Assessing Bankruptcy Reform in a Model with Temptation and Equilibrium Default

Makoto Nakajima

Federal Reserve Bank of Philadelphia

May 30, 2015 QSPS Summer Workshop, Utah State University

Number of Consumer Bankruptcy Filings

- Rising consistently since early 1980s.
- Seems to be declining as a result of the Bankruptcy Abuse Prevention and Consumer Protection Act (BAPCPA) in 2005.

Background

- Models with present bias (hyperbolic-discounting, temptation) have become widely-used in macro/finance.
 - Theoretical foundations (Laibson (1997), Gul and Pesendorfer (2001))
 - Consumers' preferences for illiquid assets (Laibson (1997))
 - Credit card debt with a high interest rate (Laibson et al. (2003))
 - Payday loans (Agarwal et al. (2009))
 - Social Security (İmrohoroğlu et al. (2003), Findley and Caliendo (2008))
 - Optimal taxation (Krusell et al. (2010))
 - Retirement Decision (Feigenbaum and Findley (2015))
 - Mandatory saving Floors (Malin (2008))
 - Rising indebtedness and welfare (Nakajima (2012))
- Models with equilibrium default/bankruptcy have been developed. (Livshits et al. (2007), Chatterjee et al. (2007))
- White (2007) argues that hyperbolic-discounting preference is an important feature in constructing a model of bankruptcies for policy evaluation.

Contribution

- I develop a quantitative model with:
 - Equilibrium default
 - Hyperbolic-discounting / temptation
 - Coexistence of exponential- and hyperbolic-discounting agents.
- And use the model to evaluate the BAPCPA within the model.
 - Does the model replicate what happened after the BAPCPA?
 - What are the welfare implications?
 - Does hyperbolic-discounting matter? How?
 - Can the BAPCPA be improved?
- I also investigate other bankruptcy policy reforms.

Other Issues

- Illiquid assets (housing).
- Simultaneous holding of asset and debt.
- Informal default.
- Chapter 13 bankruptcy.
- Richer heterogeneity (e.g., heterogeneous δ_j and/or β_j).

Model: Overview

• Partial-eqm life-cycle model with uninsured idiosyncratic shocks.

- Agents work till age I_R and live up to age I.
- Persistent and transitory labor income shocks.
- Expenditure shock.
- Two-types of agents
 - Exponential-discounting preferences.
 - Quasi-hyperbolic discounting preferences (sophisticated).
- Equilibrium default.
 - Taking q(.) as given, agents determine $g_h(.)$ (default or not).
 - Taking $g_h(.)$ as given, competitive credit sector determines q(.).

Model: Preferences

- Two preference types:
 - j = 1: Exponential-discounting, measure ϕ .
 - j = 2: Quasi-hyperbolic-discounting, measure 1ϕ .
- Common CRRA period utility function:
 - $\frac{(c_i/\nu_i)^{1-\sigma}}{1-\sigma}$.
 - v_i : Household equivalent scale for age-*i*.
- Two type-dependent discount factors:
 - δ_j : Long-term discount factor.
 - β_j : Short-term discount factor.
- Assume:
 - $\beta_1 = 1.0, \ \beta_2 = 0.7$
 - $\bullet \ \delta_1=\delta_2.$

Model: Discount Factor for Age-20

- Exponential-discounting agents: $\beta_1 = 1.0$ and $\delta_1 = 0.9544$.
- Hyperbolic-discounting agents: $\beta_1 = 0.7$ and $\delta_1 = 0.9544$.

Model: Endowment

• Agents born with a = 0.

- Labor income: $e(i, p, t) = e_i \exp(p + t)$
 - e_i : Average labor income for age-*i*.
 - p: Persistent shock to labor income (Markov).
 - t: Transitory shock to labor income (i.i.d.).
- Social Security benefits: $b(i, p, t) = \psi_e \overline{e} + \psi_p p$
 - Only for age $i > I_R$.
 - \overline{e} : Average labor income.
 - p: Persistent shock to labor income at age- I_R .
- OOP expenditure shock x: i.i.d. (Livshits et al. (2007))
- Two paths to bankruptcy:
 - $\bullet\,$ Series of low income shocks \to Accumulated debt \to Default.
 - $\bullet~$ Large medical expense shock \rightarrow Default.

