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Abstract

We study direct pure altruism of a generation towards its descendants, relying
only on its preference over infinite consumption allocations. A generation exhibits
pure altruism if it cares about its descendants’ overall well-being—which may also
incorporate their altruism—and direct altruism if it cares about the well-being of all
its descendants directly. We show that direct pure altruism always leads to time in-
consistency in the form of present bias. We obtain a new, tractable class of directly
purely altruistic preferences that capture an impartial and coherent consideration of
future generations. For this class, we study discounting of future generations’ con-
sumption utilities and how it depends on consumption levels. The only preferences
that do not exhibit this dependence coincide with the quasi-hyperbolic discounting
model, which our theory also characterizes. Finally, we examine how to conduct
welfare analysis when the generations’ preferences are time inconsistent.

Keywords: pure altruism, non-paternalistic sympathy, time inconsistency, genera-
tion, quasi-hyperbolic, beta-delta discounting, welfare criterion.
JEL Classification: D01, D60, D90

∗The authors are grateful to Nageeb S. Ali, Nabil Al-Najjar, James Andreoni, Doug Bernheim, Eddie
Dekel, Drew Fudenberg, David Laibson, Bart Lipman, Emir Kamenica, Peter Klibanoff, Mark Machina,
Paul Milgrom, David G. Pearce, Todd Sarver, Marciano Siniscalchi, Joel Sobel, and Asher Wolinsky, as
well as seminar participants at UC San Diego, Stanford, Université de Montréal, RUD 2014, University
of Chicago, Yale, NASMES 2014, SITE 2014, UCL, and WU St. Louis for useful comments. An
early version of this project was developed by Strulovici and presented at Northwestern University and
the 2011 SAET conference in Faro, Portugal under the title “Forward-Looking Behavior, Well-Being
Representation, and Time Inconsistency.” A subset of the results in this paper appeared in a previous
paper by the same authors, titled “From Anticipations to Present Bias: A Theory of Forward-Looking
Preferences.” Strulovici is grateful for financial support from the National Science Foundation and a
Sloan Research Fellowship.

1



1 Introduction

When individuals face decisions whose consequences affect future generations, they often
take such consequences into consideration. In other words, they exhibit intergenerational
altruism. The importance of altruism has been recognized and adopted in economics to
investigate a variety of problems.1 By shaping the preferences of each generation, al-
truism influences how society evaluates and chooses between feasible courses of action.
Although many models of intergenerational altruism have been developed and used, an
investigation of the fundamental properties of preferences that exhibit altruism towards
future generations seems to be missing—an exception, of course, is the standard model of
exponentially discounted utility (EDU) (Samuelson (1937), Koopmans (1960)). Under-
standing the properties of those preferences is essential to assess merits and flaws of their
different models. This paper aims to fill this gap, using a standard decision-theoretic
approach.

We propose a general axiomatic foundation of direct pure altruism towards future gen-
erations. In our model, the present generation exhibits pure altruism because it derives
utility—besides from its own consumption—from its descendants’ overall utility (or well-
being). Since it expects that future generations will continue to be altruistic, it ascribes
to each of them a well-being that also takes account of their own utility from altruism.2

Moreover, the present generation exhibits direct altruism because it cares about the well-
being of all its descendants directly. Concretely, a grandmother cares about her son’s
well-being, understanding that it also depends on his daughter’s well-being, but also di-
rectly about her granddaughter’s well-being. Our analysis takes as primitive only the
observable preference of the present generation over infinite consumption allocations to
itself and future generations. Although this framework is standard, pure altruism raises
conceptual as well as technical challenges. Our solution may prove useful for developing
other models where similar preference interdependences across individuals arise.

In general, we characterize the class of preferences � of the present generation (here-
after, generation 0) that have the following representation: For every stream (c0, c1, . . .),
where ct is the consumption of generation t ≥ 0, generation 0’s utility from c can be
expressed as

U(c0, c1, . . .) = V (c0, U(c1, c2, . . .), U(c2, c3, . . .), . . .). (1)

We interpret U(ct, ct+1, . . .) for t > 0 as the well-being that generation 0 thinks that
1See the discussion of the related literature in Section 2.
2Other adjectives have been used to denoted this type of altruism: nonpaternalistic (Ray

(1987),Pearce (2008)) and total (Fels and Zeckhauser (2008)).
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generation t derives from the then stream (ct,ct+1, . . .). In our model, generation 0’s
preference reveals that it altruistically cares about future generations and that, to assess
their future well-being, it “projects” its own preference onto them.3 A special case of
representation (1) is, of course, Koopmans’ (1960) model in which V does not depend
on U(ct, ct+1, . . .) for t > 1. By contrast, direct pure altruism requires that V depend
(positively) on U(ct, ct+1, . . .) for all t > 1. To distinguish the two cases, we shall refer
to Koopmans’ model as capturing indirect pure altruism (see also Section 3.2).

