Optimal Illiquidity

John Beshears James J. Choi Christopher Clayton Christopher Harris David Laibson Brigitte C. Madrian

May 30, 2015

Households <55 make \$0.40 of taxable withdrawals from retirement accounts for every \$1 of contributions (Argento, Bryant, and Sabelhaus 2014)

International comparison of employer-based DC accounts Beshears, Choi, Hurwitz, Laibson, Madrian (forthcoming)

• United States:

liquidity (10% penalty or no penalty)

• Canada, Australia:

no liquidity, unless long-term unemployed
Germany, Singapore, UK:

no liquidity

What is the socially optimal level of household liquidity?

- 1. Legitimate unanticipated/uninsurable spending needs
- 2. Illegitimate overspending
 - self-control problems
 - other types of "mistakes"
- 3. Externalties (penalties = government revenue)
- 4. Heterogeneity in preferences (self-control problems)

Socially optimal savings: Behavioral mechanism design

- 1. Specify a positive theory of consumer behavior
 - consumers may or may not behave optimally
- 2. Specify a normative social welfare function
 - not necessarily based on revealed preference
- 3. Solve for the institutions that maximize the social welfare function, conditional on the theory of consumer behavior.

Caveats when we've worked through 1-3.

- 1. Specify a positive theory of consumer behavior:
 - Quasi-hyperbolic (present-biased) consumers
 - **Discount function**: 1, $\beta\delta$, $\beta\delta^2$
- 2. Specify a normative social welfare function
 - Exponential discounting
 - Discount function: 1, δ , δ^2
- 3. Solve for the institutions that maximize the social welfare function, conditional on the theory of consumer behavior.

- 1. Specify a positive theory of consumer behavior:
 - Quasi-hyperbolic (present-biased) consumers
 - **Discount function:** 1, $\beta\delta$, $\beta\delta^2$
- 2. Specify a normative social welfare function
 - Exponential discounting
 - Discount function: 1, δ , δ^2
- 3. Solve for the institutions that maximize the social welfare function, conditional on the theory of consumer behavior.

1. Specify a theory of consumer behavior

Start with Amador, Werning and Angeletos (2006), hereafter AWA:

- 1. Present-biased preferences
- 2. Short-run taste shocks
- 3. A general non-linear budget set
 - commitment mechanism

Timing

Period 0. An initial period in which a commitment mechanism is set up by self 0 **or** by the planner.

Period 1. A taste shock is realized and privately observed. Consumption (c_1) occurs.

Period 2. Another taste shock is realized and privately observed. Final consumption (c_2) occurs.

Agent Preferences

Agent Preferences (simplified)

- $U_0 = \theta_1 u_1(c_1) +$
- $U_1 = \theta_1 u_1(c_1) +$
- $U_2 =$

 $\theta_2 u_2(c_2)$ $\beta \theta_2 u_2(c_2)$ $\theta_2 u_2(c_2)$

Interpretation: when \$1 is transferred from c_2 to c_1 \$ π are lost in the exchange.

Two-part budget set

Three-part budget set C_2 $c_1^* + c_{DC}^* + c_{SS}^*$ slope = -1 $\left(c_1^*,c_{DC}^*+c_{SS}^*\right)$ $c_{DC}^* + c_{SS}^*$ slope = $-\frac{1}{1-\pi}$ c_{SS}^* slope = $-\infty$ $c_1^* + c_{DC}^* (1 - \pi)$ C_1

Theorem 1 (AWA):

Assume self 0 is sophisticated and can choose any feasible budget set.

Assume self 0 doesn't care about revenue externality from penalties.

Then self 0 will choose a two-part budget set:

- fully liquid account
- fully illiquid account (no withdrawals in period 1)

Theorem 2

Assume there are three accounts:

- one liquid
- one with an intermediate withdrawal penalty
- one completely illiquid

Then self 0 will allocate all assets to the liquid account and the completely illiquid account.

Experimental data

(Beshears, Choi, Harris, Laibson, Madrian, and Sakong 2014)

- Give subjects \$100
- Ask them to divide it among three accounts
- All accounts offer a 22% rate of interest
 - 1. One account is perfectly illiquid
 - 2. One account has a 10% penalty for early withdrawal
 - 3. One account is perfectly liquid
- For the first two accounts, set a goal date
- Maximum holding period: 1 year

When three accounts are offered

10% penalty

Theorem 3:

Assume In utility.

Assume that self 0 is offered two accounts: one completely liquid and an illiquid account with an early withdrawal penalty of π .

The amount of money deposited in the illiquid account rises with π .

