Happy Together: A Structural Model of Couples' Joint Retirement Choices

Maria Casanova UCLA

QSPS 2015 Summer Workshop
05/29/2015

Introduction

This paper estimates a life cycle model of labor supply and saving of older couples.

Introduction

This paper estimates a life cycle model of labor supply and saving of older couples.

Large literature aiming to understand why individuals retire when they do so as to predict effects of policy changes.

Introduction

This paper estimates a life cycle model of labor supply and saving of older couples.

Large literature aiming to understand why individuals retire when they do so as to predict effects of policy changes.

- Increase in full retirement age.

Introduction

This paper estimates a life cycle model of labor supply and saving of older couples.

Large literature aiming to understand why individuals retire when they do so as to predict effects of policy changes.

- Increase in full retirement age.
- Change in indexation of Social Security benefit formula and cost-of-living adjustments.

Introduction

This paper estimates a life cycle model of labor supply and saving of older couples.

Large literature aiming to understand why individuals retire when they do so as to predict effects of policy changes.

- Increase in full retirement age.
- Change in indexation of Social Security benefit formula and cost-of-living adjustments.
- Elimination of spousal benefit.

Introduction

This paper estimates a life cycle model of labor supply and saving of older couples.

Large literature aiming to understand why individuals retire when they do so as to predict effects of policy changes.

- Increase in full retirement age.
- Change in indexation of Social Security benefit formula and cost-of-living adjustments.
- Elimination of spousal benefit.

Main contribution of the paper is analysis of retirement at the couple level.

Introduction

Structural models of individual retirement

Introduction

Structural models of individual retirement

- Gustman and Steinmeier (1986), Stock and Wise (1990), Blau (1994, 2008), Rust and Phelan (1997), French (2005), French and Jones (2010)

Introduction

Structural models of individual retirement

- Gustman and Steinmeier (1986), Stock and Wise (1990), Blau (1994, 2008), Rust and Phelan (1997), French (2005), French and Jones (2010)
- Individuals respond to incentives from
- Wealth
- Income
- Health Status
- Health Insurance
- Private Pensions
- Social Security

Introduction

Structural models of individual retirement

- Gustman and Steinmeier (1986), Stock and Wise (1990), Blau (1994, 2008), Rust and Phelan (1997), French (2005), French and Jones (2010)
- Individuals respond to incentives from
- Wealth
- Income
- Health Status
- Health Insurance
- Private Pensions
- Social Security

Introduction

Structural models of couples' retirement.

Introduction

Structural models of couples' retirement.

- Husband and wife are separate decision-making agents within the household.

Introduction

Structural models of couples' retirement.

- Husband and wife are separate decision-making agents within the household.
- Each spouse's preferences represented by a separate utility function.

Introduction

Structural models of couples' retirement.

- Husband and wife are separate decision-making agents within the household.
- Each spouse's preferences represented by a separate utility function.

These models can be broadly divided in two groups:

Introduction

Structural models of couples' retirement.

- Husband and wife are separate decision-making agents within the household.
- Each spouse's preferences represented by a separate utility function.

These models can be broadly divided in two groups:

1. Studies focused on modeling shared budget constraint.

Introduction

Structural models of couples' retirement.

- Husband and wife are separate decision-making agents within the household.
- Each spouse's preferences represented by a separate utility function.

These models can be broadly divided in two groups:

1. Studies focused on modeling shared budget constraint. Blau and Gilleskie (2006), Van der Klaauw and Wolpin (2008)

Introduction

Structural models of couples' retirement.

- Husband and wife are separate decision-making agents within the household.
- Each spouse's preferences represented by a separate utility function.

These models can be broadly divided in two groups:

1. Studies focused on modeling shared budget constraint. Blau and Gilleskie (2006), Van der Klaauw and Wolpin (2008)
2. Studies focused on modeling leisure complementarities.

Introduction

Structural models of couples' retirement.

- Husband and wife are separate decision-making agents within the household.
- Each spouse's preferences represented by a separate utility function.

These models can be broadly divided in two groups:

1. Studies focused on modeling shared budget constraint. Blau and Gilleskie (2006), Van der Klaauw and Wolpin (2008)
2. Studies focused on modeling leisure complementarities. Gustman and Steinmeier (2000, 2004), Maestas (2001)

Introduction

Structural models of couples' retirement.

- Husband and wife are separate decision-making agents within the household.
- Each spouse's preferences represented by a separate utility function.

These models can be broadly divided in two groups:

1. Studies focused on modeling shared budget constraint. Blau and Gilleskie (2006), Van der Klaauw and Wolpin (2008)
2. Studies focused on modeling leisure complementarities. Gustman and Steinmeier (2000, 2004), Maestas (2001)

This paper aims to bridge the gap between the two strands

Model

- Dynamic, stochastic model of labor supply and saving choices

Model

- Dynamic, stochastic model of labor supply and saving choices
- Agents maximize expected discounted utility

Model

- Dynamic, stochastic model of labor supply and saving choices
- Agents maximize expected discounted utility
- At each period t, given i) initial assets ii) wage and iii) measure of lifetime earnings, households make decisions in two steps:

Model

- Dynamic, stochastic model of labor supply and saving choices
- Agents maximize expected discounted utility
- At each period t, given i) initial assets ii) wage and iii) measure of lifetime earnings, households make decisions in two steps:

1. choose participation status

Model

- Dynamic, stochastic model of labor supply and saving choices
- Agents maximize expected discounted utility
- At each period t, given i) initial assets ii) wage and iii) measure of lifetime earnings, households make decisions in two steps:

1. choose participation status
2. conditional on participation status, choose optimal consumption/savings

Model

- Dynamic, stochastic model of labor supply and saving choices
- Agents maximize expected discounted utility
- At each period t, given i) initial assets ii) wage and iii) measure of lifetime earnings, households make decisions in two steps:

1. choose participation status
2. conditional on participation status, choose optimal consumption/savings

- Agents face uncertainty on a) wages, b) survival, and c) medical expenditures

Model

- Dynamic, stochastic model of labor supply and saving choices
- Agents maximize expected discounted utility
- At each period t, given i) initial assets ii) wage and iii) measure of lifetime earnings, households make decisions in two steps:

1. choose participation status
2. conditional on participation status, choose optimal consumption/savings

- Agents face uncertainty on a) wages, b) survival, and c) medical expenditures
- Retirement is not an absorbing state

Model

- Dynamic, stochastic model of labor supply and saving choices
- Agents maximize expected discounted utility
- At each period t, given i) initial assets ii) wage and iii) measure of lifetime earnings, households make decisions in two steps:

1. choose participation status
2. conditional on participation status, choose optimal consumption/savings

- Agents face uncertainty on a) wages, b) survival, and c) medical expenditures
- Retirement is not an absorbing state
- Benefit receipt is an absorbing state

Model

CHOICE SET

Model

CHOICE SET

Discrete choices: $d_{t}^{j} \in D^{j}=\{R, P T, F T\}, \quad$ for $j=m, f$

Model

CHOICE SET

Discrete choices: $d_{t}^{j} \in D^{j}=\{R, P T, F T\}, \quad$ for $j=m, f$
Continuous choices: $s_{t} \in C_{t}\left(z_{t}, \varepsilon_{t} ; d_{t}\right)$

Model

CHOICE SET

Discrete choices: $d_{t}^{j} \in D^{j}=\{R, P T, F T\}, \quad$ for $j=m, f$
Continuous choices: $s_{t} \in C_{t}\left(z_{t}, \varepsilon_{t} ; d_{t}\right)$

STATE SPACE

Model

CHOICE SET

Discrete choices: $d_{t}^{j} \in D^{j}=\{R, P T, F T\}, \quad$ for $j=m, f$
Continuous choices: $s_{t} \in C_{t}\left(z_{t}, \varepsilon_{t} ; d_{t}\right)$

STATE SPACE

Observable variables

Model

CHOICE SET

Discrete choices: $d_{t}^{j} \in D^{j}=\{R, P T, F T\}, \quad$ for $j=m, f$
Continuous choices: $s_{t} \in C_{t}\left(z_{t}, \varepsilon_{t} ; d_{t}\right)$

STATE SPACE

Observable variables

$$
z_{t}=\left\{A_{t}, E_{t}^{m}, E_{t}^{f}, w_{t}^{m}, w_{t}^{f}, B_{t}^{m}, B_{t}^{f}, \text { agediff }\right\}
$$

Model

CHOICE SET

Discrete choices: $d_{t}^{j} \in D^{j}=\{R, P T, F T\}, \quad$ for $j=m, f$
Continuous choices: $s_{t} \in C_{t}\left(z_{t}, \varepsilon_{t} ; d_{t}\right)$

STATE SPACE

Observable variables

$$
z_{t}=\left\{A_{t}, E_{t}^{m}, E_{t}^{f}, w_{t}^{m}, w_{t}^{f}, B_{t}^{m}, B_{t}^{f}, \text { agediff }\right\}
$$

Unobservable variables

Model

CHOICE SET

Discrete choices: $d_{t}^{j} \in D^{j}=\{R, P T, F T\}, \quad$ for $j=m, f$
Continuous choices: $s_{t} \in C_{t}\left(z_{t}, \varepsilon_{t} ; d_{t}\right)$

STATE SPACE

Observable variables

$$
z_{t}=\left\{A_{t}, E_{t}^{m}, E_{t}^{f}, w_{t}^{m}, w_{t}^{f}, B_{t}^{m}, B_{t}^{f}, \text { agediff }\right\}
$$

Unobservable variables

$$
\varepsilon_{t}=\left\{\varepsilon_{t}\left(d_{t}\right) \mid d_{t} \in D\right\}
$$

Model

PREFERENCES

Model

PREFERENCES

Household utility

Model

PREFERENCES

Household utility

$$
U\left(d_{t}, s_{t} ; z_{t}, \varepsilon_{t}, \theta_{1}\right)=\phi U^{m}\left(c_{t}, l_{t}^{m}\right)+(1-\phi) U^{f}\left(c_{t}, l_{t}^{f}\right)+\varepsilon_{t}\left(d_{t}\right)
$$

Model

PREFERENCES

Household utility

$$
U\left(d_{t}, s_{t} ; z_{t}, \varepsilon_{t}, \theta_{1}\right)=\phi U^{m}\left(c_{t}, l_{t}^{m}\right)+(1-\phi) U^{f}\left(c_{t}, l_{t}^{f}\right)+\varepsilon_{t}\left(d_{t}\right)
$$

Individual utility

Model

PREFERENCES

Household utility

$$
U\left(d_{t}, s_{t} ; z_{t}, \varepsilon_{t}, \theta_{1}\right)=\phi U^{m}\left(c_{t}, l_{t}^{m}\right)+(1-\phi) U^{f}\left(c_{t}, l_{t}^{f}\right)+\varepsilon_{t}\left(d_{t}\right)
$$