Direct pure altruism, alone, implies remarkable properties regarding the time consis-
tency of intertemporal preferences. Imagine that all generations in a society have the
same preference � and that � has a representation of the form (1) such that V is strictly
increasing in all U ’s. Then the sequence of their preferences cannot be time consistent: A
course of action that is optimal from the viewpoint of generation t need not be optimal,
for that generation and its descendants, from the viewpoint of generation t−1.4 Perhaps
more surprisingly, each generation tends to be more impatient in the short run which di-
rectly involves itself, than in the long run which involves only future generations; in other
words, we may say that each generation exhibits present bias. Intuitively, a grandmother
can disagree with her son on whether he should transfer more consumption to his daugh-
ter, because they internalize differently the effects of changing her consumption: The son
takes into account how her consumption affects his well-being through altruism, while
in addition to this effect the grandmother also cares directly about her granddaughter’s
well-being. As a result, the grandmother may think that his son should transfer more
consumption to his daughter than he wants to transfer. At the same time, however, if
she were in his son’s position, she would agree on keeping more consumption for herself.
Thus she appears to be less impatient regarding delaying consumption when future gen-
erations are affected than when she is directly affected. Note that this property of the
preferences is not assumed, but is rather a logical consequence of direct pure altruism.

A key contribution of the paper is to characterize more specific, but more tractable,
forms of representation (1), which correspond to attractive properties—also from a nor-
mative viewpoint—of generation 0’s preference. These representations take the additive
form

U(c0, c1, . . .) = u(c0) +
∞∑
t=1

αtG(U(ct, ct+1, . . .)), (2)

3Generation 0 may not know the preferences of generations who will be born many years into the fu-
ture, or may see its preference as embodying some ethically desirable properties which future generations
ought to adopt.

4For this conclusion to hold, it is enough that each generation cares about the well-being of its
immediate descendant as well as some other future generation.
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where 0 < α < 1 and the function G is strictly increasing and bounded. This function
captures the altruism utility that generation 0 derives from future generations’ well-being.
The paper provides a further characterization of G that helps to appropriately choose it
in applications, and derives a Bellman-type equation to compute consumption streams
that maximize (2) for standard problems with dynamic resource constraints.

Besides some technical axioms, representation (2) relies on two key properties of gener-
ation 0’s preference: intergenerational separability and altruism stationarity. Intuitively,
intergenerational separability says that the well-being of future generations does not af-
fect how generation 0 enjoys its consumption, and that the well-being of generation t does
not influence how generation 0 ranks the well-being of any other generation s. As such,
the first property also expresses a form of fairness or impartiality in the way generation
0 is altruistic towards future generations.

Altruism stationarity is the axiom, in our theory, which distinguishes direct from indi-
rect pure altruism (i.e., our model from Koopmans’ (1960) model and in particular EDU).
Our stationarity notion focuses on the altruistic component of generation 0’s preference
by considering only changes in consumption streams that involve future generations. In-
tuitively, suppose that c = (c0, c1, . . .) and c′ = (c′0, c

′
1, . . .) give the same consumption

to a grandmother and that she thinks that her son is indifferent between (c1, c2, . . .) and
(c′1, c

′
2, . . .) after he takes into account his consumption as well as the well-being of his

daughter, granddaughter, and so on. Suppose that their well-beings induce the grand-
mother, who cares directly about them, to (strictly) prefer c to c′. Then, the axiom says
that if the son were to die, his mother would continue to (strictly) prefer (c2, c3, . . .) to
(c′2, c

′
3, . . .) for her granddaughter and so on. By requiring that each generation directly

cares about future generations in a coherent way, altruism stationarity is also norma-
tively appealing. As noted, this axiom fails for Koopmans’ (1960) model. In this model,
if the son is indifferent between (c1, c2, . . .) and (c′1, c

′
2, . . .), then his mother must also

be indifferent, given her initial consumption. Once her son is dead, however, she may
strictly prefer (c2, c3, . . .) to (c′2, c

′
3, . . .) for her granddaughter and so on.

Our derivation of representation (2) relies on known results in Debreu (1960) and Koop-
mans (1960) applied to the sequences of consumption of generation 0 and well-beings of
the future generations that are implied by consumption streams. A complication arises,
however, because the space of such sequences does not have a Cartesian-product struc-
ture, a property that plays an important role in the aforementioned papers. This is
because the well-being of generation t depends on all its descendants’ well-being. We
identify a way to overcome this difficulty, which may be usefully employed in other set-

4



tings where a decision maker cares about the well-being of other individuals in society
and understands that they also care about each other’s well-being.

