Assessing Bankruptcy Reform in a Model with Temptation and Equilibrium Default

Makoto Nakajima
Federal Reserve Bank of Philadelphia

May 30, 2015
QSPS Summer Workshop, Utah State University

Number of Consumer Bankruptcy Filings

- Rising consistently since early 1980 s.
- Seems to be declining as a result of the Bankruptcy Abuse Prevention and Consumer Protection Act (BAPCPA) in 2005.

Background

- Models with present bias (hyperbolic-discounting, temptation) have become widely-used in macro/finance.
- Theoretical foundations (Laibson (1997), Gul and Pesendorfer (2001))
- Consumers' preferences for illiquid assets (Laibson (1997))
- Credit card debt with a high interest rate (Laibson et al. (2003))
- Payday loans (Agarwal et al. (2009))
- Social Security (İmrohoroğlu et al. (2003), Findley and Caliendo (2008))
- Optimal taxation (Krusell et al. (2010))
- Retirement Decision (Feigenbaum and Findley (2015))
- Mandatory saving Floors (Malin (2008))
- Rising indebtedness and welfare (Nakajima (2012))
- Models with equilibrium default/bankruptcy have been developed. (Livshits et al. (2007), Chatterjee et al. (2007))
- White (2007) argues that hyperbolic-discounting preference is an important feature in constructing a model of bankruptcies for policy evaluation.
- I develop a quantitative model with:
- Equilibrium default
- Hyperbolic-discounting / temptation
- Coexistence of exponential- and hyperbolic-discounting agents.
- And use the model to evaluate the BAPCPA within the model.
- Does the model replicate what happened after the BAPCPA?
- What are the welfare implications?
- Does hyperbolic-discounting matter? How?
- Can the BAPCPA be improved?
- I also investigate other bankruptcy policy reforms.

Other Issues

- Illiquid assets (housing).
- Simultaneous holding of asset and debt.
- Informal default.
- Chapter 13 bankruptcy.
- Richer heterogeneity (e.g., heterogeneous δ_{j} and/or β_{j}).

Model: Overview

- Partial-eqm life-cycle model with uninsured idiosyncratic shocks.
- Agents work till age I_{R} and live up to age I.
- Persistent and transitory labor income shocks.
- Expenditure shock.
- Two-types of agents
- Exponential-discounting preferences.
- Quasi-hyperbolic discounting preferences (sophisticated).
- Equilibrium default.
- Taking $q($.$) as given, agents determine g_{h}($.$) (default or not).$
- Taking $g_{h}($.$) as given, competitive credit sector determines q($.$) .$

Model: Preferences

- Two preference types:
- $j=1$: Exponential-discounting, measure ϕ.
- $j=2$: Quasi-hyperbolic-discounting, measure $1-\phi$.
- Common CRRA period utility function:
- $\frac{\left(c_{i} / v_{i}\right)^{1-\sigma}}{1-\sigma}$.
- v_{i} : Household equivalent scale for age- i.
- Two type-dependent discount factors:
- δ_{j} : Long-term discount factor.
- β_{j} : Short-term discount factor.
- Assume:
- $\beta_{1}=1.0, \beta_{2}=0.7$
- $\delta_{1}=\delta_{2}$.

Model: Discount Factor for Age-20

- Exponential-discounting agents: $\beta_{1}=1.0$ and $\delta_{1}=0.9544$.
- Hyperbolic-discounting agents: $\beta_{1}=0.7$ and $\delta_{1}=0.9544$.

Model: Endowment

- Agents born with $a=0$.
- Labor income: $e(i, p, t)=e_{i} \exp (p+t)$
- e_{i} : Average labor income for age- i.
- p : Persistent shock to labor income (Markov).
- t : Transitory shock to labor income (i.i.d.).
- Social Security benefits: $b(i, p, t)=\psi_{e} \bar{e}+\psi_{p} p$
- Only for age $i>I_{R}$.
- \bar{e} : Average labor income.
- p : Persistent shock to labor income at age- I_{R}.
- OOP expenditure shock x : i.i.d. (Livshits et al. (2007))
- Two paths to bankruptcy:
- Series of low income shocks \rightarrow Accumulated debt \rightarrow Default.
- Large medical expense shock \rightarrow Default.