Individual utility

$$
U^{j}=\frac{1}{1-\rho}\left(c_{t}^{\alpha_{1}^{j}}\left(\nu_{t}^{j}\right)^{1-\alpha_{1}^{j}}\right)^{1-\rho}
$$

Model

PREFERENCES

Household utility

$$
U\left(d_{t}, s_{t} ; z_{t}, \varepsilon_{t}, \theta_{1}\right)=\phi U^{m}\left(c_{t}, l_{t}^{m}\right)+(1-\phi) U^{f}\left(c_{t}, l_{t}^{f}\right)+\varepsilon_{t}\left(d_{t}\right)
$$

Individual utility

$$
\begin{gathered}
U^{j}=\frac{1}{1-\rho}\left(c_{t}^{\alpha_{1}^{j}}\left(\nu_{t}^{j}\right)^{1-\alpha_{1}^{j}}\right)^{1-\rho} \\
\nu_{t}^{j}=L-h_{t}^{j}\left(d_{t}^{j}\right)+\alpha_{2} I\left(d_{t}^{m}=R, d_{t}^{f}=R\right)
\end{gathered}
$$

Model

BUDGET CONSTRAINT

Model

BUDGET CONSTRAINT

$$
c_{t}+s_{t}=A_{t}+Y\left(r A_{t}, w_{t}^{m} h_{t}^{m}, w_{t}^{f} h_{t}^{f}, \tau\right)+B_{t}^{m} \times s s b_{t}^{m}+B_{t}^{f} \times s s b_{t}^{f}+T_{t}
$$

Model

BUDGET CONSTRAINT

$c_{t}+s_{t}=A_{t}+Y\left(r A_{t}, w_{t}^{m} h_{t}^{m}, w_{t}^{f} h_{t}^{f}, \tau\right)+B_{t}^{m} \times s s b_{t}^{m}+B_{t}^{f} \times s s b_{t}^{f}+T_{t}$
Next period's asset:

Model

BUDGET CONSTRAINT

$c_{t}+s_{t}=A_{t}+Y\left(r A_{t}, w_{t}^{m} h_{t}^{m}, w_{t}^{f} h_{t}^{f}, \tau\right)+B_{t}^{m} \times s s b_{t}^{m}+B_{t}^{f} \times s s b_{t}^{f}+T_{t}$
Next period's asset:

$$
A_{t+1}=s_{t}+h c_{t}
$$

Model

BUDGET CONSTRAINT

$c_{t}+s_{t}=A_{t}+Y\left(r A_{t}, w_{t}^{m} h_{t}^{m}, w_{t}^{f} h_{t}^{f}, \tau\right)+B_{t}^{m} \times s s b_{t}^{m}+B_{t}^{f} \times s s b_{t}^{f}+T_{t}$
Next period's asset:

$$
A_{t+1}=s_{t}+h c_{t}
$$

Liquidity constraint:

Model

BUDGET CONSTRAINT

$c_{t}+s_{t}=A_{t}+Y\left(r A_{t}, w_{t}^{m} h_{t}^{m}, w_{t}^{f} h_{t}^{f}, \tau\right)+B_{t}^{m} \times s s b_{t}^{m}+B_{t}^{f} \times s s b_{t}^{f}+T_{t}$
Next period's asset:

$$
A_{t+1}=s_{t}+h c_{t}
$$

Liquidity constraint:

$$
s_{t} \geq 0
$$

Model

Social Security Function:

Model

Social Security Function:

- Entitlement is a function of accumulated earnings $\left(E_{t}\right)$

Model

Social Security Function:

- Entitlement is a function of accumulated earnings $\left(E_{t}\right)$
- Step formula applied to E_{t} to obtain PIA

Model

Social Security Function:

- Entitlement is a function of accumulated earnings $\left(E_{t}\right)$
- Step formula applied to E_{t} to obtain PIA
- Workers retiring at 65 receive full PIA

Model

Social Security Function:

- Entitlement is a function of accumulated earnings $\left(E_{t}\right)$
- Step formula applied to E_{t} to obtain PIA
- Workers retiring at 65 receive full PIA
- Workers retiring at 62 receive 80% of PIA

Model

Social Security Function:

- Entitlement is a function of accumulated earnings $\left(E_{t}\right)$
- Step formula applied to E_{t} to obtain PIA
- Workers retiring at 65 receive full PIA
- Workers retiring at 62 receive 80% of PIA
- Workers retiring after 65 receive 5.5% increase per year

Model

Social Security Function:

- Entitlement is a function of accumulated earnings $\left(E_{t}\right)$
- Step formula applied to E_{t} to obtain PIA
- Workers retiring at 65 receive full PIA
- Workers retiring at 62 receive 80% of PIA
- Workers retiring after 65 receive 5.5% increase per year
- Benefits are indexed to CPI

Model

Social Security Function:

- Entitlement is a function of accumulated earnings $\left(E_{t}\right)$
- Step formula applied to E_{t} to obtain PIA
- Workers retiring at 65 receive full PIA
- Workers retiring at 62 receive 80% of PIA
- Workers retiring after 65 receive 5.5% increase per year
- Benefits are indexed to CPI
- Earnings test

Model

Social Security Function:

- Entitlement is a function of accumulated earnings $\left(E_{t}\right)$
- Step formula applied to E_{t} to obtain PIA
- Workers retiring at 65 receive full PIA
- Workers retiring at 62 receive 80% of PIA
- Workers retiring after 65 receive 5.5% increase per year
- Benefits are indexed to CPI
- Earnings test
- Dependent spouse benefit