Representation (2) implies several other properties of generation 0’s preference. First,
even though generation 0 cares directly about the well-being of all future generations, self-
ishness always dominates in the following sense: Faced with the choice between achieving
higher satisfaction itself or granting more satisfaction to some future generation, gener-
ation 0 always chooses the former. Second, generation 0’s well-being ultimately depends
entirely on each generation’s consumption utility (i.e., u(c0), u(c1), and so on). Thus
we can examine how generation 0 trades off its own consumption utility against that of
any future generation t. For a general G, this discount function turns out to depend on
the entire consumption stream generation 0 is facing. This is because the well-being of
generation t depends on the consumption of its descendants and affects the well-being of
its ancestors. In particular, if G is concave (convex), then generation 0 discounts more
(less) a stream that yields higher consumption utility to all future generations. Thus,
for instance, after learning that future living standards will improve less than accord-
ing to the historical trend, generation 0 may become more willing to sacrifice its own
satisfaction for the good of future generations.

These consumption interdependences disappear when the function G in representation
(2) is linear. Moreover, in this case discounting of consumption utilities takes a well-
known, specific form: quasi-hyperbolic (or β-δ) discounting (Phelps and Pollak (1968),
Laibson (1997)), where β and δ are simple functions of α and the constant slope of G.
Linearity of G corresponds to an additional axiom, called consumption independence.
This axiom says that (1) how a grandmother trades off her consumption with that of
her son does not depend on the consumption—and hence well-being—of his descendants,
and (2) how she trades off her consumption with that of her son’s descendants does not
depend on his consumption. Thus, as a byproduct of our general analysis, we provide
an axiomatization of Phelps and Pollack’s (1968) model of imperfect intergenerational
altruism as a model of direct pure altruism. Perhaps ironically, Phelps and Pollak (1968)
viewed the EDU model as capturing perfect intergenerational altruism, whereas from
this paper’s perspective EDU exhibits only indirect pure altruism. Thus, this paper
offers an opposite view on which of these discounting models—the exponential and the
quasi-hyperbolic one—captures a stronger degree of intergenerational altruism.

Finally, the paper addresses the delicate issue of how to conduct welfare analysis when
direct pure altruism causes the generations’ preferences to be time inconsistent. One
implication of this causal relationship is to weaken the case for paternalistic interventions,
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which usually relies on viewing time inconsistency as a form of irrationality. In the
case of Koopmans’ (1960) model, social welfare is usually measured by the well-being of
generation 0 (i.e., U(c0, c1, . . .)). Our analysis suggests that this “libertarian” criterion
seems more appropriate in the case of direct pure altruism—hence time inconsistency—
than in the case of indirect pure altruism—hence time consistency. This assessment is
based on other properties of generation 0’s preference, such as fairness and sensitivity
towards future generations.5

One may argue that, despite generation 0’s altruism, a social planner should aggregate
the preferences of all generations, assigning an appropriate positive weight to each gen-
eration’s well-being. We show that pure altruism—whether direct or indirect—makes it
difficult to find an aggregator that also renders the planner time consistent.6 One remark-
able exception is representation (2) with linear G—hence the quasi-hyperbolic model. We
show that the standard welfare criterion for β-δ preferences obtained by setting β = 1

corresponds to an aggregator that weighs the well-being of each generation t (including
t = 0) by αt, where α comes from representation (2) and satisfies α = δ(1− β).7

2 Related Literature

First of all, this paper is related to the vast literature on intergenerational altruism and
its numerous applications. Examples include optimal national savings (Ramsey (1928),
Phelps and Pollak (1968)), economic growth (Bernheim and Ray (1989)), charitable
giving (Andreoni (1989)), family economics (Bergstrom (1995)), public finance (Barro
(1974)), and environmental economics (Weitzman (1999), Dasgupta (2008), Schneider
et al. (2012)). As Ray (1987) noted, “the representation of non-paternalistic functions
[i.e., in terms of total utilities, U ] in paternalistic form [i.e., in terms of consumption
utilities, u] has been the subject of limited attention. A systematic analysis of the
relationship between these two frameworks [...] appears to be quite a challenge, especially
for models with an infinite horizon” (pp. 113–114). Saez-Marti and Weibull (2005) and
Fels and Zeckhauser (2008) derive the mathematical equivalence between the β-δ formula

5Fairness and sensitivity to future generations have been proposed as desirable properties in the
normative social-choice literature (see, for example, Asheim (2010) and the references therein). It seems
not obvious that these properties are less important than time consistency.

6In his study of hedonistic altruism and welfare, Ray (2014) examines welfare criteria that aggregate
well-being of altruistic, time-consistent, generations and that are formally similar to those in Section 5
(see also Bernheim (1989)).