Model: Default

- Based on Chatterjee et al. (2007): Captures salient characteristics of Chapter 7 bankruptcy in the U.S.
- Benefits of defaulting:
 - Existing debt and bills are wiped out.
 - No future obligation to repay: fresh start
- Costs of defaulting:
 - Filing cost: $\xi =$ \$600.
 - Wage garnishment: Proportion $\boldsymbol{\eta}$ of the current income.
 - Cannot save in the filing period.
 - Credit history turn bad (h = 1).
 - While credit history is bad, excluded from loan market $(a' \ge 0)$.
 - With probability of λ , credit history turns good (h = 0).
- Agents optimally choose whether to default or not.

Model: Default Decision (h = 0)

$$h^* = \begin{cases} 0 \text{ (non-default)} & \text{if } V^*_{non}(.) > V^*_{def}(.) \\ 1 \text{ (default)} & \text{Otherwise} \end{cases}$$
(1)

$$V(j, i, 0, p, t, x, a) = \begin{cases} V_{non}(j, i, 0, p, t, x, a) & \text{if } h^* = 0\\ V_{def}(j, i, 0, p, t, x, a) & \text{if } h^* = 1 \end{cases}$$
(2)

- Default decision is made based on the discount factor β_jδ_j.
- Value is computed based on δ_j only.

Model: Value Conditional on Non-Defaulting

$$a^* = \operatorname*{argmax}_{a' \in \mathbb{R}} \left\{ u\left(\frac{c}{\nu_i}\right) + \frac{\beta_j \delta_j \mathbb{E} V(j, i+1, 0, p', x', t', a')}{\left\{ 0, \frac{1}{2} \right\}} \right\}$$
(3)

$$c + a'q(j, i, 0, p, t, x, a') + x = e(i, p, t) + b(i, p, t) + a$$
 (4)

$$V_{non}^{*}(j, i, 0, p, t, x, a) = \begin{cases} -\infty & \text{if } B(.) = \emptyset \\ u\left(\frac{c}{v_{i}}\right) + \delta_{j} \mathbb{E} V(j, i+1, 0, p', t', x', a^{*}) & \text{if } B(.) \neq \emptyset \end{cases}$$
(5)

$$V_{non}(j, i, 0, p, t, x, a) = \begin{cases} -\infty & \text{if } B(.) = \emptyset \\ u\left(\frac{c}{\nu_i}\right) + \delta_j \mathbb{E} V(j, i+1, 0, p', t', x', a^*) & \text{if } B(.) \neq \emptyset \end{cases}$$
(6)

 Optimal saving decision is based on β_jδ_j, while the value is evaluated with δ_j only.

Model: Value Conditional on Defaulting

$$V_{def}(j, i, h, p, t, x, a) = u\left(\frac{c}{\nu_i}\right) + \frac{\delta_j}{\mathbb{E}} V(j, i+1, 1, p', t', x', 0)$$
(7)
$$c + \xi = e(i, p, t)(1 - \eta) + b(i, p, t)$$
(8)

$$V_{def}^{*}(j, i, h, p, t, x, a) = u\left(\frac{c}{v_{i}}\right) + \frac{\delta_{j}\mathbb{E}V(j, i+1, 1, p', t', x', 0)}{c + \xi} = e(i, p, t)(1 - \eta) + b(i, p, t)$$
(9)
(10)

- Existing debt a and expenditure x are wiped away.
- Credit history turns bad (h' = 1).
- Cannot save in the defaulting period (a'=0).
- ξ: Cost of filing.
- η: Wage garnishment.