Model: Default

- Based on Chatterjee et al. (2007): Captures salient characteristics of Chapter 7 bankruptcy in the U.S.
- Benefits of defaulting:
- Existing debt and bills are wiped out.
- No future obligation to repay: fresh start
- Costs of defaulting:
- Filing cost: $\xi=\$ 600$.
- Wage garnishment: Proportion η of the current income.
- Cannot save in the filing period.
- Credit history turn bad $(h=1)$.
- While credit history is bad, excluded from loan market ($a^{\prime} \geq 0$).
- With probability of λ, credit history turns good $(h=0)$.
- Agents optimally choose whether to default or not.

Model: Default Decision $(h=0)$

$$
\begin{align*}
& h^{*}= \begin{cases}0(\text { non-default }) & \text { if } V_{\text {non }}^{*}(.)>V_{\text {def }}^{*}(.) \\
1 \text { (default) } & \text { Otherwise }\end{cases} \tag{1}\\
& V(j, i, 0, p, t, x, a)= \begin{cases}V_{\text {non }}(j, i, 0, p, t, x, a) & \text { if } h^{*}=0 \\
V_{d e f}(j, i, 0, p, t, x, a) & \text { if } h^{*}=1\end{cases} \tag{2}
\end{align*}
$$

- Default decision is made based on the discount factor $\beta_{j} \delta_{j}$.
- Value is computed based on δ_{j} only.

Model: Value Conditional on Non-Defaulting

$$
\left.\begin{array}{l}
a^{*}=\underset{a^{\prime} \in \mathbb{R}}{\operatorname{argmax}}\left\{u\left(\frac{c}{v_{i}}\right)+\beta_{j} \delta_{j} \mathbb{E} V\left(j, i+1,0, p^{\prime}, x^{\prime}, t^{\prime}, a^{\prime}\right)\right\} \\
c+a^{\prime} q\left(j, i, 0, p, t, x, a^{\prime}\right)+x=e(i, p, t)+b(i, p, t)+a
\end{array}\right\} \begin{array}{ll}
V_{\text {non }}^{*}(j, i, 0, p, t, x, a)= & \text { if } B(.)=\emptyset \\
\qquad \begin{cases}-\infty & \text { if } B(.)=\emptyset \\
u\left(\frac{c}{v_{i}}\right)+\delta_{j} \mathbb{E} V\left(j, i+1,0, p^{\prime}, t^{\prime}, x^{\prime}, a^{*}\right) & \text { if } B(.) \neq \emptyset\end{cases} \\
V_{\text {non }}(j, i, 0, p, t, x, a)= & \text { if } B(.) \neq \emptyset
\end{array} \begin{aligned}
& -\infty \\
& u\left(\frac{c}{v_{i}}\right)+\delta_{j} \mathbb{E} V\left(j, i+1,0, p^{\prime}, t^{\prime}, x^{\prime}, a^{*}\right)
\end{aligned}
$$

- Optimal saving decision is based on $\beta_{j} \delta_{j}$, while the value is evaluated with δ_{j} only.

Model: Value Conditional on Defaulting

$$
\begin{align*}
& V_{d e f}(j, i, h, p, t, x, a)=u\left(\frac{c}{v_{i}}\right)+\delta_{j} \mathbb{E} V\left(j, i+1,1, p^{\prime}, t^{\prime}, x^{\prime}, 0\right) \tag{7}\\
& c+\xi=e(i, p, t)(1-\eta)+b(i, p, t) \tag{8}\\
& V_{d e f}^{*}(j, i, h, p, t, x, a)=u\left(\frac{c}{v_{i}}\right)+\delta_{j} \mathbb{E} V\left(j, i+1,1, p^{\prime}, t^{\prime}, x^{\prime}, 0\right) \tag{9}\\
& c+\xi=e(i, p, t)(1-\eta)+b(i, p, t) \tag{10}
\end{align*}
$$

- Existing debt a and expenditure x are wiped away.
- Credit history turns bad $\left(h^{\prime}=1\right)$.
- Cannot save in the defaulting period $\left(a^{\prime}=0\right)$.
- ξ : Cost of filing.
- η : Wage garnishment.