Model

Social Security Function:

- Entitlement is a function of accumulated earnings $\left(E_{t}\right)$
- Step formula applied to E_{t} to obtain PIA
- Workers retiring at 65 receive full PIA
- Workers retiring at 62 receive 80% of PIA
- Workers retiring after 65 receive 5.5% increase per year
- Benefits are indexed to CPI
- Earnings test
- Dependent spouse benefit
- Surviving spouse benefit

Model

STOCHASTIC PROCESSES

Model

STOCHASTIC PROCESSES

Wage:

Model

STOCHASTIC PROCESSES

Wage:

$$
\ln w_{i t}=W\left(a g e_{i t}\right)+\varsigma l\left\{d_{i t}=P T\right\}+v_{i t}
$$

Model

STOCHASTIC PROCESSES

Wage:

$$
\begin{aligned}
& \quad \ln w_{i t}=W\left(\text { age }_{i t}\right)+\varsigma l\left\{d_{i t}=P T\right\}+v_{i t} \\
& v_{i t}=v_{i t-1} \\
& +\xi_{i t}
\end{aligned}
$$

Model

STOCHASTIC PROCESSES

Wage:

$$
\begin{gathered}
\ln w_{i t}=W\left(\text { age }_{i t}\right)+\varsigma l\left\{d_{i t}=P T\right\}+v_{i t} \\
v_{i t}=v_{i t-1}-\delta_{R} I\left(d_{i t-1}=R\right)-\delta_{P T} I\left(d_{i t-1}=P T\right)+\xi_{i t}
\end{gathered}
$$

Model

STOCHASTIC PROCESSES

Wage:

$$
\begin{gathered}
\ln w_{i t}=W\left(\text { age }_{i t}\right)+\varsigma I\left\{d_{i t}=P T\right\}+v_{i t} \\
v_{i t}=v_{i t-1}-\delta_{R} I\left(d_{i t-1}=R\right)-\delta_{P T} I\left(d_{i t-1}=P T\right)+\xi_{i t}
\end{gathered}
$$

where:

Model

STOCHASTIC PROCESSES

Wage:

$$
\begin{gathered}
\ln w_{i t}=W\left(\text { age }_{i t}\right)+\varsigma I\left\{d_{i t}=P T\right\}+v_{i t} \\
v_{i t}=v_{i t-1}-\delta_{R} I\left(d_{i t-1}=R\right)-\delta_{P T} I\left(d_{i t-1}=P T\right)+\xi_{i t}
\end{gathered}
$$

where:

$$
\xi_{i} \backsim N\left(0, \sigma_{\xi_{i}}^{2}\right)
$$

Model

STOCHASTIC PROCESSES

Wage:

$$
\begin{gathered}
\ln w_{i t}=W\left(\text { age }_{i t}\right)+\varsigma I\left\{d_{i t}=P T\right\}+v_{i t} \\
v_{i t}=v_{i t-1}-\delta_{R} I\left(d_{i t-1}=R\right)-\delta_{P T} I\left(d_{i t-1}=P T\right)+\xi_{i t}
\end{gathered}
$$

where:

$$
\xi_{i} \backsim N\left(0, \sigma_{\xi_{i}}^{2}\right)
$$

For estimation purposes, $v_{i 0}$ is a fixed effect:

Model

STOCHASTIC PROCESSES

Wage:

$$
\begin{gathered}
\ln w_{i t}=W\left(\text { age }_{i t}\right)+\varsigma l\left\{d_{i t}=P T\right\}+v_{i t} \\
v_{i t}=v_{i t-1}-\delta_{R} l\left(d_{i t-1}=R\right)-\delta_{P T} l\left(d_{i t-1}=P T\right)+\xi_{i t}
\end{gathered}
$$

where:

$$
\xi_{i} \backsim N\left(0, \sigma_{\xi_{i}}^{2}\right)
$$

For estimation purposes, $v_{i 0}$ is a fixed effect:

$$
\ln w_{i t}=v_{i 0}+W\left(a^{2 g e}\right)+\varsigma l\left\{d_{i t}=P T\right\}+v_{i t}^{*}
$$

Model

STOCHASTIC PROCESSES (contd.)

Model

STOCHASTIC PROCESSES (contd.)

$$
E\left(h c_{t} \mid a g e_{t}^{m}, a g e_{t}^{f}\right)=E\left(h c_{t} \mid a g e_{t}^{m}, a g e_{t}^{f}, h c>0\right) P\left(h c t>0 \mid a g e_{t}^{m}, a g e_{t}^{f}\right)
$$

Model

STOCHASTIC PROCESSES (contd.)

$$
E\left(h c_{t} \mid a g e_{t}^{m}, a g e_{t}^{f}\right)=E\left(h c_{t} \mid a g e_{t}^{m}, a g e_{t}^{f}, h c>0\right) P\left(h c t>0 \mid a g e_{t}^{m}, a g e_{t}^{f}\right)
$$

$$
\ln h c_{t}=h\left(a g e_{t}^{m}, a g e_{t}^{f}\right)+\psi_{t},
$$

Model

STOCHASTIC PROCESSES (contd.)

$$
E\left(h c_{t} \mid a g e_{t}^{m}, a g e_{t}^{f}\right)=E\left(h c_{t} \mid a g e_{t}^{m}, a g e_{t}^{f}, h c>0\right) P\left(h c t>0 \mid a g e_{t}^{m}, a g e_{t}^{f}\right)
$$

$$
\begin{gathered}
\ln h c_{t}=h\left(a g e_{t}^{m}, a g e_{t}^{f}\right)+\psi_{t} \\
\psi \sim N\left(0, \sigma_{\psi}^{2}\right)
\end{gathered}
$$

Model

STOCHASTIC PROCESSES (contd.)