Model: Decision of Agent with Bad Credit History (h = 1)

$$V(j, i, 1, p, t, x, a) = \begin{cases} V_{def}(j, i, 1, p, t, x, a) & \text{if } B(.) = \emptyset \\ u\left(\frac{c}{\nu_i}\right) + \delta_j \mathbb{E} V(j, i+1, h', p', t', x', a^*) & \text{if } B(.) \neq \emptyset \end{cases}$$
(11)

$$a^* = \operatorname*{argmax}_{a' \in \mathbb{R}^+} \left\{ u\left(\frac{c}{v_i}\right) + \beta_j \delta_j \mathbb{E} V(j, i+1, h', p', x', t', a') \right\}$$
(12)

c + a'q(j, i, 1, p, t, x, a') + x = e(i, p, t) + b(i, p, t) + a(13)

- Agents can default only if defaulting is the only choice.
- Agents cannot save: $a' \in \mathbb{R}^+$.

Model: Unsecured Credit Sector

- Mass of credit card companies, each of which is a price taker.
- Offers discount bonds of price q(j, i, h, p, t, x, a').
- A credit card company can target any type of agents.
 - Cross-subsidization is impossible in equilibrium.
 - Zero profit for each type in equilibrium.
- Zero profit condition of a credit card company making loans to measure m of type-(j, i, 0, p, t, x, a') agents:

$$m\mathbb{E}\left[\mathbb{1}_{g_{h}=0}(-a')+\mathbb{1}_{g_{h}=1}\eta e(i+1,p',t')\frac{-a'}{x'-a'}\right]$$
$$=m(-a'q(j,i,0,p,t,x,a'))(1+r+\iota) \quad (14)$$

Model: Credit Card Sector: q(.) Function

Solving the zero profit condition for q:

$$q(j, i, 0, p, t, x, a') = \frac{\mathbb{E}\left[\mathbbm{1}_{g_h=0} + \mathbbm{1}_{g_h=1} \frac{\eta e(i+1, p', t')}{x'-a'}\right]}{1+r+\iota}$$
(15)

2 In case $\eta = 0$:

$$q(j, i, 0, p, t, x, a') = \frac{\mathbb{1}_{g_h=0}}{1+r+\iota}$$
(16)

Special case: no default

$$q(j, i, 0, p, t, x, a') = \frac{1}{1 + r + \iota}$$
(17)

Special case: all default

q(j, i, 0, p, t, x, a') = 0

(18)

Model: Credit Card Sector: Remarks

- Default probability is an increasing function of the size of debt.
- Therefore, q(.) (default premium) is a decreasing (increasing) function of the size of debt.
- With η = 0, at some point, q(.) becomes zero. The corresponding debt level gives the endogenous borrowing constraint.
- When the punishment is very harsh, nobody defaults, and the model becomes the one with the natural borrowing limit.
- When the punishment is very mild, everybody defaults, and the model becomes the one with zero borrowing limit.

Model: Equilibrium

Steady-state recursive equilibrium satisfies:

- Given q(.), agent's optimize:
 V(j, i, h, p, t, x, a) is the optimal value function and
 g_a(j, i, h, p, t, x, a) and g_h(j, i, h, p, t, x, a) are associated optimal decision rules.
- Given g_h(.), zero profit of credit card sector: q(j, i, h, p, t, x, a')
- **③** Type distribution of agents, μ , is time-invariant.

Calibration: Parameters [1/2]

Parameter	Value	Description
Ι	54	Last age is age 73.
I_R	45	Retirement at age 65.
σ	2.0000	Standard in literature.
$\{\mathbf{v}_i\}$	_	Household size in family equivalence scale.
φ	0.5000	Measure of exponential-discounting agents.
β_1	1.0000	Definition of exponential-discounting.
β_2	0.7000	Laibson et al. (2007).
$\delta_1 = \delta_2$	0.9544	Match $D/Y=0.09$.
λ	0.1000	10 years of punishment.
ξ	0.0280	Cost of filing $= 600$ dollars
η	0.3064	Match number of bankruptcies = 0.84% p.a.
r	0.0200	Annual interest rate.
ι	0.0600	Transaction cost of loans.
\overline{r}	1.0000	Interest rate limit.