Model: Decision of Agent with Bad Credit History $(h=1)$

$$
\begin{align*}
& V(j, i, 1, p, t, x, a)= \\
& \qquad \begin{cases}V_{\text {def }}(j, i, 1, p, t, x, a) & \text { if } B(.)=\emptyset \\
u\left(\frac{c}{v_{i}}\right)+\delta_{j} \mathbb{E} V\left(j, i+1, h^{\prime}, p^{\prime}, t^{\prime}, x^{\prime}, a^{*}\right) & \text { if } B(.) \neq \emptyset\end{cases} \tag{11}\\
& a^{*}=\underset{a^{\prime} \in \mathbb{R}^{+}}{\operatorname{argmax}}\left\{u\left(\frac{c}{v_{i}}\right)+\beta_{j} \delta_{j} \mathbb{E} V\left(j, i+1, h^{\prime}, p^{\prime}, x^{\prime}, t^{\prime}, a^{\prime}\right)\right\} \tag{12}\\
& c+a^{\prime} q\left(j, i, 1, p, t, x, a^{\prime}\right)+x=e(i, p, t)+b(i, p, t)+a \tag{13}
\end{align*}
$$

- Agents can default only if defaulting is the only choice.
- Agents cannot save: $a^{\prime} \in \mathbb{R}^{+}$.

Model: Unsecured Credit Sector

- Mass of credit card companies, each of which is a price taker.
- Offers discount bonds of price $q\left(j, i, h, p, t, x, a^{\prime}\right)$.
- A credit card company can target any type of agents.
- Cross-subsidization is impossible in equilibrium.
- Zero profit for each type in equilibrium.
- Zero profit condition of a credit card company making loans to measure m of type- $\left(j, i, 0, p, t, x, a^{\prime}\right)$ agents:

$$
\begin{align*}
& m \mathbb{E}\left[\mathbb{1}_{g_{h}=0}\left(-a^{\prime}\right)+\mathbb{1}_{g_{h}=1} \eta e\left(i+1, p^{\prime}, t^{\prime}\right) \frac{-a^{\prime}}{x^{\prime}-a^{\prime}}\right] \\
&=m\left(-a^{\prime} q\left(j, i, 0, p, t, x, a^{\prime}\right)\right)(1+r+\iota) \tag{14}
\end{align*}
$$

Model: Credit Card Sector: $q($.$) Function$

(1) Solving the zero profit condition for q :

$$
\begin{equation*}
q\left(j, i, 0, p, t, x, a^{\prime}\right)=\frac{\mathbb{E}\left[\mathbb{1}_{g_{h}=0}+\mathbb{1}_{g_{h}=1} \frac{\eta e\left(i+1, p^{\prime}, t^{\prime}\right)}{x^{\prime}-a^{\prime}}\right]}{1+r+\iota} \tag{15}
\end{equation*}
$$

(2) In case $\eta=0$:

$$
\begin{equation*}
q\left(j, i, 0, p, t, x, a^{\prime}\right)=\frac{\mathbb{1}_{g_{h}=0}}{1+r+\imath} \tag{16}
\end{equation*}
$$

(3) Special case: no default

$$
\begin{equation*}
q\left(j, i, 0, p, t, x, a^{\prime}\right)=\frac{1}{1+r+\iota} \tag{17}
\end{equation*}
$$

(4) Special case: all default

$$
\begin{equation*}
q\left(j, i, 0, p, t, x, a^{\prime}\right)=0 \tag{18}
\end{equation*}
$$

Model: Credit Card Sector: Remarks

- Default probability is an increasing function of the size of debt.
- Therefore, q (.) (default premium) is a decreasing (increasing) function of the size of debt.
- With $\eta=0$, at some point, $q($.$) becomes zero. The corresponding$ debt level gives the endogenous borrowing constraint.
- When the punishment is very harsh, nobody defaults, and the model becomes the one with the natural borrowing limit.
- When the punishment is very mild, everybody defaults, and the model becomes the one with zero borrowing limit.

Model: Equilibrium

Steady-state recursive equilibrium satisfies:
(1) Given $q($.$) , agent's optimize:$
$V(j, i, h, p, t, x, a)$ is the optimal value function and
$g_{a}(j, i, h, p, t, x, a)$ and $g_{h}(j, i, h, p, t, x, a)$ are associated optimal decision rules.
(2) Given $g_{h}($.$) , zero profit of credit card sector:$ $q\left(j, i, h, p, t, x, a^{\prime}\right)$
(3) Type distribution of agents, μ, is time-invariant.