Experimental data

(Beshears, Choi, Harris, Laibson, Madrian, and Sakong 2014)

- Give subjects \$100
- Ask them to divide it among two accounts
- Both accounts offer a 22% rate of interest
 - 1. One account has a 10% penalty for early withdrawal
 - 2. One account is perfectly liquid
- For the illiquid account, set a goal date
- Maximum holding period: 1 year

Goal account usage

Summary so far

- Descriptive theory of consumer behavior.
- Theoretical predictions that match experimental data

- 1. Specify a positive theory of consumer behavior:
 - Quasi-hyperbolic (present-biased) consumers
 - **Discount function**: 1, $\beta\delta$, $\beta\delta^2$
- 2. Specify a normative social welfare function
 - Exponential discounting
 - **Discount function**: 1, δ , δ^2
- 3. Solve for the institutions that maximize the social welfare function, conditional on the theory of consumer behavior.

Why should the planner use a social welfare function with $\beta=1$.

- This is the preference of all past selves for today.
- This is the long-run perspective.
- This is the restriction that eliminates present bias.
- For large *T*, the resulting behavior dominates the unconstrained equilibrium path (Caliendo and Findley 2015)
- However, this is a normative assumption.
- The rest of the paper is only an 'if, then' analysis.
- *If* the planner has a social welfare function with $\beta=1$, *then* the following policies are socially optimal.

Planner Preferences

- $U_0 = \delta \theta_1 u_1(c_1) + \delta^2 \theta_2 u_2(c_2)$
- $U_1 = \theta_1 u_1(c_1) + \delta \theta_2 u_2(c_2)$ $U_2 = \theta_2 u_2(c_2)$

Planner preferences: $\beta = 1$.

These are dynamically consistent preferences.

- 1. Specify a positive theory of consumer behavior:
 - Quasi-hyperbolic (present-biased) consumers
 - **Discount function**: 1, $\beta\delta$, $\beta\delta^2$
- 2. Specify a normative social welfare function
 - Exponential discounting
 - **Discount function**: 1, δ , δ^2
- 3. Solve for the institutions that maximize the social welfare function, conditional on the theory of consumer behavior.

3. Institutions that maximize the planner's social welfare function

- Need to incorporate externalities: when I pay a penalty, the government can use my penalty to increase the consumption of other agents.
- 2. Heterogeneity in present-bias, β .

Formal problem:

• (Utilitarian) planner picks an optimal policy in period 0:

• {
$$x$$
, $(z_1, z_2, ..., z_N)$, $(\pi_1, \pi_2, ..., \pi_N)$ }:

- x is the allocation to the liquid account
- z_n : allocation to the *n*'th illiquid account
- π_n : associated penalty for early withdrawal
- Endogenous withdrawal/consumption behavior generates social budget balance.

$$x + \sum_{n} z_n = 1 + E \sum_{n} \pi_n w_n$$

where w_n is the equilibrium quantity of early withdrawals from illiquid account n.

Agents in the economy are present-biased and naive. They choose consumption in periods 1 and 2, subject to the budget constraint imposed by the government.

Theorem 4:

Assume:

- homogeneous population with $0 < \beta < 1$
- u(c) = ln(c)
- Monotone hazard taste shocks on $[0,\overline{\theta}]$

Then, the planner will *not* choose a two-part budget set with a fully liquid account and a fully illiquid account.

Sketch of Proof

- Consider the class of 2-part budget sets with a liquid account and a 100% penalty account.
- Within this class, find the optimum.
- Perturb this optimum by introducing a 3rd account with a penalty π, such that the agents in a neighborhood of θ are just willing to consume from the third account.
- Use the penalty proceeds to increase the perfectly illiquid account (for all agents).
- This combination raises social welfare.

Numerical exploration of optimal policy:

Bell-shaped distribution of taste shocks on [0, 2].

Distribution for taste shocks

 $f(\theta)$

 θ

Welfare gains relative to $(x, z_1, \pi_1 = 100\%)$

Percent Wealth Equivalent

Optimal penalty with one illiquid account

β

One illiquid account with $\beta = 0.7$: Expected Utility

One illiquid account with $\beta = 0.1$: Expected Utility

Two key properties

- The optimal penalty engenders an asymmetry: better to set the penalty above its optimum then below its optimum.
- Welfare losses (money metric): $\ln\beta + (1/\beta) 1$.
 - Money metric welfare loss for $\beta = 0.1$ is two orders of magnitude higher than for $\beta = 0.7$.
 - Getting the penalty "right" for low β agents has vastly greater welfare consequences than getting it right for the rest of us.

To paraphrase Lucas:

Once you start thinking about low β households, nothing else matters.

Economy with heterogeneous β

(Utilitarian) planner picks an optimal policy in period 0:

• {
$$x$$
, $(z_1, z_2, ..., z_N)$, $(\pi_1, \pi_2, ..., \pi_N)$ }:

- x is the allocation to the liquid account
- z_n : allocation to the *n*'th illiquid account
- π_n : associated penalty for early withdrawal
- Endogenous withdrawal/consumption behavior generates social budget balance.

$$x + \sum_{n} z_n = 1 + E \sum_{n} \pi_n w_n$$

where w_n is the equilibrium quantity of early withdrawals from illiquid account n.