Calibration: Parameters [2/2]

Parameter	Value	Description
$\{e_i\}$	_	From Gourinchas and Parker (2002).
ρ_p	0.9500	From Livshits et al. (2010)
σ_p^2	0.0250	From Livshits et al. (2010)
σ_t^2	0.0500	From Livshits et al. (2010)
ψ_e	0.2000	From Livshits et al. (2010)
ψ_p	0.3500	From Livshits et al. (2010)
x_1	0.3960	Size of small exp. Livshits et al. (2007)
π_1^x	0.0237	Prob of small exp. Livshits et al. (2007)
x_2	1.2327	Size of large exp. Livshits et al. (2007)
π_2^x	0.0015	Prob of large exp. Livshits et al. (2007)

Baseline Model: Aggregate Statistics

	U.S.		Baseline Mo	odel
	1995-1999	All	Exponential	Hyperbolic
Asset/Income	254-534	97.8	145.4	49.5
% in debt	11.0-48.4	30.8	18.4	43.1
Debt/Income	9.0	9.0	3.9	14.2
Charge-off rate	4.8	4.5	5.7	4.2
Avg borrowing rate	10.9-12.8	10.1	9.9	10.2
Total bankruptcies	0.84	0.84	0.46	1.22
Due to exp shock	_	0.71	0.45	0.98
Due to inc shock	_	0.13	0.01	0.25

- The baseline model replicates U.S. debt-related statistics.
- ...except asset holding.
- Hyperbolic-discounting agents borrow more and default more.
- Hyperbolic-discounting agents default with income shocks as well.

Baseline Model: Average Life-Cycle Profiles

(c) Debtors

(d) Defaults

Evaluating the 2005 Bankruptcy Law Reform

- In 2005, BAPCPA was enacted, in response to increasing defaults.
 - Perception: debtors are abusing the debtor-friendly bankruptcy law.
- Two main components (White (2007)):
 - Means-testing (income).
 - 2 Higher cost of filing ($$600 \rightarrow 2500).
- We introduce the two components into our calibrated model.

Comments on Welfare

• Social welfare is measured as ex-ante expected life-time utility.

- Expectation with respect to all possible initial conditions.
- Also look at ex-ante expected life-time utility conditional on preference type.
- Experienced utility at the initial age.
 - Value of agents at the initial age with temptation.
- Converted into CEV (consumption equivalent variation).
 - Change in flow consumption due to moving from the baseline economy (without the BAPCPA) to the alternative economy.

Effects of the 2005 Bankruptcy Law Reform: Model Implications

	% Default	D/Y	Charge-off	Avg r	Welfare
Model					
Baseline	0.84	9.0	4.5	10.1	_
BAPCPA	0.35	11.1	2.4	9.4	-0.34
Means-testing	0.65	9.5	3.8	10.2	-0.05
Higher costs	0.49	10.6	3.2	9.7	-0.31

- Lower number of bankruptcies.
- Higher debt.
- Lower average borrowing interest rate.
- Effects of higher filing costs are stronger.

	% Default	D/Y	Charge-off	Avg r	Welfare
Model					
Baseline	0.84	9.0	4.5	10.1	_
BAPCPA	0.35	11.1	2.4	9.4	-0.34
Only $q(.)$	4.45	16.2	45.9	24.3	+1.77
Means-test $\overline{q}(.)$	0.73	8.0	4.0	10.0	-0.08
Higher costs $\overline{q}(.)$	0.49	7.9	3.7	9.9	-0.90

- Means-testing prevents high-income agents from defaulting.
- Higher default costs discourage (lower-income) agents from defaulting.
- Both lower probability of defaulting.
- Stronger commitment to repay leads to lower borrowing rate.
- Agents borrow more in response.

BAPCPA: Response of Default Premium

• Price of discount bonds (default premium) increases (declines) in response to the BAPCPA.