7For other discussions on the “right” welfare criterion to use for the quasi-hyperbolic discounting model
see, for example, O’Donoghue and Rabin (1999), Rubinstein (2003), Bernheim and Rangel (2009).
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and expression (5) with linear G. Bergstrom (1999) studies systems of utility functions
that include altruism towards others, focusing on the infinite regress that they may
generate. All these papers, however, do not provide an axiomatic foundation of either
representation. Arguably, although paternalistic forms of non-paternalistic functions
may be more practical or explicit, to assess their merits and flaws we ultimately need to
understand the fundamental properties—expressed in terms of axioms—of the preferences
that those functions are meant to represent.

Many papers have proposed axiomatizations of the intertemporal preference of a deci-
sion maker—which makes it infeasible to have a complete list here. Koopmans (1960)
derived a general model which contains as an important, special case Samuelson’s (1937)
EDU model. We will discuss the difference from Koopmans’ analysis when we formally
state our axioms. Other models that include quasi-hyperbolic discounting have been char-
acterized by Hayashi (2003), Olea and Strzalecki (2014), and Echenique et al. (2014). We
discuss how their approaches compare to ours in Section 3.3.

Time inconsistency of preferences (especially in the form of present bias) has been ex-
tensively studied and discussed since Strotz’s (1955) seminal work, and has been given
several explanations. In Akerlof (1991), present bias is based on a principle of cogni-
tive psychology which says that decision-makers unduly overweigh relatively more salient
or tangible events, such as present consumption relative to future one. In Gul and
Pesendorfer (2001), time inconsistency can arise from a general change in the decision-
maker’s preference over time. In Halevy (2008) and Saito (2011), present bias can result
from a combination of two things: (1) the present is usually certain, whereas the future
is uncertain; (2) the decision-maker violates expected-utility theory and is disproportion-
ately sensitive to certainty as in Allais (1953) and Kahneman and Tversky (1979). In
Kőszegi and Szeidl (2012), time inconsistency and present bias arise because, when facing
a present decision, the decision-maker focuses too much on its immediate consequences,
but when considering that same decision ex ante, he is able to focus more on its overall
consequences over time. Our theory provides a novel explanation for present bias, as part
of a broader conceptual framework of how future consequences of current decision enter
into the decision-maker’s intertemporal preference.

Finally, this paper is related to the normative social-choice literature that studies how
to rank intergenerational streams of consumption.8 Our approach to this question partly
differs from this literature’s typical approach, which starts from some ethically desirable
properties—possibly unrelated to people’s real preferences—that rankings should satisfy

8See Asheim (2010) for a detailed review of this literature.
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and derives their implied properties or functional representations. Desirable properties
often suggested in this literature include sensitivity to and equal treatment of all future
generations’ well-being. The literature also highlights, however, that these properties col-
lide with other standard, appealing properties such as completeness and continuity, which
we maintain in the present analysis. Our contribution is to add the dimension of pure al-
truism to intergenerational preferences and to overcome the challenges that this addition
creates: observability of future generations’ well-beings and their interdependence. We
also add a different perspective—through the notion of indirect pure altruism—on how
Koopmans’ (1960) model restricts the degree to which the present generation is sensitive
to future generations’ well-being. By contrast, preferences that exhibit direct pure al-
truism are sensitive to all future generations’ well-being. Moreover, tractable versions of
such preferences also exhibit an impartial and coherent treatment of future generations.

3 Preference Representations

3.1 Preliminaries

Consider a society that consists of an infinite sequence of generations, each indexed by
a time period t with t ∈ N = {0, 1, 2, . . .}. Each generation’s consumption is denoted by
ct and belongs to a feasible set X, a connected, separable, metric space. The streams
of consumption starting from generation 0, the one currently alive, are denoted by c =

(c0, c1, . . .) and belong to the set C = XN. The set C is endowed with the sup-norm:
‖c− c′‖C = supt d(ct, c

′
t) where d is a bounded metric on X.9 For t ≥ 1, the set of

consumption streams starting at t is tC ⊆ XN—elements of this set will be denoted by

tc = (ct, ct+1, . . .).

The purpose of this paper is to study the preference of the present generation (hereafter,
generation 0) over streams of consumption for itself and all future generations. To this
end, we assume that generation 0 can commit to decisions (or policies) that determine
such streams—for example, it may develop a new technology to produce clean energy
that eliminates carbon emissions for the entire future. More formally, generation 0 can
choose among all streams in C. We assume that these choices correspond to a well-
defined, observable preference relation � over C. Thus we interpret the expression c � c′

as saying that generation 0 deems c as a more preferable consumption stream for itself

9Assuming that d(·, ·) is bounded is without loss of generality, as we can always replace it by d̂(·, ·) =
d(·, ·)/(1 + d(·, ·)), which is another metric respecting the initial distances.
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and all future generations than c′. A basic premise of this paper is that � has a utility
representation. This is ensured by the following axioms (the symbols ‘%’ and ‘∼’ have
the usual meaning).10

Axiom 1 (Weak Order). % is a complete and transitive binary relation.

