Optimal Illiquidity

John Beshears James J. Choi
Christopher Clayton Christopher Harris David Laibson Brigitte C. Madrian
May 30, 2015

Households <55 make $\$ 0.40$ of taxable withdrawals from retirement accounts for every \$1 of contributions
 (Argento, Bryant, and Sabelhaus 2014)

Billions

```
$100
    $80
    $60
    $40
    $20
    $-

\title{
International comparison of employer-based DC accounts
}

Beshears, Choi, Hurwitz, Laibson, Madrian (forthcoming)
- United States:
liquidity ( \(10 \%\) penalty or no penalty)
- Canada, Australia:
no liquidity, unless long-term unemployed
- Germany, Singapore, UK:
no liquidity

\section*{What is the socially optimal level of household liquidity?}
1. Legitimate unanticipated/uninsurable spending needs
2. Illegitimate overspending
- self-control problems
- other types of "mistakes"
3. Externalties (penalties = government revenue)
4. Heterogeneity in preferences (self-control problems)

\section*{Socially optimal savings: Behavioral mechanism design}


\section*{Behavioral mechanism design}
1. Specify a positive theory of consumer behavior - consumers may or may not behave optimally
2. Specify a normative social welfare function
- not necessarily based on revealed preference
3. Solve for the institutions that maximize the social welfare function, conditional on the theory of consumer behavior.

Caveats when we've worked through 1-3.

\section*{Behavioral mechanism design}
1. Specify a positive theory of consumer behavior:

Quasi-hyperbolic (present-biased) consumers
Discount function: \(1, \beta \delta, \beta \delta^{2}\)
2. Specify a normative social welfare function
- Exponential discounting
- Discount function: \(1, \delta, \delta^{2}\)
3. Solve for the institutions that maximize the social welfare function, conditional on the theory of consumer behavior.

\section*{Behavioral mechanism design}
1. Specify a positive theory of consumer behavior:
- Quasi-hyperbolic (present-biased) consumers
- Discount function: \(1, \beta \delta, \beta \delta^{2}\)
2. Specify a normative social welfare function
- Exponential discounting
- Discount function: \(1, \delta, \delta^{2}\)
3. Solve for the institutions that maximize the social welfare function, conditional on the theory of consumer behavior.

\section*{1. Specify a theory of consumer behavior}

Start with Amador, Werning and Angeletos (2006), hereafter AWA:
1. Present-biased preferences
2. Short-run taste shocks
3. A general non-linear budget set commitment mechanism

\section*{Timing}

Period 0. An initial period in which a commitment mechanism is set up by self 0 or by the planner.

Period 1. A taste shock is realized and privately observed. Consumption ( \(\mathrm{c}_{1}\) ) occurs.

Period 2. Another taste shock is realized and privately observed. Final consumption ( \(c_{2}\) ) occurs.

\section*{Agent Preferences}


\section*{Agent Preferences (simplified)}
\[
\begin{array}{rlr}
\mathrm{U}_{0} & = & \theta_{1} \mathrm{u}_{1}\left(\mathrm{c}_{1}\right)+ \\
\mathrm{U}_{1} & = & \theta_{1} \mathrm{u}_{1}\left(\mathrm{c}_{1}\right)+ \\
\mathrm{U}_{2} & = &
\end{array}
\]

\section*{Self 0 hands self 1 a budget set (subset of blue region)}


Interpretation: when \(\$ 1\) is transferred from \(c_{2}\) to \(c_{1}\) \(\$ \pi\) are lost in the exchange.

\section*{Two-part budget set}


\section*{Three-part budget set}
\[
c_{1}^{c}+c_{D C}^{*}+c_{S S}^{*} \uparrow \text { slope }=-1
\]

\section*{Theorem 1 (AWA):}

Assume self 0 is sophisticated and can choose any feasible budget set.
Assume self 0 doesn't care about revenue externality from penalties.
Then self 0 will choose a two-part budget set:
- fully liquid account
- fully illiquid account (no withdrawals in period 1)

\section*{Theorem 2}

Assume there are three accounts:
- one liquid
- one with an intermediate withdrawal penalty
- one completely illiquid

Then self 0 will allocate all assets to the liquid account and the completely illiquid account.