Effects of the 2005 Bankruptcy Law Reform: Model vs Data

-	% Default	D/Y	Charge-off	Avg r	Welfare		
U.S.							
1999-2004	0.94	9.4	5.3	14.0	_		
2007	0.43	9.5	4.0	13.3	_		
2007-2014	0.67	7.7	5.6	12.6	_		
2014	0.50	6.6	3.2	11.9	—		
Model							
Baseline	0.84	9.0	4.5	10.1	_		
BAPCPA	0.35	11.1	2.4	9.4	-0.34		
Only expor	nential-discou	inting a	agents				
Baseline	0.84	9.0	4.8	9.9	_		
BAPCPA	0.38	12.5	2.3	9.2	-0.04		
Only hyperbolic-discounting agents							
Baseline	0.84	9.0	4.5	10.1	_		
BAPCPA	0.36	10.3	2.5	9.4	-0.31		

- Consistent with the U.S. data, especially in 2007.
- Predictions of the baseline model are similar to those of the alternative models with only one type of agents.

Effects of the 2005 Bankruptcy Law Reform: Heterogeneity

	% Default	D/Y	Charge-off	Avg r	Welfare
Model					
Baseline	0.84	9.0	4.5	10.1	_
BAPCPA	0.35	11.1	2.4	9.4	-0.34
Exponentia	al-discountin	g agent	S		
Baseline	0.46	3.9	5.7	9.9	_
BAPCPA	0.17	4.4	2.8	9.2	-0.34
Hyperbolic	-discounting	agents			
Baseline	1.22	14.2	4.2	10.2	_
BAPCPA	0.54	18.0	2.3	9.4	-0.34

• Not surprisingly, similar effects between two types of agents.

Welfare Effects of the 2005 Bankruptcy Law Reform

- Small negative welfare effects: -0.34% in CEV.
 - Negative!
 - Same for both types of agents.
- Not working to screen out the abusers.
 - Small effects of means-testing.
 - Consistent with Albanesi and Nosal (2015).

Welfare Effects of the 2005 Bankruptcy Law Reform

- Various channels of welfare effects:
 - (1) Some agents cannot default due to means-testing (\downarrow)
 - (2) Higher costs of defaulting (\downarrow)
 - (3) Lower borrowing interest rate and resulting better consumption smoothing (↑)
 - (4) Hyperbolic-discounting agents overborrow (\downarrow)
- Hyperbolic-discounting agents:
 - (1)+(2)+(4) > (3).
 - Nakajima (2012) show that (4) is strong.
- Exponential-discounting agents:
 - (1)+(2) > (3).
 - (3) is weak because not many of them borrow.

Calibrating the Bankruptcy Reform

	% Default	D/Y	Charge-off	Avg r	Welfare	
Changing Means-Testing Threshold						
0%	0.02	26.2	0.1	8.1	+0.55	
50%	0.29	11.5	1.6	9.3	-0.28	
100% (BAPCPA)	0.35	11.1	2.4	9.4	-0.34	
$\infty\%$ (Baseline)	0.84	9.0	4.5	10.1	-	
Changing Default	Cost					
\$0	1.02	8.1	5.1	10.4	+0.11	
\$600 (Baseline)	0.84	9.0	4.5	10.1	_	
\$1200	0.72	9.7	4.1	10.0	-0.11	
\$2500 (BAPCPA)	0.49	10.6	3.2	9.7	-0.31	

- Tighter means-testing threshold yields welfare gain.
- Lower default cost yields welfare gain (possibly just higher cons).

Effects of Usury Law

	% Default	D/Y	Charge-off	Avg r	Welfare
All Agents					
Baseline (100%)	0.84	9.0	4.5	10.1	_
Usury law (20%)	0.83	9.0	4.5	10.1	+0.02
Usury law (10%)	0.74	4.8	6.0	9.6	-0.98
Exponential-Disco	unting Agen	ts			
Baseline (100%)	0.46	3.9	5.7	9.9	_
Usury law (20%)	0.46	3.9	5.7	9.9	-0.00
Usury law (10%)	0.46	1.7	10.0	9.5	-1.08
Hyperbolic-Discounting Agents					
Baseline (100%)	1.22	14.2	4.2	10.2	_
Usury law (20%)	1.21	14.1	4.2	10.2	+0.03
Usury law (10%)	1.02	7.9	5.1	9.6	-0.89

- Not-too-tight usury law improves welfare, for hyperbolic-discounting agents.
- Tighter usury law hurts both types of agents.

