Housing and Tax-deferred Retirement Accounts

Anson T. Y. Ho^1 Jie Zhou²

¹Kansas State University

²Bank of Canada

May 2015

The views expressed here are those of the authors and do not represent the views of the Bank of Canada.

- Assets in tax-deferred accounts (TDA) and housing wealth are two major assets in household portfolio
- Common types of TDA in the US: defined contribution (DC) pension plans (401(k), 403(b), 457) and Individual Retirement Accounts (IRA)
- Over 50% of US households have TDA Assets in TDA: \$8.6T (\$11.9T) in 2007 (2013)
- Home ownership in the US: 68% (65%) in 2007 (2013)
- Housing is the single most important asset for a typical household Guiso, Jappelli, and Haliassos (2001), Sinai and Souleles (2007)

- TDA in the US
 - Contributions to TDA are deductible from taxable income
 - Capital income for assets in TDA is tax exempted
 - Subsequent asset withdrawals are taxed as ordinary income
- Liquidity risk: Early withdrawal of TDA assets receives a 10% penalty
- Does TDA wealth represent new savings?
 Gale and Scholz (1994); Poterba, Venti, and Wise (1995); Imrohoroglu, Imrohoroglu, and Joines (1998); Laibson, Repetto, Tobacman (1998); Kitao (2010); Nishiyama (2011)
- Portfolio choice in presence of TDA Amromin (2003); Dammon, Spatt, and Zhang (2004); Zhou (2009)

Introduction III

- Preferential tax treatments on home ownership:
 - Mortgage interest and property tax are income tax deductible in the US
 - Costs of housing service for homeowners lower than rental costs
 - Untaxed capital gains (up to a limit) from housing
 - Untaxed service flow from owners-occupied housing
- Down payment requirement and high transaction costs
- Literature on preferential tax treatment of housing, interactions between housing and non-housing consumption, housing and B.C. Gervais (2002); Li and Yao (2007); Yang (2009); Chen (2010); Iacoviello and Pavan (2013); Halket and Vasudev (2014)

Impact of housing on asset allocation:

Cocco (2005); Yao and Zhang (2005); Becker and Shabani (2010); Chetty and Szeidl (2014)

Introduction IV

- TDA and home ownership share similarities in terms of favorable tax treatments and liquidity risk
- Interactions between housing tenure choice and households' use of TDA? Joint decisions.
 - Holdings in TDA remained low (Munnell (2012), Poterba (2014))
 - Home ownership may affect HHs' use of TDA due to down payment requirement and committed mortgage payments
 - TDA may affect HH mortgage and home ownership
- Existing literature treats these assets separately
- Research on TDA with housing is about tax arbitrage:

Mortgage prepayment vs. TDA contribution Amromin, Huang, and Sialm (2007)

Asset allocation (fixed TDA contribution & maximum mortgage) Marekwica, Schaefer, and Sebastian (2013)

- Survey of Consumer Finance (SCF) data:
 - Focus on households with TDA
 - Document patterns of cross-sectional variation in net worth composition regarding home equity, TDA wealth and TA wealth
- Model:
 - Study the joint decisions of housing tenure choice and households' use of TDA
 - Evaluate household behavior in the counterfactual experiments (TDA-related policies and housing-related factors)

Figure: Home ownership for DC participants: average in 2001-2007 SCF

Ho, Zhou (K-State, BoC)

Housing and TDA

May 2015 7 / 36

Figure: Net worth composition for homeowners: DC participants

< ロ > < 同 > < 三 > < 三

- Benchmark model matches well with the life-cycle patterns of home ownership rate and homeowners' net worth composition
- TDA promotes home ownership (i.e., households borrow earlier and pay lower down payments) and household debt (mortgages)
- An increase in min. down payment ratio has a large impact on young households (home ownership ↓ and TA share ↑), but little impact on older households
- When mortgage interest payments and property taxes are not income tax deductible, home ownership drops significantly, while households do not increase their use of TDA.
- Eliminating social security system increases home ownership, but decreases the importance of home equity and TDA in net worth composition

- Discrete time life-cycle model
- Aggregate and idiosyncratic income shocks
- Long-term mortgage arrangement (no mortgage default and refinancing)
- Households have access to both TA and TDA
- Social security system and progressive income tax system that mimics the U.S. tax codes
- Households make decisions on:
 - (1) TDA and TA savings, (2) housing tenure choice, (3) house size,
 - (4) down payment, and (5) consumption