\section*{Experimental data}
(Beshears, Choi, Harris, Laibson, Madrian, and Sakong 2014)
- Give subjects \$100
- Ask them to divide it among three accounts
- All accounts offer a \(22 \%\) rate of interest
1. One account is perfectly illiquid
2. One account has a \(10 \%\) penalty for early withdrawal
3. One account is perfectly liquid
- For the first two accounts, set a goal date
- Maximum holding period: 1 year

\section*{When three accounts are offered}

Completely illiquid


\section*{Theorem 3:}

Assume ln utility.

Assume that self 0 is offered two accounts: one completely liquid and an illiquid account with an early withdrawal penalty of \(\pi\).

The amount of money deposited in the illiquid account rises with \(\pi\).

\section*{Experimental data}
(Beshears, Choi, Harris, Laibson, Madrian, and Sakong 2014)
- Give subjects \(\$ 100\)
- Ask them to divide it among two accounts
- Both accounts offer a \(22 \%\) rate of interest 1. One account has a \(10 \%\) penalty for early withdrawal
2. One account is perfectly liquid
- For the illiquid account, set a goal date
- Maximum holding period: 1 year

\section*{Goal account usage}


Goal account
\(20 \%\) penalty


\section*{Summary so far}
- Descriptive theory of consumer behavior.
- Theoretical predictions that match experimental data

\section*{Behavioral mechanism design}
1. Specify a positive theory of consumer behavior:
- Quasi-hyperbolic (present-biased) consumers

Discount function: \(1, \beta \delta, \beta \delta^{2}\)
2. Specify a normative social welfare function
- Exponential discounting
- Discount function: \(1, \delta, \delta^{2}\)
3. Solve for the institutions that maximize the social welfare function, conditional on the theory of consumer behavior.

\section*{Why should the planner use a social} welfare function with \(\beta=1\).
- This is the preference of all past selves for today.
- This is the long-run perspective.
- This is the restriction that eliminates present bias.
- For large \(T\), the resulting behavior dominates the unconstrained equilibrium path (Caliendo and Findley 2015)
- However, this is a normative assumption.
- The rest of the paper is only an 'if, then' analysis.
- If the planner has a social welfare function with \(\beta=1\), then the following policies are socially optimal.

\section*{Planner Preferences}
\[
\begin{array}{rrr}
\mathrm{U}_{0} & = & \delta \theta_{1} \mathrm{u}_{1}\left(\mathrm{c}_{1}\right)+ \\
\mathrm{U}_{1} & = & \theta_{1} \mathrm{u}_{1}\left(\mathrm{c}_{1}\right)+ \\
\mathrm{U}_{2} & = &
\end{array} \begin{aligned}
& \delta^{2} \theta_{2} \mathrm{u}_{2}\left(\mathrm{c}_{2}\right) \\
&
\end{aligned}
\]

Planner preferences: \(\beta=1\).

These are dynamically consistent preferences.

\section*{Behavioral mechanism design}
1. Specify a positive theory of consumer behavior:
- Quasi-hyperbolic (present-biased) consumers

Discount function: \(1, \beta \delta, \beta \delta^{2}\)
2. Specify a normative social welfare function
- Exponential discounting
- Discount function: \(1, \delta, \delta^{2}\)
3. Solve for the institutions that maximize the social welfare function, conditional on the theory of consumer behavior.

\title{
3. Institutions that maximize the
} planner's social welfare function
1. Need to incorporate externalities: when I pay a penalty, the government can use my penalty to increase the consumption of other agents.
2. Heterogeneity in present-bias, \(\beta\).

\section*{Formal problem:}
- (Utilitarian) planner picks an optimal policy in period 0 :
\(\circ\left\{x,\left(z_{1}, z_{2}, \ldots, z_{N}\right),\left(\pi_{1}, \pi_{2}, \ldots, \pi_{N}\right)\right\}:\)
\(\circ x\) is the allocation to the liquid account
\({ }^{\circ} z_{n}\) : allocation to the \(n\) 'th illiquid account
\({ }^{\circ} \pi_{n}\) : associated penalty for early withdrawal
- Endogenous withdrawal/consumption behavior generates social budget balance.
\[
x+\sum_{n} z_{n}=1+E \sum_{n} \pi_{n} w_{n}
\]
where \(w_{n}\) is the equilibrium quantity of early withdrawals from illiquid account \(n\).
Agents in the economy are present-biased and naive. They choose consumption in periods 1 and 2 , subject to the budget constraint imposed by the government.

\section*{Theorem 4:}

Assume:
- homogeneous population with \(0<\beta<1\)
- \(u(c)=\ln (c)\)
- Monotone hazard taste shocks on \([0, \bar{\theta}]\)

Then, the planner will not choose a two-part budget set with a fully liquid account and a fully illiquid account.