$E\left(h c_{t} \mid a g e_{t}^{m}, a g e_{t}^{f}\right)=E\left(h c_{t} \mid a g e_{t}^{m}, a g e_{t}^{f}, h c>0\right) P\left(h c t>0 \mid a g e_{t}^{m}, a g e_{t}^{f}\right)$

$$
\begin{gathered}
\ln h c_{t}=h\left(a g e_{t}^{m}, a g e_{t}^{f}\right)+\psi_{t}, \\
\psi \sim N\left(0, \sigma_{\psi}^{2}\right)
\end{gathered}
$$

Survival:

Model

STOCHASTIC PROCESSES (contd.)

$E\left(h c_{t} \mid a g e_{t}^{m}, a g e_{t}^{f}\right)=E\left(h c_{t} \mid a g e_{t}^{m}, a g e_{t}^{f}, h c>0\right) P\left(h c t>0 \mid a g e_{t}^{m}, a g e_{t}^{f}\right)$

$$
\begin{gathered}
\ln h c_{t}=h\left(a g e_{t}^{m}, a g e_{t}^{f}\right)+\psi_{t}, \\
\psi \sim N\left(0, \sigma_{\psi}^{2}\right)
\end{gathered}
$$

Survival:

$$
s_{t+1}^{j}=s\left(a g e_{t}^{j}\right)
$$

Model Solution

Model Solution

- Framework introduced by Rust $(1987,1988)$ for the solution and estimation of stochastic Markov discrete processes.

Model Solution

- Framework introduced by Rust $(1987,1988)$ for the solution and estimation of stochastic Markov discrete processes.
- Extend framework in order to account for continuous decisions.

Model Solution

Households choose a series of decision rules $\Pi=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{T}\right\}$, where $\pi_{t}\left(z_{t}, \varepsilon_{t}\right)=\left(d_{t}, s_{t}\right)$, to maximize:

Model Solution

Households choose a series of decision rules $\Pi=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{T}\right\}$, where $\pi_{t}\left(z_{t}, \varepsilon_{t}\right)=\left(d_{t}, s_{t}\right)$, to maximize:

$$
E_{t}\left\{\sum_{i=t}^{T} \beta^{i-t} S_{i-t} U_{t}\left(\theta_{1}\right)\right\}
$$

Model Solution

Households choose a series of decision rules $\Pi=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{T}\right\}$, where $\pi_{t}\left(z_{t}, \varepsilon_{t}\right)=\left(d_{t}, s_{t}\right)$, to maximize:

$$
E_{t}\left\{\sum_{i=t}^{T} \beta^{i-t} S_{i-t} U_{t}\left(\theta_{1}\right)\right\}
$$

subject to the corresponding constraints.

Model Solution

Households choose a series of decision rules $\Pi=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{T}\right\}$, where $\pi_{t}\left(z_{t}, \varepsilon_{t}\right)=\left(d_{t}, s_{t}\right)$, to maximize:

$$
E_{t}\left\{\sum_{i=t}^{T} \beta^{i-t} S_{i-t} U_{t}\left(\theta_{1}\right)\right\}
$$

subject to the corresponding constraints.
The expectation is taken with respect to the controlled stochastic process $\left\{z_{t}, \varepsilon_{t}\right\}$ with probability distribution:

Model Solution

Households choose a series of decision rules $\Pi=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{T}\right\}$, where $\pi_{t}\left(z_{t}, \varepsilon_{t}\right)=\left(d_{t}, s_{t}\right)$, to maximize:

$$
E_{t}\left\{\sum_{i=t}^{T} \beta^{i-t} S_{i-t} U_{t}\left(\theta_{1}\right)\right\}
$$

subject to the corresponding constraints.
The expectation is taken with respect to the controlled stochastic process $\left\{z_{t}, \varepsilon_{t}\right\}$ with probability distribution:

$$
f\left(z_{t+1}, \varepsilon_{t+1} \mid d_{t}, s_{t}, z_{t}, \varepsilon_{t}, \theta_{2}, \theta_{3}\right)=
$$

Model Solution

Households choose a series of decision rules $\Pi=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{T}\right\}$, where $\pi_{t}\left(z_{t}, \varepsilon_{t}\right)=\left(d_{t}, s_{t}\right)$, to maximize:

$$
E_{t}\left\{\sum_{i=t}^{T} \beta^{i-t} S_{i-t} U_{t}\left(\theta_{1}\right)\right\}
$$

subject to the corresponding constraints.
The expectation is taken with respect to the controlled stochastic process $\left\{z_{t}, \varepsilon_{t}\right\}$ with probability distribution:

$$
\begin{aligned}
& f\left(z_{t+1}, \varepsilon_{t+1} \mid d_{t}, s_{t}, z_{t}, \varepsilon_{t}, \theta_{2}, \theta_{3}\right)= \\
& q\left(\varepsilon_{t+1} \mid z_{t+1}, \theta_{2}\right) g\left(z_{t+1} \mid z_{t}, d_{t}, s_{t}, \theta_{3}\right)
\end{aligned}
$$

Model Solution

The Bellman equation can be written as:

Model Solution

The Bellman equation can be written as:

$$
V_{t}\left(z_{t}, \varepsilon_{t}, \theta\right)=\max _{d_{t}}\left\{\max _{s_{t}}\left\{u\left(k, s_{t}, z_{t}, \theta_{1}\right)+\beta E_{t} V_{t+1}\left(z_{t+1}, k, s_{t}, \theta\right) \mid d_{t}=k\right\}+\varepsilon_{t}\right\}
$$

Model Solution

The Bellman equation can be written as:

$$
V_{t}\left(z_{t}, \varepsilon_{t}, \theta\right)=\max _{d_{t}}\left\{\max _{s_{t}}\left\{u\left(k, s_{t}, z_{t}, \theta_{1}\right)+\beta E_{t} V_{t+1}\left(z_{t+1}, k, s_{t}, \theta\right) \mid d_{t}=k\right\}+\varepsilon_{t}\right\}
$$

Inner maximization yields choice-specific value functions:

Model Solution

The Bellman equation can be written as:

$$
V_{t}\left(z_{t}, \varepsilon_{t}, \theta\right)=\max _{d_{t}}\left\{\max _{s_{t}}\left\{u\left(k, s_{t}, z_{t}, \theta_{1}\right)+\beta E_{t} V_{t+1}\left(z_{t+1}, k, s_{t}, \theta\right) \mid d_{t}=k\right\}+\varepsilon_{t}\right\}
$$

Inner maximization yields choice-specific value functions:

$$
r\left(k, z_{t}, \theta\right)=\max _{s_{t}}\left\{\left[u\left(k, s_{t}, z_{t}, \theta_{1}\right)+\beta E_{t} V_{t+1}\left(z_{t+1}, k, s_{t}, \theta\right)\right] \mid d_{t}=k\right\}
$$

Model Solution

The Bellman equation can be written as:

$$
V_{t}\left(z_{t}, \varepsilon_{t}, \theta\right)=\max _{d_{t}}\left\{\max _{s_{t}}\left\{u\left(k, s_{t}, z_{t}, \theta_{1}\right)+\beta E_{t} V_{t+1}\left(z_{t+1}, k, s_{t}, \theta\right) \mid d_{t}=k\right\}+\varepsilon_{t}\right\}
$$

Inner maximization yields choice-specific value functions:

$$
r\left(k, z_{t}, \theta\right)=\max _{s_{t}}\left\{\left[u\left(k, s_{t}, z_{t}, \theta_{1}\right)+\beta E_{t} V_{t+1}\left(z_{t+1}, k, s_{t}, \theta\right)\right] \mid d_{t}=k\right\}
$$

Outer maximization is random-utility model:

Model Solution

The Bellman equation can be written as:

$$
V_{t}\left(z_{t}, \varepsilon_{t}, \theta\right)=\max _{d_{t}}\left\{\max _{s_{t}}\left\{u\left(k, s_{t}, z_{t}, \theta_{1}\right)+\beta E_{t} V_{t+1}\left(z_{t+1}, k, s_{t}, \theta\right) \mid d_{t}=k\right\}+\varepsilon_{t}\right\}
$$

Inner maximization yields choice-specific value functions:

$$
r\left(k, z_{t}, \theta\right)=\max _{s_{t}}\left\{\left[u\left(k, s_{t}, z_{t}, \theta_{1}\right)+\beta E_{t} V_{t+1}\left(z_{t+1}, k, s_{t}, \theta\right)\right] \mid d_{t}=k\right\}
$$

Outer maximization is random-utility model:

$$
\max _{d_{t}}\left\{r\left(z_{t}, d_{t}, \theta\right)+\varepsilon_{t}\left(d_{t}\right)\right\}
$$

Model Solution

Assumption: ε follows multivariate extreme value distribution

Model Solution

Assumption: ε follows multivariate extreme value distribution
Conditional choice probabilities:

Model Solution

Assumption: ε follows multivariate extreme value distribution
Conditional choice probabilities:

$$
P\left(k \mid z_{t}, \theta\right)=\frac{\exp \left\{r\left(z_{t}, k, \theta\right)\right\}}{\sum_{k \in D} \exp \left\{r\left(z_{t}, k, \theta\right)\right\}}
$$

$>$ graph

Estimation

Vectors of parameters to be estimated: θ_{1} and θ_{3}

Estimation

Vectors of parameters to be estimated: θ_{1} and θ_{3}
Estimation takes place in two stages:

Estimation

Vectors of parameters to be estimated: θ_{1} and θ_{3}
Estimation takes place in two stages:

- First stage:

Estimation

Vectors of parameters to be estimated: θ_{1} and θ_{3}
Estimation takes place in two stages:

- First stage:

Estimate parameters which can be identified without specific reference to dynamic model.

Estimation

Vectors of parameters to be estimated: θ_{1} and θ_{3}
Estimation takes place in two stages:

- First stage:

Estimate parameters which can be identified without specific reference to dynamic model.
This yields $\hat{\theta}_{3}$.

Estimation

Vectors of parameters to be estimated: θ_{1} and θ_{3}
Estimation takes place in two stages:

- First stage:

Estimate parameters which can be identified without specific reference to dynamic model.
This yields $\hat{\theta}_{3}$.

- Second stage:

Estimation

Vectors of parameters to be estimated: θ_{1} and θ_{3}
Estimation takes place in two stages:

- First stage:

Estimate parameters which can be identified without specific reference to dynamic model.
This yields $\hat{\theta}_{3}$.

- Second stage:

Estimate θ_{1} using method of simulated moments.

Data

Data

- Health and Retirement Study (HRS)

Data

- Health and Retirement Study (HRS)
- Panel data on households where at least one member is aged 51 to 61 in initial wave.