Axiom 2 (Continuity). For all c ∈ C, the sets {c′ ∈ C : c′ - c} and {c′ ∈ C : c′ % c} are
closed.

Axiom 3 (Future Constant-Flow Dominance). For all c ∈ C, there exist x, y ∈ X such
that (c0, x, x, . . .) - c - (c0, y, y, . . .).

Axioms 1 and 2 are standard. Axiom 3 captures the following intuitive idea: for
any stream c, from generation 0’s viewpoint there are consumptions x and y that are
sufficiently bad and good, so that forcing each of the future generations to consume x
(resp. y) is worse (resp. better) than forcing them to consume according to 1c. These
axioms lead to the following standard result.11

Theorem 1 (Utility Representation). Under axioms 1-3, there exists a continuous func-
tion U : C → R such that c � c′ if and only if U(c) > U(c′).

In the rest of the paper, we will interpret U(c) as the well-being (i.e., total utility) of
generation 0 from stream c.

Since we are interested in studying the case of altruism towards future generations,
by assumption the well-being of generation 0 depends on the consumption of some later
generation. It is also natural that generation 0 cares about its own consumption.

Axiom 4 (Non-triviality). There exist x, x′, x̂ ∈ X and c, c′, ĉ ∈ C such that (x, ĉ) �
(x′, ĉ) and (x̂, c) � (x̂, c′).

3.2 Pure-Altruism Representations

This paper aims to investigate which properties of � correspond to pure (or nonpater-
nalistic) altruism of generation 0 towards future generations. Intuitively, generation 0
exhibits pure altruism if it derives utility from the total utilities—or well-being in our

10This paper continues to assume, as in the EDU model, that the preference of generation 0 does not
depend on the consumption of past generations. Relaxing this assumption, though interesting, is beyond
the paper’s scope.

11The proofs of the main results are in the Appendix A. All omitted proofs are in Appendix B (Online
Appendix).
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terminology—of future generations (see, e.g., Ray (1987)).12 Since � corresponds to the
subjective attitude of generation 0 towards future generations, � can only reveal how this
generation perceives the well-being each future generation t derives from the then stream

tc. However, generation 0 may not know future generations’ preferences—for instance,
for those born many years into the future—or it may have no reason to believe that
their preference will differ systematically from its own—for instance, because it views
this preference as based on some generally appealing and sensible ethical norms. In these
cases, generation 0 may simply “project” its preference onto future generations and use
it to assess their well-being. This is the approach that we take in this paper.13

This leads to the following general class of representations of purely altruistic prefer-
ences. Fixing a representation U of �, let U be the range of U and define

F = {(f1(c), f2(c), . . .) : ft(c) = U(tc) for c ∈ C and t > 0}. (3)

Note that F ⊂ UN, but in general F is not a Cartesian product (e.g., F 6= UN) because
the well-being from tc depends on future consumption and hence on future well-being.

Definition 1 (Pure-Altruism Representation). Preference � has a pure-altruism repre-
sentation if and only if

U(c) = V (c0, U(1c), U(2c), . . .) (4)

for some function V : X ×F → R that is nonconstant in c0 and U(tc) for some t > 0.

Thus how generation 0 ranks streams c and c′ depends only on its own consumption c0

and c′0, and on how it perceives—through the lenses of its current preference—that some
future generation t will rank the continuation streams tc and tc

′.

Axiom 5 below is the key to obtaining representation (4). It captures a minimal prop-
erty that seems natural for purely altruistic preferences: given its own consumption,
if generation 0 thinks that two consumption streams will render all future generations
indifferent, it should also be indifferent.

Axiom 5. If tc ∼ tc
′ for all t > 0, then (c0, 1c) ∼ (c0, 1c

′).

The premise tc ∼ tc
′ captures the thought experiment of generation 0 which imagines

to face the same continuation streams that generation t will face and uses its current
12By contrast, generation 0 is impurely (or paternalistically) altruistic if it cares only about the

utility that other generations derive from what they actually consume. To the extent that generation 0
thinks that future generations are also altruistic, this utility from actual consumption differs from each
generation’s total utility.

13For another axiomatic model of altruism in which the decision-maker projects its preference onto
his peers, see Saito (2013) for example.
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preference to assess how that generation will rank tc and tc
′. Axiom 5 rules out the possi-

bility, for instance, that generation 0 prefers c to c′ because, despite generating the same
stream of current consumption and future well-being, they allocate future consumption
differently across generations.

Theorem 2. Axioms 1–5 hold if and only if � has a pure-altruism representation.

Proof. Define F0 = X ×F and let f0(c) = c0 and f(c) = (f0, f1, f2, . . .).