\section*{Sketch of Proof}
- Consider the class of 2-part budget sets with a liquid account and a \(100 \%\) penalty account.
- Within this class, find the optimum.
- Perturb this optimum by introducing a \(3^{\text {rd }}\) account with a penalty \(\pi\), such that the agents in a neighborhood of \(\bar{\theta}\) are just willing to consume from the third account.
- Use the penalty proceeds to increase the perfectly illiquid account (for all agents).
- This combination raises social welfare.

\section*{Numerical exploration of optimal policy:}
- Bell-shaped distribution of taste shocks on \([0,2]\).

\section*{Distribution for taste shocks}
\(f(\theta)\)

\(\theta\)

\section*{Welfare gains relative to \(\left(x, z_{1}, \pi_{1}=100 \%\right)\)}


\section*{Optimal penalty with one illiquid account}


\section*{One illiquid account with \(\beta=0.7\) : Expected Utility}


Early Withdrawal Penalty

\section*{One illiquid account with \(\beta=0.1\) : Expected Utility}


\section*{Two key properties}
- The optimal penalty engenders an asymmetry: better to set the penalty above its optimum then below its optimum.
- Welfare losses (money metric): \(\ln \beta+(1 / \beta)-1\).
- Money metric welfare loss for \(\beta=0.1\) is two orders of magnitude higher than for \(\beta=0.7\).
- Getting the penalty "right" for low \(\beta\) agents has vastly greater welfare consequences than getting it right for the rest of us.

\section*{To paraphrase Lucas:}

Once you start thinking about low \(\beta\) households, nothing else matters.

\section*{Economy with heterogeneous \(\beta\)}
(Utilitarian) planner picks an optimal policy in period 0 :
。 \(\left\{x,\left(z_{1}, z_{2}, \ldots, z_{N}\right),\left(\pi_{1}, \pi_{2}, \ldots, \pi_{N}\right)\right\}:\)
\(\circ x\) is the allocation to the liquid account
\({ }^{\circ} z_{n}\) : allocation to the \(n\) 'th illiquid account
\({ }^{\circ} \pi_{n}\) : associated penalty for early withdrawal
- Endogenous withdrawal/consumption behavior generates social budget balance.
\[
x+\sum_{n} z_{n}=1+E \sum_{n} \pi_{n} w_{n}
\]
where \(w_{n}\) is the equilibrium quantity of early withdrawals from illiquid account \(n\).
Agents in the economy are present-biased and naïve. They choose consumption in periods 1 and 2 , subject to the budget constraint imposed by the government.

\section*{Sufficient condition for optimality of two accounts with interpersonal transfers.}

Theorem 5:
Let \(\beta \in\{0,1\}\), with arbitrary population weights.
Let the utility function have CRRA \(\geq 1\).
Let the taste shocks be bounded.

Then the social optimum is a two-account system with
(i) a (completely) liquid account, and
(ii) an illiquid account with early withdrawal penalty \(\pi=100 \%\).

\section*{Intuition:}
- Start with liquid account and \(\pi=100 \%\) account.
- Add an account with \(0<\pi<1\); this transfers resources due to the penalty payment.
- The transfer is welfare-reducing in two ways.
- First, marginal utility is weakly greater for \(\beta=0\) households than \(\beta=1\) households (with CRRA \(\geq 1\) ).
- Second, the penalty system effectively increases the liquidity of \(\beta=0\) consumers more than the liquidity of \(\beta=1\) consumers, which is an additional perverse welfare effect.

\title{
Two key properties in this extreme heterogeneous environment
}
1. You only need one illiquid account to achieve the (second best) social optimum
2. That illiquid account should be completely illiquid

These properties won't hold exactly, as we relax the extreme distributional assumption on \(\beta\).

But the properties will continue to hold as a good approximation (with heterogeneous \(\beta\) ).

\section*{\(\beta\) uniform on \(\{0, .1, .2, .3, .4, .5, .6, .7, .8, .9,1\}\)}
- Start with \(x=1\).
- Welfare gain from adding optimal \(\left(z_{1}, \pi_{1}=100 \%\right): \infty\)
- Welfare gain from adding optimal \(\left(z_{2}, \pi_{2}=12 \%\right): 0.02 \%\) wealth

\section*{\(\beta\) uniform on \(\{.1, .2, .3, .4, .5, .6, .7, .8, .9,1\}\)}
- Start with \(x=1\).