- Stochastic lifetime and at most live for J periods
- Households' preferences are represented by

$$E_{1}\sum_{j=1}^{J}\beta^{j-1}\left\{\Pi_{t=1}^{j}s_{t}\frac{(c_{j}^{1-\omega}h_{j}^{\omega})^{1-\gamma}}{1-\gamma}+(1-\Pi_{t=1}^{j}s_{t})\frac{(W_{j})^{1-\gamma}}{1-\gamma}\right\} (1)$$

 $0 < \beta < 1$: the discount factor γ : the relative risk aversion

- s_t : conditional survival probability in period t
- ω : preference for housing
- W_i : the estate when a household dies in period j

- Households supply labor inelastically to work in first R periods of life
- Household *i* at age *j* receives stochastic labor income Y_{ij} such that

$$\ln(Y_{ij}) = y_{ij} = f_{ij} + \eta_j + \varepsilon_{ij}$$
(2)

- f_{ij} : the deterministic hump-shape age earnings profile η_j : aggregate shock among all households ε_{ij} : idiosyncratic persistent shock
- Both η_j and ε_{ij} follow AR(1) processes

$$\begin{aligned} \eta_{j+1} &= \rho_{\eta}\eta_{j} + \xi_{j+1}^{\eta}, \text{ with i.i.d. } \xi_{j}^{\eta} \sim \mathcal{N}(0, \sigma_{\eta}^{2}) \\ \varepsilon_{ij+1} &= \rho_{\varepsilon}\varepsilon_{ij} + \xi_{j+1}^{\varepsilon}, \text{ with i.i.d. } \xi_{j}^{\varepsilon} \sim \mathcal{N}(0, \sigma_{\varepsilon}^{2}) \end{aligned}$$
(3)

Aggregate shock and idiosyncratic shock are uncorrelated

- After *R* working periods, households retire and receive retirement income
- Retirement income is modeled as

$$y_{ij} = \log(\lambda) + f_{iR} + \varepsilon_{iR}$$
(5)

where λ is a constant fraction

- Size of housing services: $H = \{H_1, H_2, H_3, H_4, H_5\}$
- *P_j* is the price per unit of housing in terms of consumption goods Hence, the value of a house of size *h* is *P_jh* in period *j*
- Let $p_j = log(P_j)$, and $\tilde{p}_j = p_j g(j-1)$ be the detrended log price of housing
- We assume aggregate labor income shocks and housing price shocks are perfectly correlated (Cocco 2005)

Housing II

- Housing services can be obtained by owning (DR = 0) or renting (DR = 1)
- For $j \leq R$, households can choose to be a renter or an owner
- For *j* > *R*, homeowners decide whether to stay in the same house, downsize to own a smaller house, or become a renter. Renters can only rent and choose the size of the rental property
- Differences in house size for rental and owner-occupied housing
- Generally rental housing are smaller units (Gervais 2002)

$$h_j = \begin{cases} \in \{H_1, H_2, H_3\} & \text{if } DR = 1\\ \in \{H_2, H_3, H_4, H_5\} & \text{if } DR = 0 \end{cases}$$
(6)

- Renters pay ϕ of the house value as rental cost per period
- Buying a house requires a *N*-period mortgage loan with fixed mortgage interest rate *r_m*
- Require θ^D fraction of the house value as down payment

$$\theta^{D} = \begin{cases}
\in \{0.1, 0.2, 0.5, 0.75, 1.0\} & \text{if } j \le R \\
= 1 & \text{if } j > R
\end{cases}$$

(7

• The initial loan principle (L) is given by

$$L = \begin{cases} (1 - \theta^D) e^{g(n-1) + \tilde{p}_n} h & \text{if } n \in [1, R] \\ 0 & \text{otherwise} \end{cases}$$
(8)

where n is the period in which a household buys a house

• The mortgage payment is defined as

$$M_j = \begin{cases} \frac{r_m L(1+r_m)^N}{(1+r_m)^{N}-1} & \text{if } n \in [1, R] \text{ and } n \le j \le (n+N-1) \\ 0 & \text{otherwise} \end{cases}$$
(9)

Housing V

• The principle payment (E) in period j is

$$E_j = \begin{cases} \frac{r_m L(1+r_m)^{j-n}}{(1+r_m)^{N-1}} & \text{if } n \in [1, R] \text{ and } n \le j \le (n+N-1) \\ 0 & \text{otherwise} \end{cases}$$
(10)