Calibration: Parameters [1/2]

Parameter	Value	Description
I	54	Last age is age 73.
I_{R}	45	Retirement at age 65.
σ	2.0000	Standard in literature.
$\left\{v_{i}\right\}$	-	Household size in family equivalence scale.
ϕ	0.5000	Measure of exponential-discounting agents.
β_{1}	1.0000	Definition of exponential-discounting.
β_{2}	0.7000	Laibson et al. (2007).
$\delta_{1}=\delta_{2}$	0.9544	Match D/Y =0.09.
λ	0.1000	10 years of punishment.
ξ	0.0280	Cost of filing $=600$ dollars
η	0.3064	Match number of bankruptcies $=0.84 \%$ p.a.
r	0.0200	Annual interest rate.
ι	0.0600	Transaction cost of loans.
\bar{r}	1.0000	Interest rate limit.

Calibration: Parameters [2/2]

Parameter	Value	Description
$\left\{e_{i}\right\}$	-	From Gourinchas and Parker (2002).
ρ_{p}	0.9500	From Livshits et al. (2010)
σ_{p}^{2}	0.0250	From Livshits et al. (2010)
σ_{t}^{2}	0.0500	From Livshits et al. (2010)
ψ_{e}	0.2000	From Livshits et al. (2010)
ψ_{p}	0.3500	From Livshits et al. (2010)
x_{1}	0.3960	Size of small exp. Livshits et al. (2007)
π_{1}^{x}	0.0237	Prob of small exp. Livshits et al. (2007)
x_{2}	1.2327	Size of large exp. Livshits et al. (2007)
π_{2}^{x}	0.0015	Prob of large exp. Livshits et al. (2007)

Baseline Model: Aggregate Statistics

	U.S.	Baseline Model		
	$1995-1999$	All	Exponential	Hyperbolic
Asset/Income	$254-534$	97.8	145.4	49.5
\% in debt	$11.0-48.4$	30.8	18.4	43.1
Debt/Income	9.0	9.0	3.9	14.2
Charge-off rate	4.8	4.5	5.7	4.2
Avg borrowing rate	$10.9-12.8$	10.1	9.9	10.2
Total bankruptcies	0.84	0.84	0.46	1.22
\quad Due to exp shock	-	0.71	0.45	0.98
Due to inc shock	-	0.13	0.01	0.25

- The baseline model replicates U.S. debt-related statistics.
- ...except asset holding.
- Hyperbolic-discounting agents borrow more and default more.
- Hyperbolic-discounting agents default with income shocks as well.

Baseline Model: Average Life-Cycle Profiles

(a) Consumption

(c) Debtors

(b) Savings

(d) Defaults

Evaluating the 2005 Bankruptcy Law Reform

- In 2005, BAPCPA was enacted, in response to increasing defaults.
- Perception: debtors are abusing the debtor-friendly bankruptcy law.
- Two main components (White (2007)):
(1) Means-testing (income).
(2) Higher cost of filing $(\$ 600 \rightarrow \$ 2500)$.
- We introduce the two components into our calibrated model.

Comments on Welfare

- Social welfare is measured as ex-ante expected life-time utility.
- Expectation with respect to all possible initial conditions.
- Also look at ex-ante expected life-time utility conditional on preference type.
- Experienced utility at the initial age.
- Value of agents at the initial age with temptation.
- Converted into CEV (consumption equivalent variation).
- Change in flow consumption due to moving from the baseline economy (without the BAPCPA) to the alternative economy.

Effects of the 2005 Bankruptcy Law Reform:

 Model Implications| | \% Default | D/Y | Charge-off | Avg r | Welfare |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Model | | | | | |
| Baseline | 0.84 | 9.0 | 4.5 | 10.1 | - |
| BAPCPA | 0.35 | 11.1 | 2.4 | 9.4 | -0.34 |
| \quad Means-testing | 0.65 | 9.5 | 3.8 | 10.2 | -0.05 |
| Higher costs | 0.49 | 10.6 | 3.2 | 9.7 | -0.31 |

- Lower number of bankruptcies.
- Higher debt.
- Lower average borrowing interest rate.
- Effects of higher filing costs are stronger.

Effects of 2005 Bankruptcy Law Reform: Decomposition

	\% Default	D/Y	Charge-off	Avg r	Welfare
Model					
Baseline	0.84	9.0	4.5	10.1	-
BAPCPA	0.35	11.1	2.4	9.4	-0.34
Only q(.)	4.45	16.2	45.9	24.3	+1.77
Means-test $\bar{q}()$.	0.73	8.0	4.0	10.0	-0.08
Higher costs $\bar{q}()$.	0.49	7.9	3.7	9.9	-0.90

- Means-testing prevents high-income agents from defaulting.
- Higher default costs discourage (lower-income) agents from defaulting.
- Both lower probability of defaulting.
- Stronger commitment to repay leads to lower borrowing rate.
- Agents borrow more in response.

