income tax


• Average tax rate: $t(y/\bar{y}) = \eta_0 + \eta_1 \log(y/\bar{y})$


Government consumption balances government budget


G + [Benefit expenditures] = [Payroll tax revenue] + [Income tax revenue]

$$\begin{aligned} \max_{\{s_j,c_j\}_{j=1}^2} & u(c_1) + \beta u(c_2) \\ s.t. \quad c_1 + c_2 &= (1 - \tau)h_1(1 - s_1) + (\hat{\tau} - \tau) \max\{h_1(1 - s_1) - \hat{e}, 0\} \\ &+ (1 - \tau)h_2(1 - s_2) + (\hat{\tau} - \tau) \max\{h_2(1 - s_2) - \hat{e}, 0\} ; \\ h_2 &= h_1 + s_1^{\theta} ; \\ s_j \in [0, 1] \; \forall j . \end{aligned}$$

Decision problem of a retiree, $j \ge J_{SS}$

State of a worker given by $z = (k, h, \bar{e}, a)$.

$$V_{j}(z) = \max_{c,k'} \quad u_{j}(c, 1) + \beta V_{j+1}(z')$$

s.t. $c + k' = (1 - t(y/\bar{y}))y + b(\bar{e});$
 $y = k(1 + r);$
 $\bar{e}' = \bar{e};$
 $k' \ge k.$

Impact of reforms on economic aggregates

	R1	R2	R3
	$(\uparrow G)$	$(\downarrow \tau^{SS})$	(† b)
Consumption	-2.9%	-1.8%	-2.3%
Output	-2.1%	-2.2%	-3.1%
Physical Capital	-1.3%	-1.9%	-3.4%
Human Capital	-2.5%	-2.3%	-3.0%
Hours Worked	-1.2%	-1.0%	-1.6%
H.C. Investment	-5.1%	-4.5%	-5.9%