• The interest payment (I) in period j is

$$I_{j} = \begin{cases} \frac{r_{m}L\left[(1+r_{m})^{N}-(1+r_{m})^{j-n}\right]}{(1+r_{m})^{N}-1} & \text{if } n \in [1, R] \text{ and } n \leq j \leq (n+N-1) \\ 0 & \text{otherwise} \end{cases}$$
(11)

• The remaining loan principle (LL) is

$$LL_{j} = \begin{cases} \frac{L[(1+r_{m})^{N} - (1+r_{m})^{j-n+1}]}{(1+r_{m})^{N} - 1} & \text{if } n \in [1, R] \text{ and } n \leq j \leq (n+N-1) \\ 0 & \text{otherwise} \end{cases}$$
(12)

- Annual maintenance costs is δ of the house value
- Property tax rate is τ
- Transaction cost of buying a house is θ^B fraction of the house value
- $\bullet\,$ Transaction cost of selling a house is θ^S fraction of the house value
- The household expenditure on housing (x_j) is given by

$$x_{j} = \begin{cases} \phi P_{j}h & \text{if } DR_{j-1} = DR_{j} = 1\\ \phi P_{j}h_{j} + LL_{j-1} - (1 - \theta^{S})P_{j}h_{j-1} & \text{if } DR_{j-1} = 0 \text{ and } DR_{j} = 1\\ M_{j} + (\theta^{B} + \theta^{D} + \tau + \delta)P_{j}h_{j} & \text{if } DR_{j-1} = 1 \text{ and } DR_{j} = 0\\ M_{j} + (\tau + \delta)P_{j}h_{j} & \text{if } DR_{j-1} = DR_{j} = 0 \text{ and } h_{j} = h_{j-1}\\ M_{j} + (\theta^{B} + \theta^{D} + \tau + \delta)P_{j}h_{j} & \text{if } DR_{j-1} = DR_{j} = 0 \text{ and } h_{j} \neq h_{j-1}\\ + LL_{j-1} - (1 - \theta^{S})P_{j}h_{j-1} & \text{if } DR_{j-1} = DR_{j} = 0 \text{ and } h_{j} \neq h_{j-1} \end{cases}$$
(13)

Tax-deferred Account (TDA) I

- For age j ≤ R, households can contribute their pre-tax labor income to TDA, up to q
 = 8% of labor income
- Assets in TDA can be withdrawn prior to retirement age at the cost of a penalty rate pen = 10% in addition to the ordinary income tax incurred
- For age j > R, household decides the amount withdrawn from TDA
- Pays tax on the withdrawals at the ordinary income tax rate
- q_j is a household's contributions to (withdrawal from) TDA

$$q_{j} \begin{cases} \in \left[-a_{j}^{D}, \bar{q} * Y_{j}\right] & \text{if } j \leq R \\ \in \left[-a_{j}^{D}, 0\right] & \text{if } j \geq R+1 \text{ and } j \leq R+6 \\ \in \left[-a_{j}^{D}, -\frac{1}{J-j+1}a_{j}^{D}\right] & \text{if } j > R+6 \end{cases}$$
(14)

where a_i^D is the amount of assets in TDA

Ho, Zhou (K-State, BoC)

Tax-deferred Account (TDA) II

- Employers match 33.3% of employee's contribution
- Only applies up to 6% of an employee's labor income
- The employer's contribution (q_i^E) is

$$q_{j}^{E} = \begin{cases} \min(0.333 * q_{j}, 0.333 * 0.06 * Y_{j}) & \text{if } j \in [1, R] \text{ and } q_{j} > 0 \\ 0 & \text{otherwise} \end{cases}$$
(15)

• Assets earn a constant rate of return, *r*, in both TDA and TA. The law of motion of assets in TDA is

$$a_{j+1}^{D} = \begin{cases} (1+r)(a_{j}^{D}+q_{j}+q_{j}^{E}) & \text{if } j \leq R\\ (1+r)(a_{j}^{D}+q_{j}) & \text{if } j > R \end{cases}$$
(16)

Taxable Account (TA)

• a_j^T is the financial wealth in the TA plus current labor income. The law of motion of assets in the TA is

$$a_{j+1}^{T} = (1+r) \left[a_{j}^{T} - c_{j} - x_{j} - q_{j} - \Gamma_{j} \right] + Y_{j+1}$$
 (17)

Both TDA and TA are subject to zero borrowing constraint

$$a_j^T \ge Y_j \text{ and } a_j^D \ge 0 \text{ for all } j$$
 (18)