- Welfare gain from adding \(z_{1}\) with \(\pi_{1}=100 \%: \quad 11.01 \%\) wealth
- Welfare gain from adding optimal \(\left(z_{2}, \pi_{2}=13 \%\right): ~ 0.02 \%\) wealth

\section*{To gain more intuition, study the optimal penalty in a system with one illiquid account.}

\section*{Subpopulation Expected Utility}


\section*{Subpopulation Expected Utility}


\section*{Subpopulation Expected Utility}


\section*{Population Expected Utility}


\section*{Allocations and Penalties:}

—Liquid —Illiquid —Expected Penalties

\section*{Subpopulation Penalties Paid:}


Second Account Penalty
\[
\begin{aligned}
& \text {-Beta=0.1 } \\
& \text {-Beta=0.2 } \\
& \text {-Beta=0.3 } \\
& \text {-Beta=0.4 } \\
& \text {-Beta=0.5 }=0.6 \\
& \text {-Beta=0.7 } \\
& \text {-Beta=0.8 } \\
& \text { Beta=0.9 } \\
& \text { Beta=1.0 }
\end{aligned}
\]

Distribution of \(\beta\) : 'Exponential'
\(p(\beta)\) ("baseline" calibrated case)


Start with \(x=1\).
Welfare gain from adding \(z_{1}\) with \(\pi_{1}=100 \%\) : \(3.04 \%\) wealth Welfare gain from adding optimal \(\left(z_{2}, \pi_{2}=10 \%\right): 0.02 \%\) wealth

\section*{Subpopulation Expected Utility}


Early Withdrawal Penalty

\section*{Population Expected Utility}


\section*{Subpopulation Penalties Paid}


Early Withdrawal Penalty
-Beta=0.1
-Beta=0.2
-Beta=0.3
-Beta=0.4
-Beta=0.5
-Beta=0.6
-Beta=0.7
—Beta=0.8
-Beta=0.9
Beta=1.0

\section*{Robustness illustrations}

Low High CRRA CRRA High Low Baseline \(\sigma(\theta) \sigma(\theta)=0.5=2 \mathrm{E}(\beta) \mathrm{E}(\beta)\)
\(\sigma(\theta)\)
\(\sigma(\beta)\)
\(0.33 \quad 0.26 \quad 0.45\)
\(\mathrm{E}(\beta)\)
0.23
0.73

10
\(\begin{array}{lll}9 & 9 & 10\end{array}\)
10
9
10
Penalty (\%)
Leakage (\%) 401(k)/[SS+401(k)]
\(\begin{array}{lllllll}57.9 & 66.1 & 48.7 & 59.4 & 57.3 & 51.2 & 62.1\end{array}\)
\(\begin{array}{lllllll}15.0 & 14.6 & 11.8 & 30.9 & 7.3 & 14.1 & 15.9\end{array}\)

\section*{Some additional questions}
- "Number" of accounts: 2 vs. \(N\)
- CRRA
- Distribution of \(\beta\) values
- Distribution of taste shocks
- Functional form of taste shock: \(\theta \mathrm{u}(\mathrm{c})\) vs. \(\mathrm{u}(\mathrm{c}-\theta)\)
- Number of periods: 3 vs. T
- Individualization: pooling vs. separation
- See Galperti (2014)
- Individualization: is income correlated with \(\beta\) ?
- And everything else that we did to simplify the problem.

\section*{Conclusions}
- Using our simple framework with interpersonal transfers and heterogeneous \(\beta\), we solve for the socially optimal retirement savings system.
- Optimal system should have:
- A perfectly illiquid account
- A 10\%-penalty account
- (No more illiquid accounts)
- 15\% of illiquid savings in 10\%-penalty account
- Leakage rate should be 50\% from 10\%-penalty account
- We studied \(\left\{x,\left(z_{1}, z_{2}, \ldots, z_{N}\right),\left(\pi_{1}, \pi_{2}, \ldots, \pi_{N}\right)\right\}\), which is a subspace of \(\mathbb{R}^{2 N+1}\), and converged on the point that corresponds to the (U.S.) retirement savings system.

\section*{In addition:}
- The calibrated model (with heterogeneous \(\beta\) ) implies that the 10\% penalty account isn't important for welfare
- Explaining why we don't see such accounts outside U.S.
- Partially illiquid accounts are a two-edged sword with both edges almost equally sharp.
- We tried to write a normative paper.
- "What is the socially optimal retirement savings system?"
- We ended up with a positive paper.
- "The U.S. system is what you would predict a perfectly rational planner to do."*
*According to the stripped down model presented today.```