(⇒) First, we define equivalence classes on C as follows: c is equivalent to c′ if ft(c) =

ft(c
′) for all t ≥ 0.14 Let C∗ be the set of equivalence classes of C, and let the function

U∗ be defined by U on C∗. Then, the function f ∗ : C∗ → F , defined by f ∗(c∗) = f(c) for
c in the equivalence class c∗, is by construction one-to-one and onto. Let (f ∗)−1 denote
its inverse and, for any f ∈ F0, define

V (f) = U∗((f ∗)−1(f)).

By Axiom 5, V is a well-defined function, and V (f(c)) = U(c) for every c. By Axiom 4,
V is nonconstant in f0 and ft for some t > 0.

(⇐) Suppose that V : F0 → R is a function such that V (f(c)) = U(c) and V is
nonconstant in f0 and ft for some t > 0. Then, it is immediate to see that the implied
preference satisfies Axioms 4 and 5.

We emphasize that Axiom 5 is weak: it requires that generation 0 be indifferent between
two streams, only if it perceives that all future generations—not just generation 1—will be
indifferent between their continuation streams. Clearly, if generation 0 cares only about
the well-being of generation 1—as in the EDU model—Axiom 5 holds. By allowing the
preference of generation 0 to depend on the (perceived) well-being of future generations
in a richer way, Axiom 5 is a key step of our approach to modeling intergenerational
preferences differently from EDU (Koopmans (1960, 1964)).

To distinguish our approach from the standard one, we introduce the following termi-
nology. As noted, EDU satisfies

U(c) = u(c0) + δU(1c) = V (c0, U(1c)).

In this case, generation 0 is purely altruistic only towards generation 1, and by expecting
that all future generations will be altruistic in a similar way, it ends up caring about
how c affects all of them but only indirectly through the well-being of generation 1. For

14In general, there may be several consumption streams in an equivalence class. For exam-
ple, suppose that U(c) = c0 + c1 + c2 + c3, and let c = (1, 1,−1,−1, 1, 1,−1,−1, . . .) and c′ =
(1,−1,−1, 1, 1,−1,−1, 1, 1, . . .).
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this reason, when generation 0’s preference � has a representation of the form U(c) =

V (c0, U(1c)), we shall say that generation 0 exhibits indirect pure altruism.15 On the
other hand, we shall say that generation 0 exhibits direct pure altruism if its well-being
U(c) depends directly on the well-being of all future generations (i.e., V in (4) depends
on U(tc) for all t > 0).16

3.2.1 Time (In)consistency and Present Bias

It is well known that if each generation has the same preference and this preference can be
represented by the EDU model—implying indirect pure altruism—then their preferences
are time consistent. That is, if a course of action starting at time t is preferable according
to generation t’s preference, then it remains preferable, for time t, according to generation
t− 1’s preference. To formalize this, we introduce a family of preferences {�t}∞t=0, where
�t is the preference relation of generation t. We then have the following definition (see,
e.g., Siniscalchi (2011)).

Definition 2 (Time Consistency). Preferences �t−1 and �t satisfy time consistency if
the following condition holds: tc %t

tc
′ if and only if (ct−1, tc) %t−1 (ct−1, tc

′).

Proposition 1 below shows that direct pure-altruism is incompatible with time con-
sistency. The purpose of this preliminary result is simply to identify and highlight a
possible source of time inconsistency across generations. This source corresponds to the
intuitive idea that each generation directly cares about the well-being of future genera-
tions beyond its immediate descendant. Concretely, a grandmother usually cares about
her son’s well-being—which of course depends on his daughter’s well-being—and directly
about her granddaughter’s well-being. By contrast, in the EDU model, it is as if the
grandmother cares about her granddaughter’s well-being only indirectly to the extent
that it affects her son’s well-being.17

Proposition 1. Consider a family of preferences {�t}∞t=0 and suppose that �t=�0 for
all t > 0 and that �0 has a pure-altruism representation. Then, {�t}∞t=0 satisfies time
consistency if and only if

V (c0, U(1c), U(2c), . . .) = V (c0, U(1c))

15Another possible interpretation is that EDU captures a generation 0 which fails to realize that future
generations will continue to be altruistic and to care about the well-being of their descendants.

16Of course, one could also consider the case in which V depends on U(tc) up to some finite t > 1.
17The purpose of Proposition 1 should not be misunderstood. It is well known that a family {�t}∞t=0

satisfies time consistency if and only if �t has a specific recursive representation in which U(tc) depends
only on current consumption, ct, and continuation utility U(t+1c).

12



for all c ∈ C, and V is strictly increasing in its second argument.

It is common to view time consistency of intertemporal preferences as the norm and
time inconsistency as an exception. Proposition 1 reverses this view. If we deem natural
that each altruistic generation cares about future generations’ well-being beyond the
immediate future and expects them to do the same, then we have to conclude that time
inconsistency should be the norm, not the exception.