- Households are randomly endowed with initial wealth a_0^T when they are born
- The bequest left by a household is

$$W_{j} = \begin{cases} a_{j}^{T} + a_{j}^{D} + (1 - \theta^{S})P_{j}h_{j-1} - LL_{j-1} & \text{if } DR_{j-1} = 0\\ a_{j}^{T} + a_{j}^{D} & \text{if } DR_{j-1} = 1 \end{cases}$$
(19)

- Income is taxed through a piece-wise linear progressive tax system
- Adjusted gross income (AGI) is defined as

$$AGI_{j} = \begin{cases} r\left(\frac{a_{j}^{T}-Y_{j}}{1+r}\right) + Y_{j} - q_{j} - I_{j} - \tau P_{j}h & \text{if } DR_{j} = 0\\ r\left(\frac{a_{j}^{T}-Y_{j}}{1+r}\right) + Y_{j} - q_{j} & \text{if } DR_{j} = 1 \end{cases}$$
(20)

- $IC = \{IC_1, IC_2, IC_3, IC_4, IC_5\}$ is the cutoff points of the tax brackets
- τ_1 , τ_2 , τ_3 , τ_4 , and τ_5 denote corresponding marginal tax rates
- Suppose $AGI_j \in (IC_3, IC_4]$, then $T(AGI_j) = \tau_1 (IC_2 - IC_1) + \tau_2 (IC_3 - IC_2) + \tau_3 (AGI_j - IC_3)$

- τ_{ss} is the payroll tax rate and Y_{ss} be the earnings limit up to which earnings are subject to payroll tax
- For households who withdraw funds from TDA before age *R* − 4, the penalty payment incurred is also included in the tax payments
- The total tax liability of a household is defined as

$$\Gamma_{j} = \begin{cases} T(AGI_{j}) + \min(\tau_{ss} * Y_{j}, \tau_{ss} * Y_{ss}) - pen * q_{j} & \text{if } q_{j} < 0 \text{ and } j < (R-4) \\ T(AGI_{j}) + \min(\tau_{ss} * Y_{j}, \tau_{ss} * Y_{ss}) & \text{otherwise} \end{cases}$$

$$(21)$$

A household's decision problem in recursive form is written as

$$V(j, \eta_{j}, \varepsilon_{j}, a_{j}^{T}, a_{j}^{D}, DR_{j-1}, h_{j-1}, n, \tilde{p}_{n}, \theta_{n}^{D}) = \max_{c_{j}, q_{j}, DR_{j}, h_{j}, \theta_{n}^{D}} \frac{\left(c_{j}^{1-\omega}h_{j}^{\omega}\right)^{1-\gamma}}{1-\gamma} \\ +\beta s_{j+1}E_{j}\left[V(j+1, \eta_{j+1}, \varepsilon_{j+1}, a_{j+1}^{T}, a_{j+1}^{D}, DR_{j}, h_{j}, n, \tilde{p}_{n}, \theta_{n}^{D})\right] \\ +\beta(1-s_{j+1})\frac{(W_{j+1})^{1-\gamma}}{1-\gamma}$$
(22)

subject to constraints given by (6) to (21) and the labor income process given by (2) to (5), in addition to the non-negativity constraint on consumption.

Parametrization I

- All nominal variables are normalized to 2007 values
- Monetary variable are expressed as multiples of median income in period 1 (\$38,000 =1)
- Housing sizes are $\{2,4,6,8,10\}$ times of period 1 median income
- We use year 2000 income tax code

Table: Cutoff Points and Marginal Tax Rate

Taxable Income (AGI)	Normalized Income	Marginal Tax Rate
(\$0, \$5600]	(0, 0.187]	0%
(\$5600, \$45600]	(0.187, 1.520]	15%
(\$45600, \$105600]	(1.520, 3.520]	28%
(\$105600, \$155600]	(3.520, 5.187]	31%
(\$155600, \$265600]	(5.187, 8.853]	36%
\$265600 +	8.853 +	39.60%
(\$155600, \$265600] \$265600 +	(5.187, 8.853] 8.853 +	36% 39.60%