Data

- Health and Retirement Study (HRS)
- Panel data on households where at least one member is aged 51 to 61 in initial wave.
- Extensive information on:

Data

- Health and Retirement Study (HRS)
- Panel data on households where at least one member is aged 51 to 61 in initial wave.
- Extensive information on:
- Wealth and Income

Data

- Health and Retirement Study (HRS)
- Panel data on households where at least one member is aged 51 to 61 in initial wave.
- Extensive information on:
- Wealth and Income
- Health

Data

- Health and Retirement Study (HRS)
- Panel data on households where at least one member is aged 51 to 61 in initial wave.
- Extensive information on:
- Wealth and Income
- Health
- Retirement

Data

- Health and Retirement Study (HRS)
- Panel data on households where at least one member is aged 51 to 61 in initial wave.
- Extensive information on:
- Wealth and Income
- Health
- Retirement
- Demographics

Data

- Health and Retirement Study (HRS)
- Panel data on households where at least one member is aged 51 to 61 in initial wave.
- Extensive information on:
- Wealth and Income
- Health
- Retirement
- Demographics
- HRS data can be linked to Social Security Administration records which provide information on covered earnings and benefits.

Data

Estimation sample:

Data

Estimation sample:

- The model is estimated using the sample of HRS couples who do not have a defined benefit pension.

Data

Estimation sample:

- The model is estimated using the sample of HRS couples who do not have a defined benefit pension.
- For individuals with no private pension, Social Security provides main age-specific incentives for retirement.

Data

Estimation sample:

- The model is estimated using the sample of HRS couples who do not have a defined benefit pension.
- For individuals with no private pension, Social Security provides main age-specific incentives for retirement.
- The same is true for individuals with defined contribution pensions.

Data

Estimation sample:

- The model is estimated using the sample of HRS couples who do not have a defined benefit pension.
- For individuals with no private pension, Social Security provides main age-specific incentives for retirement.
- The same is true for individuals with defined contribution pensions.
- Defined benefit pensions give very strong incentives for retirement at particular ages, usually different from the Social Security ages.

Estimation: Second Stage

Table: Preference and Wage Process Parameter Estimates

Parameter and definition	(1)	(2)	
α_{1}^{m}	Consumption share, male U function	0.5102	
α_{1}^{f}	Consumption share, female U function	0.4295	
α_{2}	Value of shared retirement		
	Male's wage depreciation per year PT	0.9051	
	Female's wage depreciation per year PT	0.8933	
	Male's wage depreciation per year R	0.8092	
	Female's wage depreciation per year R	0.7795	
GMM criterion	0.2058	0.1404	

Estimation: Second Stage

Table: Preference and Wage Process Parameter Estimates

Parameter and definition	(1)	(2)	
α_{1}^{m}	Consumption share, male U function	0.5102	
α_{1}^{f}	Consumption share, female U function	0.4295	
α_{2}	Value of shared retirement		0.0891
	Male's wage depreciation per year PT	0.9051	(0.0079)
	Female's wage depreciation per year PT	0.8933	
	Male's wage depreciation per year R	0.8092	
	Female's wage depreciation per year R	0.7795	
GMM criterion		0.2058	0.1404

Estimation: Second Stage

Table: Preference and Wage Process Parameter Estimates

Parameter and definition	(1)	(2)	
α_{1}^{m}	Consumption share, male U function	0.5102	0.5274
α_{1}^{f}	Consumption share, female U function	0.4295	(0.0061)
α_{2}	Value of shared retirement		0.0891
	Male's wage depreciation per year PT	0.9051	(0.0079)
	Female's wage depreciation per year PT	0.8933	
	Male's wage depreciation per year R	0.8092	
	Female's wage depreciation per year R	0.7795	
			0.2058
		0.1404	

Estimation: Second Stage

Table: Preference and Wage Process Parameter Estimates

Parameter and definition	(1)	(2)	
α_{1}^{m}	Consumption share, male U function	0.5102	0.5274
			(0.0061)
α_{1}^{f}	Consumption share, female U function	0.4295	0.4334
			(0.0043)
α_{2}	Value of shared retirement		0.0891
	Male's wage depreciation per year PT	0.9051	
	Female's wage depreciation per year PT	0.8933	
	Male's wage depreciation per year R	0.8092	
	Female's wage depreciation per year R	0.7795	
GMM criterion	0.2058	0.1404	

Estimation: Second Stage

Table: Preference and Wage Process Parameter Estimates

Parameter and definition	(1)	(2)	
α_{1}^{m}	Consumption share, male U function	0.5102	0.5274
			(0.0061)
α_{1}^{f}	Consumption share, female U function	0.4295	0.4334
			(0.0043)
α_{2}	Value of shared retirement		0.0891
			(0.0079)
	Male's wage depreciation per year PT	0.9051	0.9258
			(0.0383)
	Female's wage depreciation per year PT	0.8933	
	Male's wage depreciation per year R	0.8092	
	Female's wage depreciation per year R	0.7795	
GMM criterion		0.2058	0.1404

Estimation: Second Stage

Table: Preference and Wage Process Parameter Estimates
$\left.\begin{array}{|cccc|}\hline \text { Parameter and definition } & (1) & (2) \\ \hline \alpha_{1}^{m} & \text { Consumption share, male U function } & 0.5102 & 0.5274 \\ & & & (0.0061) \\ \alpha_{1}^{f} & \text { Consumption share, female U function } & 0.4295 & 0.4334 \\ & & & (0.0043) \\ \alpha_{2} & \text { Value of shared retirement } & & 0.0891 \\ & & & (0.0079) \\ & & & \\ & & & 0.9051\end{array}\right)$