Optimal Level of Default Punishment

- The optimal level of income garnishment upon default (η) is 0.84 (highest feasible level).
- Welfare improvement when η is very high or very low.
- Exponential-discounting agents prefer higher η.
- Hyperbolic-discounting agents prefer lower η (overborrowing).

Optimal Level of Default Punishment: Alternative Models

- The model with only exponential-discounting agents imply a large welfare gain from tight η.
- The model with only hyperbolic-discounting agents imply a moderate welfare gain from lax η.

Concluding Remarks

- I develop a quantitative model with:
 - Equilibrium default.
 - Hyperbolic-discounting / temptation
 - Coexistence of exponential- and hyperbolic-discounting agents.

• I evaluate the recent bankruptcy law reform with the model.

- The model implies that BAPCPA successfully reduces bankruptcies.
- But with negative welfare effect.
- Effects of changing punishment upon default.
 - Exponential-discounting agents prefer severe punishment of default (stronger commitment to repay).
 - Hyperbolic-discounting agents prefer lax punishment that leads to less credit (stronger commitment not to overborrow).

References

- Agarwal, Sumit, Paige Marta Skiba, and Jeremy Tobacman, "Payday Loans and Credit Cards: New Liquidity and Credit Scoring Puzzles?," American Economic Review Paper and Proceedings, 2009, 99 (2), 412-417.
- Chatterjee, Satyajit, Dean Corbae, Makoto Nakajima, and José-Víctor Ríos-Rull, "A Quantitative Theory of Unsecured Consumer Credit with Risk of Default," *Econometrica*, 2007, 75 (6), 1525–1589.
- Feigenbaum, James A. and T. Scott Findley, "Quasi-Hyperbolic Discounting and Delayed Retirement," *Theoretical Economic Letters*, 2015, 5 (2), 325-331.
- Findley, T. Scott and Frank N. Caliendo, "The Behavioral Justification for Public Pensions: A Survey," Journal of Economics and Finance, 2008, 32 (4), 409-425.
- Gourinchas, Pierre-Olivier and Jonathan A. Parker, "Consumption over the Life-Cycle," *Econometrica*, 2002, 70 (1), 47-89.
- Gul, Faruk and Wolfgang Pesendorfer, "Temptation and Self-Control," *Econometrica*, 2001, 69 (6), 1403-1435.
- İmrohoroğlu, Ayşe, Selahattin İmrohoroğlu, and Douglas H. Joines, "Time-Inconsistent Preferences and Social Security," Quarterly Journal of Economics, 2003, 118 (2), 745-784.
- Krusell, Per, Burhanettin Kuruşcu, and Anthony A. Smith, "Temptation and Taxation," Econometrica, 2010, 78 (6), 2063-2084.
- Laibson, David, "Golden Eggs and Hyperbolic Discounting," Quarterly Journal of Economics, 1997, 112 (2), 443-477.
- _____, Andrea Repetto, and Jeremy Tobacman, "A Debt Puzzle," in Philippe Aghion, Roman Frydman, Joseph Stiglitz, and Michael Woodford, eds., Knowledge, Information, and Expectations in Modern Economics: In Honor of Edmund S. Phelps, Princeton University Press, 2003, chapter 11, pp. 228-266.
- ____, ___, and ____, "Estimating Discount Functions with Consumption Choices over the Lifecycle," National Bureau of Economic Research Working Paper, 2007, No. 13314.
- Livshits, Igor, James MacGee, and Michele Tertilt, "Consumer Bankruptcy: A Fresh Start," American Economic Review, 2007, 97 (1), 402–418.
- ____, ___, and ____, "Accounting for the Rise in Consumer Bankruptcies," American Economic Journal: Macroeconomics, 2010, 2 (2), 165-193.
- Malin, Benjamin A., "Hyperbolic Discounting and Uniform Savings Floors," Journal of Public Economics, 2008, 92 (10-11), 1986-2002.
- Nakajima, Makoto, "Rising Indebtedness and Temptation: A Welfare Analysis," *Quantitative Economics*, 2012, 3 (2), 257-288.
- White, Michelle J., "Bankruptcy Reform and Credit Cards," Journal of Economic Perspectives, 2007, 21 (4), 175-200.