Agents in the economy are present-biased and naïve. They choose consumption in periods 1 and 2, subject to the budget constraint imposed by the government. Sufficient condition for optimality of two accounts with interpersonal transfers.

Theorem 5:

Let $\beta \in \{0,1\}$, with arbitrary population weights. Let the utility function have CRRA ≥ 1 . Let the taste shocks be bounded.

Then the social optimum is a two-account system with

- (i) a (completely) liquid account, and
- (ii) an illiquid account with early withdrawal penalty $\pi = 100\%$.

Intuition:

- Start with liquid account and $\pi = 100\%$ account.
- Add an account with $0 < \pi < 1$; this transfers resources due to the penalty payment.
- The transfer is welfare-reducing in two ways.
 - First, marginal utility is weakly greater for $\beta=0$ households than $\beta=1$ households (with CRRA ≥ 1).
 - Second, the penalty system effectively increases the liquidity of β=0 consumers more than the liquidity of β=1 consumers, which is an additional perverse welfare effect.

Two key properties in this extreme heterogeneous environment

- 1. You only need one illiquid account to achieve the (second best) social optimum
- 2. That illiquid account should be completely illiquid

These properties won't hold exactly, as we relax the extreme distributional assumption on β .

But the properties will continue to hold as a good approximation (with heterogeneous β).

β uniform on {0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1}

- Start with x = 1.
- Welfare gain from adding optimal ($z_1, \pi_1 = 100\%$): \heartsuit
- Welfare gain from adding optimal (z_2 , $\pi_2 = 12\%$): 0.02% wealth

β uniform on {.1, .2, .3, .4, .5, .6, .7, .8, .9, 1}

- Start with x = 1.
- Welfare gain from adding z_1 with $\pi_1 = 100\%$: 11.01% wealth
- Welfare gain from adding optimal $(z_2, \pi_2 = 13\%)$: 0.02% wealth

To gain more intuition, study the optimal penalty in a system with one illiquid account.

Early Withdrawal Penalty

Early Withdrawal Penalty

Allocations and Penalties:

—Liquid —Illiquid —Expected Penalties

Subpopulation Penalties Paid:

Start with x = 1.

Welfare gain from adding z_1 with $\pi_1 = 100\%$: 3.04% wealth Welfare gain from adding optimal ($z_2, \pi_2 = 10\%$): 0.02% wealth

Subpopulation Penalties Paid

Early Withdrawal Penalty

Robustness illustrations

	Baseline	Low σ(θ)	High σ(θ)	CRRA = 0.5	CRRA = 2	High E(ß)	Low E(ß)
						-(P)	
$\sigma(\theta)$	0.33	0.26	0.45	0.33	0.33	0.33	0.33
σ(β)	0.23	0.23	0.23	0.23	0.23	0.20	0.25
Ε(β)	0.73	0.73	0.73	0.73	0.73	0.79	0.70
Penalty (%)	10	9	9	10	10	9	10
Leakage (%)	57.9	66.1	48.7	59.4	57.3	51.2	62.1
401(k)/[SS+401(k)]	15.0	14.6	11.8	30.9	7.3	14.1	15.9

Some additional questions

- Number" of accounts: 2 vs. N
- CRRA
- Distribution of β values
- Distribution of taste shocks
- Functional form of taste shock: $\theta u(c)$ vs. $u(c-\theta)$
- Number of periods: 3 vs. T
- Individualization: pooling vs. separation
 - See Galperti (2014)
- Individualization: is income correlated with β?
- And everything else that we did to simplify the problem.

Conclusions

- Using our simple framework with interpersonal transfers and heterogeneous β, we solve for the socially optimal retirement savings system.
- Optimal system should have:
 - A perfectly illiquid account
 - A 10%-penalty account
 - (No more illiquid accounts)
 - 15% of illiquid savings in 10%-penalty account
 - Leakage rate should be 50% from 10%-penalty account
- We studied { x, (z₁, z₂, ..., z_N), (π₁, π₂, ..., π_N) }, which is a subspace of ℝ^{2N+1}, and converged on the point that corresponds to the (U.S.) retirement savings system.

In addition:

- The calibrated model (with heterogeneous β) implies that the 10% penalty account isn't important for welfare
- Explaining why we don't see such accounts outside U.S.
- Partially illiquid accounts are a two-edged sword with both edges almost equally sharp.

- We tried to write a normative paper.
 - "What is the socially optimal retirement savings system?"
- We ended up with a positive paper.
 "The U.S. system is what you would predict a perfectly rational planner to do."*

*According to the stripped down model presented today.