Estimation: Second Stage

Table: Preference and Wage Process Parameter Estimates
$\left.\begin{array}{|cccc|}\hline \text { Parameter and definition } & (1) & (2) \\ \hline \alpha_{1}^{m} & \text { Consumption share, male U function } & 0.5102 & 0.5274 \\ & & & (0.0061) \\ \alpha_{1}^{f} & \text { Consumption share, female U function } & 0.4295 & 0.4334 \\ & & & (0.0043) \\ \alpha_{2} & \text { Value of shared retirement } & & 0.0891 \\ & & & (0.0079) \\ & & & 0.9051\end{array}\right)$

Estimation: Second Stage

Table: Preference and Wage Process Parameter Estimates

Parameter and definition		(1)	(2)
α_{1}^{m}	Consumption share, male U function	0.5102	0.5274
			(0.0061)
α_{1}^{f}	Consumption share, female U function	0.4295	0.4334
			(0.0043)
α_{2}	Value of shared retirement		0.0891
			(0.0079)
	Male's wage depreciation per year PT	0.9051	0.9258
			(0.0383)
	Female's wage depreciation per year PT	0.8933	0.9219
			(0.0334)
	Male's wage depreciation per year R	0.8092	0.8609
			(0.0436)
	Female's wage depreciation per year R	0.7795	0.7841
			(0.0336)
GMM criterion		0.2058	0.1404

Figure: Simulated vs. actual age profiles for total participation, men.

Figure: Simulated vs. actual age profiles for total participation, women.

Figure: Simulated vs. actual age profiles for FT/PT participation, men.

Figure: Simulated vs. actual age profiles for FT/PT participation, women.

Figure: Simulated vs. actual retirement frequencies, men.

Figure: Simulated vs. actual retirement frequencies, women.

Figure: Simulated vs. actual joint retirement frequencies.

Figure: Simulated vs. actual joint retirement frequencies.

Conclusions

- I develop a life-cycle model of couples' choices which carefully models shared budget constraint and allows for leisure complementarities.

Conclusions

- I develop a life-cycle model of couples' choices which carefully models shared budget constraint and allows for leisure complementarities.
- Results show that positive complementarity parameters explain 8\% of joint retirements...

Conclusions

- I develop a life-cycle model of couples' choices which carefully models shared budget constraint and allows for leisure complementarities.
- Results show that positive complementarity parameters explain 8% of joint retirements...
- ...while social security's spousal benefit accounts for another 13%.

Figure: Retirement frequencies for married men and women

Figure: Optimal participation choices as a function of E^{m}, E^{f}

Figure: Differences in retirement dates by age difference between spouses

Introduction

Leisure Complementarities

Introduction

Leisure Complementarities

A significant fraction of spouses retires together - groph Hurd (1990), Blau (1998), Gustman and Steinmeier (2000)

Introduction

Leisure Complementarities

A significant fraction of spouses retires together Hurd (1990), Blau (1998), Gustman and Steinmeier (2000)

Joint retirements of spouses with different ages may be partly explained by interactions in spouses' preferences.

Introduction

Leisure Complementarities

A significant fraction of spouses retires together \subset geph Hurd (1990), Blau (1998), Gustman and Steinmeier (2000)

Joint retirements of spouses with different ages may be partly explained by interactions in spouses' preferences.

Complementarity of spouse's leisure: one (or both) spouses enjoy their leisure more if this is shared with their partner.

Introduction

Leisure Complementarities

A significant fraction of spouses retires together \subset geph Hurd (1990), Blau (1998), Gustman and Steinmeier (2000)

Joint retirements of spouses with different ages may be partly explained by interactions in spouses' preferences.

Complementarity of spouse's leisure: one (or both) spouses enjoy their leisure more if this is shared with their partner.

Reduced-form studies provide evidence that spouses enjoy their retirement more if their partner is retired too.

Introduction

Leisure Complementarities

A significant fraction of spouses retires together \subset geah Hurd (1990), Blau (1998), Gustman and Steinmeier (2000)

Joint retirements of spouses with different ages may be partly explained by interactions in spouses' preferences.

Complementarity of spouse's leisure: one (or both) spouses enjoy their leisure more if this is shared with their partner.

Reduced-form studies provide evidence that spouses enjoy their retirement more if their partner is retired too.

- Coile (2004)

Introduction

Leisure Complementarities

A significant fraction of spouses retires together \subset geah Hurd (1990), Blau (1998), Gustman and Steinmeier (2000)

Joint retirements of spouses with different ages may be partly explained by interactions in spouses' preferences.

Complementarity of spouse's leisure: one (or both) spouses enjoy their leisure more if this is shared with their partner.

Reduced-form studies provide evidence that spouses enjoy their retirement more if their partner is retired too.

- Coile (2004)
- Banks, Blundell and Casanova (2010)

Introduction

Leisure Complementarities

A significant fraction of spouses retires together \subset geah Hurd (1990), Blau (1998), Gustman and Steinmeier (2000)

Joint retirements of spouses with different ages may be partly explained by interactions in spouses' preferences.

Complementarity of spouse's leisure: one (or both) spouses enjoy their leisure more if this is shared with their partner.

Reduced-form studies provide evidence that spouses enjoy their retirement more if their partner is retired too.

- Coile (2004)
- Banks, Blundell and Casanova (2010)