BAPCPA: Response of Default Premium

- Price of discount bonds (default premium) increases (declines) in response to the BAPCPA.

Effects of the 2005 Bankruptcy Law Reform: Model vs Data

	\% Default	D/Y	Charge-off	Avg r	Welfare
U.S.					
$1999-2004$	0.94	9.4	5.3	14.0	-
2007	0.43	9.5	4.0	13.3	-
$2007-2014$	0.67	7.7	5.6	12.6	-
2014	0.50	6.6	3.2	11.9	-
Model					
Baseline	0.84	9.0	4.5	10.1	-
BAPCPA	0.35	11.1	2.4	9.4	-0.34
Only exponential-discounting	agents				
Baseline	0.84	9.0	4.8	9.9	-
BAPCPA	0.38	12.5	2.3	9.2	-0.04
Only hyperbolic-discounting agents					
Baseline	0.84	9.0	4.5	10.1	-
BAPCPA	0.36	10.3	2.5	9.4	-0.31

- Consistent with the U.S. data, especially in 2007.
- Predictions of the baseline model are similar to those of the alternative models with only one type of agents.

Effects of the 2005 Bankruptcy Law Reform: Heterogeneity

	\% Default	D/Y	Charge-off	Avg r	Welfare
Model					
Baseline	0.84	9.0	4.5	10.1	-
BAPCPA	0.35	11.1	2.4	9.4	-0.34
Exponential-discounting agents					
Baseline	0.46	3.9	5.7	9.9	-
BAPCPA	0.17	4.4	2.8	9.2	-0.34
Hyperbolic-discounting	agents				
Baseline	1.22	14.2	4.2	10.2	-
BAPCPA	0.54	18.0	2.3	9.4	-0.34

- Not surprisingly, similar effects between two types of agents.

Welfare Effects of the 2005 Bankruptcy Law Reform

- Small negative welfare effects: -0.34% in CEV.
- Negative!
- Same for both types of agents.
- Not working to screen out the abusers.
- Small effects of means-testing.
- Consistent with Albanesi and Nosal (2015).

Welfare Effects of the 2005 Bankruptcy Law Reform

- Various channels of welfare effects:
(1) Some agents cannot default due to means-testing (\downarrow)
(2) Higher costs of defaulting (\downarrow)
(3) Lower borrowing interest rate and resulting better consumption smoothing (\uparrow)
(4) Hyperbolic-discounting agents overborrow (\downarrow)
- Hyperbolic-discounting agents:
- $(1)+(2)+(4)>(3)$.
- Nakajima (2012) show that (4) is strong.
- Exponential-discounting agents:
- $(1)+(2)>(3)$.
- (3) is weak because not many of them borrow.

Calibrating the Bankruptcy Reform

\% Default D/Y Charge-off Avg r Welfare

Changing Means-Testing Threshold					
0%	0.02	26.2	0.1	8.1	+0.55
50%	0.29	11.5	1.6	9.3	-0.28
100% (BAPCPA)	0.35	11.1	2.4	9.4	-0.34
$\infty \%$ (Baseline)	0.84	9.0	4.5	10.1	-
Changing Default Cost					
$\$ 0$	1.02	8.1	5.1	10.4	+0.11
$\$ 600$ (Baseline)	0.84	9.0	4.5	10.1	-
$\$ 1200$	0.72	9.7	4.1	10.0	-0.11
$\$ 2500$ (BAPCPA)	0.49	10.6	3.2	9.7	-0.31

- Tighter means-testing threshold yields welfare gain.
- Lower default cost yields welfare gain (possibly just higher cons).

Effects of Usury Law

\% Default D/Y Charge-off Avg r Welfare

All Agents					
Baseline (100\%)	0.84	9.0	4.5	10.1	-
Usury law (20\%)	0.83	9.0	4.5	10.1	+0.02
Usury law (10\%)	0.74	4.8	6.0	9.6	-0.98
Exponential-Discounting Agents					
Baseline (100\%)	0.46	3.9	5.7	9.9	-
Usury law (20\%)	0.46	3.9	5.7	9.9	-0.00
Usury law (10\%)	0.46	1.7	10.0	9.5	-1.08
Hyperbolic-Discounting Agents					
Baseline (100\%)	1.22	14.2			
Usury law (20\%)	1.21	14.1	4.2	10.2	-
Usury law (10\%)	1.02	7.9	5.1	10.2	+0.03

- Not-too-tight usury law improves welfare, for hyperbolic-discounting agents.
- Tighter usury law hurts both types of agents.