Table: Summary of Parameter Values I

Parameters	Name	Values	Target / Data Source
Demographics			
J	Lifespan	71	Real age 25–95
R	Last working period	40	Work until age 64
S	Survival probability		Life table 2000
Preferences			
γ	Relative risk aversion	2	
β	Discount factor	0.96	
ω	Preferences on housing	0.2	Li and Yao (2007)
Income			
f	Age earnings profile		Cocco et al. (2005)
$ ho_\eta$	Persistence of aggr. income shock	0.748	Cocco (2005)
σ_{η}	s.d. aggregate income shock	0.019	Соссо (2005)
ρ_{ε}	Persistence of idio. income shock	0.973	Heathcote et al. (2010)
σ_{ε}	s.d. idiosyncratic income shock	0.133	Heathcote et al. (2010)
λ_{COL}	Income replacement rate	0.4	Diaz and Luengo-Prado (2008)
λ_{HS}	Income replacement rate	0.6	Diaz and Luengo-Prado (2008)

Table: Summary of Parameter Values II

Parameters	Name	Values	Target / Data Source
Savings			
r	Return on saving	2%	
Housing & mortgage			
N	Mortgage length	30	Chambers et al. (2009)
r _m	Mortgage interest rate	4.7%	
g	House price growth rate	1%	Соссо (2005)
$\sigma_{ ilde{ ho}}$	s.d. house prices	6.2%	Соссо (2005)
θ^{S}	House trans. cost for seller	6%	
θ^B	House trans. cost for buyer	1.5%	
au	Property tax rate	1%	
δ	Housing maintenance cost	1.5%	Yao and Zhang (2005)
ϕ	Rental cost of housing	6.5%	,
TĎA			
ą	Contributions limit	8%	Joulfaian and Richardson (2001)
pen	Penalty rate	10%	Zhou (2009)
Tax code			
$ au_{ss}$	Payroll tax rate		Historical OASDI tax rate
Y _{ss}	Earnings limit for payroll		Historical earnings limit

Figure: Home ownership rate for DC participants

Benchmark Model II

Figure: Net worth composition for homeowners

Ho, Zhou (K-State, BoC)

May 2015 30 / 36

List of Experiments

TDA policies

- No employer matching
- Eliminating TDA *
- Higher TDA contribution limit

Housing-related factors

- Increasing min. down payment *
- Increasing rental costs
- No tax benefits for home ownership *

• Eliminating social security *

	Age Group				
	25-34	35-44	45-54	55-64	Overall
Net worth	0.468	0.758	0.878	0.872	0.818
TDA/net worth	•	•	•	•	•
TA/net worth	7.981	8.355	3.270	4.969	7.781
% of home ownership	0.380	0.564	0.746	0.900	0.685
Median income of owners	1.122	1.261	1.085	1.020	1.114
Home equity/net worth	1.169	1.376	1.478	1.410	1.363
Home equity/home value	1.504	2.414	1.520	1.053	1.765

Image: Image:

± >

	Age Group				
	25-34	35-44	45-54	55-64	Overall
Net worth	0.885	0.997	0.995	0.995	0.998
TDA/net worth	1.117	0.938	0.967	0.985	0.981
TA/net worth	1.378	1.212	1.081	1.073	1.157
% of home ownership	0.728	0.924	0.982	0.998	0.932
Median income of owners	1.070	1.032	1.009	1.000	1.023
Home equity/net worth	1.044	1.037	1.011	1.002	1.007
Home equity/home value	1.339	1.094	0.997	0.957	1.062

	Age Group				
	25-34	35-44	45-54	55-64	Overall
Net worth	0.728	0.892	0.946	0.971	0.922
TDA/net worth	1.175	0.863	0.901	0.957	0.956
TA/net worth	1.488	1.304	0.990	1.230	1.191
% of home ownership	0.600	0.756	0.864	0.918	0.810
Median income of owners	1.006	1.020	1.028	1.014	1.031
Home equity/net worth	1.054	1.131	1.107	1.040	1.065
Home equity/home value	1.138	1.248	1.394	1.053	1.450

	Age Group				
	25-34	35-44	45-54	55-64	Overall
Net worth	1.737	1.661	1.632	1.712	1.883
TDA/net worth	0.908	1.042	0.947	0.881	0.949
TA/net worth	0.871	1.308	1.588	2.965	1.762
% of home ownership	1.300	1.169	1.091	1.111	1.150
Median income of owners	0.920	0.917	0.923	0.976	0.940
Home equity/net worth	0.937	0.858	0.882	0.796	0.850
Home equity/home value	1.105	1.157	1.271	1.053	1.306

- Quantitative life-cycle model to study the interactions between housing and households' use of TDA
- Model explains the cross-sectional variation in household net worth composition
 - TDA promotes home ownership and household debt
 - Home ownership rate and net worth composition adjust to TDA policies and housing-related factors
- Future work:
 - (1) household debt and housing price shocks
 - (2) TDA early withdrawal penalty