To see the intuition behind Proposition 1, suppose that 1c and 1c
′ represent two courses

of actions that start in period 1 and involve different consumptions only for generations
1 and 2 (i.e., c1 6= c′1, c2 6= c′2, but 3c = 3c

′). In this case, generation 0 (the grandmother)
and generation 1 (her son) may disagree on the ranking of 1c and 1c

′ for the following
reason. The son trades off how its well-being varies because his current consumption
changes from c1 to c′1 and how it varies because his daughter’s well-being is affected by
the change from c2 to c′2. In addition to these two effects on her son’s well-being, the
grandmother also takes directly into account how her granddaughter’s well-being varies
between c2 and c′2. Therefore, the grandmother and her son internalize the effects of
changing c2 in different ways, which can induce them to disagree on which course of
action is better.

In general, time inconsistency can take different forms. For instance, if we allow the
preferences to differ in arbitrary ways across generations, we could have that generation
t prefers higher consumption (say, of fossil fuels) for itself and all future generations,
whereas generation t + 1 prefers lower consumption for itself and all subsequent gener-
ations. This kind of inconsistency is clearly possible, but differs from the one arising
here. In particular, directly purely-altruistic preferences are time inconsistent even if all
generations have the same preference relation. Moreover, this inconsistency always takes
a very specific and well-known form: each generation tends to be more impatient in the
short run than in the long run. To be consistent with the literature, we shall call this
phenomenon “present bias.”

Definition 3 (Present Bias). Let x, y, w, h ∈ X and c′ ∈ C. Suppose that (x, c) � (y, c)

for all c and (z0, . . . , zt−1, x, w, c
′) ∼ (z0, . . . , zt−1, y, h, c

′) for some t > 0, then (x,w, c′) �
(y, h, c′).

Intuitively, this definition says the following. Suppose first that, fixing consumption
for all future generations, generation 0 always strictly prefers consumption x to y. We
can thus unambiguously say that generation 0 likes x better than y for itself and all
future generations. Now suppose that there is a consumption h such that generation 0
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is indifferent if generation t is forced to give up x for y, provided that this change is
“compensated” by giving h to generation t + 1. Then, if generation 0 itself faced the
choice between x and y in the present, it would strictly prefer not to give up x for y even
if in exchange generation 1 got h. Thus, generation 0 pursues its current gratification.

Proposition 2. If V (c0, U(1c), U(2c), . . .) is strictly increasing in U(tc) for all t > 0,
then � exhibits present bias.

As shown in the proof of Proposition 2, its conclusion continues to hold if in Definition 3
both w and h occur at some periods s after t+ 1.

Though perhaps surprising, this result has a simple intuition. Set t = 1 in Definition
3 and imagine that x and y correspond to higher and lower consumption. From the
viewpoint of a grandmother (generation 0), a reduction in her son’s consumption from x

to y can be compensated by an increase in her granddaughter’s consumption, h, that is
large enough to sufficiently increase her granddaughter’s well-being as well as her son’s
well-being through his altruism towards his daughter. However, because the grandmother
takes directly into account her granddaughter’s well-being, the level h that renders her
indifferent may be insufficient to render her son indifferent. This implies that if the
grandmother were in the same situation of her son, she would also strictly prefer not
to reduce her own consumption from x to y even if her child received h. Thus, the
grandmother appears to be less impatient with respect to delaying consumption when
future generations are affected than when she is directly affected.

3.3 Time-separable, Stationary Preferences

To obtain sharper results, we now refine the general representation V in (4), by consider-
ing preferences that satisfy some form of intergenerational separability and stationarity.
These properties will also yield tractability. In this section, we go back to considering
only one single preference, namely that of generation 0.

The first axiom captures the idea that � is separable across generations—that is, sep-
arable between generation 0’s consumption and future generations’ well-being, as well as
across their well-being. Intuitively, this means that the well-being of future generations
does not affect how generation 0 enjoys its own consumption. Moreover, the well-being
of generation t does not influence how generation 0 ranks the well-being of any other gen-
eration s. As such, this notion of separability captures a minimal, appealing degree of
fairness in the way generation 0 is altruistic towards future generations. To state Axiom
6, let Π consist of all unions of subsets of {{1}, {2}, {3, 4, . . .}}.
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Axiom 6 (Intergenerational Separability). Fix any π ∈ Π. If c, ĉ, c′, ĉ′ ∈ C satisfy
(i) tc ∼ tĉ and tc

′ ∼ tĉ
′ for all t ∈ π,

(ii) tc ∼ tc
′ and tĉ ∼ tĉ

′ for all t ∈ N \ π,
(iii) either c0 = c′0 and ĉ0 = ĉ′0, or c0 = ĉ0 and c′0 = ĉ′0,
then c � c′ if and only if ĉ � ĉ′.