Optimal Level of Default Punishment

- The optimal level of income garnishment upon default (η) is 0.84 (highest feasible level).
- Welfare improvement when η is very high or very low.
- Exponential-discounting agents prefer higher η.
- Hyperbolic-discounting agents prefer lower η (overborrowing).

Optimal Level of Default Punishment: Alternative Models

- The model with only exponential-discounting agents imply a large welfare gain from tight η.
- The model with only hyperbolic-discounting agents imply a moderate welfare gain from lax η.

Concluding Remarks

- I develop a quantitative model with:
- Equilibrium default.
- Hyperbolic-discounting / temptation
- Coexistence of exponential- and hyperbolic-discounting agents.
- I evaluate the recent bankruptcy law reform with the model.
- The model implies that BAPCPA successfully reduces bankruptcies.
- But with negative welfare effect.
- Effects of changing punishment upon default.
- Exponential-discounting agents prefer severe punishment of default (stronger commitment to repay).
- Hyperbolic-discounting agents prefer lax punishment that leads to less credit (stronger commitment not to overborrow).

References

Agarwal, Sumit, Paige Marta Skiba, and Jeremy Tobacman, "Payday Loans and Credit Cards: New Liquidity and Credit Scoring Puzzles?," American Economic Review Paper and Proceedings, 2009, 99 (2), 412-417.

Chatterjee, Satyajit, Dean Corbae, Makoto Nakajima, and José-Víctor Ríos-Rull, "A Quantitative Theory of Unsecured Consumer Credit with Risk of Default," Econometrica, 2007, 75 (6), 1525-1589.
Feigenbaum, James A. and T. Scott Findley, "Quasi-Hyperbolic Discounting and Delayed Retirement," Theoretical Economic Letters, 2015, 5 (2), 325-331.
Findley, T. Scott and Frank N. Caliendo, "The Behavioral Justification for Public Pensions: A Survey," Journal of Economics and Finance, 2008, 32 (4), 409-425.
Gourinchas, Pierre-Olivier and Jonathan A. Parker, "Consumption over the Life-Cycle," Econometrica, 2002, 70 (1), 47-89.
Gul, Faruk and Wolfgang Pesendorfer, "Temptation and Self-Control," Econometrica, 2001, 69 (6), 1403-1435.
İmrohoroğlu, Ayşe, Selahattin İmrohoroğlu, and Douglas H. Joines, "Time-Inconsistent Preferences and Social Security," Quarterly Journal of Economics, 2003, 118 (2), 745-784.
Krusell, Per, Burhanettin Kuruşcu, and Anthony A. Smith, "Temptation and Taxation," Econometrica, 2010, 78 (6), 2063-2084.
Laibson, David, "Golden Eggs and Hyperbolic Discounting," Quarterly Journal of Economics, 1997, 112 (2), 443-477.
_ , Andrea Repetto, and Jeremy Tobacman, "A Debt Puzzle," in Philippe Aghion, Roman Frydman, Joseph Stiglitz, and Michael Woodford, eds., Knowledge, Information, and Expectations in Modern Economics: In Honor of Edmund S. Phelps, Princeton University Press, 2003, chapter 11, pp. 228-266.
__ , and __ , "Estimating Discount Functions with Consumption Choices over the Lifecycle," National Bureau of Economic Research Working Paper, 2007, No. 13314.
Livshits, Igor, James MacGee, and Michele Tertilt, "Consumer Bankruptcy: A Fresh Start," American Economic Review, 2007, 97 (1), 402-418.
__ , and _, "Accounting for the Rise in Consumer Bankruptcies," American Economic Journal: Macroeconomics, 2010, 2 (2), 165-193.
Malin, Benjamin A., "Hyperbolic Discounting and Uniform Savings Floors," Journal of Public Economics, 2008, 92 (10-11), 1986-2002.
Nakajima, Makoto, "Rising Indebtedness and Temptation: A Welfare Analysis," Quantitative Economics, 2012, 3 (2), 257-288.
White, Michelle J., "Bankruptcy Reform and Credit Cards," Journal of Economic Perspectives, 2007, 21 (4), 175-200.