To illustrate Axiom 6, consider π = {1}. Suppose that c and c′ give the same con-
sumption to generation 0 and, according to its viewpoint, yield the same well-being for
all future generations except generation 1. Suppose that, due to generation’s 1 different
well-being, generation 0 prefers c to c′. Now, consider changing c and c′ (to ĉ and ĉ′)
in any way so that the well-being that generation 0 ascribes to generation 1 does not
change, while generation 0’s consumption and the well-being that it ascribes to all other
generations changes in the same way. According to the axiom, generation 0 should prefer
ĉ to ĉ′, thereby continuing to let the well-being of generation 1 determine its current
ranking. At a formal level, Axiom 6 is inspired by Debreu’s (1960) and Koopmans’
(1960) separability axioms. It differs, however, at a substantive level in requiring that
certain consumption streams be indifferent from generation 0’s viewpoint, rather than
that certain physical consumptions be equal. This is because we want separability in
future generation’s well-being as perceived by generation 0.

Axiom 7 captures some weak and natural monotonicity property of altruistic prefer-
ences. First, everything else equal, generation 0 is better off if it thinks that generation 1
will be better off. Second, if for any horizon T and any common consumption stream of
the generations after T generation 0 prefers the consumption of the first T generations
implied by c to that implied by c′, then it also prefers the whole stream c to c′. Intuitively,
the second property rules out the possibility that the well-being ascribed to a generation
in the infinite future could overturn how generation 0 ranks c and c′, even though, having
fixed that generation’s well-being, generation 0 thinks that all intermediate generations
are better off with c than with c′.

Axiom 7 (Monotonicity). Let c and c′ be any stream in C.
(i) If c0 = c′0, 1c � 1c

′, and tc ∼ tc
′ for all t > 1, then c � c′.

(ii) If for any T and continuation stream c′′ we have (c0, c1, ..., cT , c
′′) % (c′0, c

′
1, ..., c

′
T , c
′′),

then c % c′ .

Two Notions of Stationarity

All properties introduced so far (Axioms 1-7) are also satisfied by Koopmans’ (1960)
standard model of intertemporal preferences—i.e., by a representation of the form U(c) =
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V̂ (u(c0), U(1c)) with V̂ strictly increasing in each argument, and hence by the EDU
model. Thus, both indirectly and directly purely-altruistic preferences satisfy these ax-
ioms. It turns out that it is possible to distinguish these kinds of altruism in terms of
one single additional property, called stationarity. Adding Koopmans’ (1960) notion of
stationarity to Axioms 1-7 completes the characterization of indirectly purely-altruistic
preferences, by delivering representation U(c) = V̂ (u(c0), U(1c)). We discuss this notion
at the end of this section and explain why it appears problematic to us.

Our new notion of stationarity takes the theory to a different path and characterizes
direct pure altruism. This notion focuses on the altruistic component of generation
0’s preference by considering only changes in consumption streams that involve future
generations, but leave its current consumption unchanged. Intuitively, if generation 0
cares directly about the well-being of generations beyond its immediate descendant in a
coherent way, it should be possible to “remove” generation 1 and preserve how generation
0 ranks the consumption streams starting from generation 2 onward. Clearly, for this
comparison to be meaningful, we must start from a situation in which how generation 0
ranks two streams in the presence of generation 1 depends only on the well-being that
generation 0 ascribes to subsequent generations but not on the well-being of generation 1.
By requiring that grandparents directly cares about the well-being of their grandchildren,
great grandchildren, and so on in a coherent way, Axiom 8 also has a natural normative
appeal.

Axiom 8 (Altruism Stationarity). If c, c′ ∈ C satisfy c0 = c′0 and 1c ∼ 1c
′, then

c % c′ ⇔ (c0, 2c) % (c′0, 2c
′).

To gain intuition for Axiom 8, suppose that c and c′ give the same consumption to
a grandmother and that she thinks that her son is overall indifferent between 1c and

1c
′ after he takes into account his consumption as well as the well-being of his daugh-

ter, granddaughter, and so on. In particular, suppose that their well-beings induce the
grandmother, who cares directly about them, to prefer c to c′. Then, the axiom says that
if the son were to unfortunately die, his mother should continue to prefer 2c to 2c

′ for her
granddaughter and so on.

These axioms lead to the representation in Theorem 3 below, one of the paper’s main
results. Intuitively, by the theorem it is as if generation 0 derives a utility u from its
consumption, as usual, and an altruism utility G from the well-being of future genera-
tions, which it discounts exponentially as generations move farther away in the lineage.18

18Rogers (1994) suggests an evolutionary justification based on genetic relationship for why generation
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Moreover, G is bounded, so the well-being of future generations can have only a limited
impact on generation 0’s well-being. Intuitively, this generation cannot become infinitely
happy or unhappy just from its altruism towards its descendants. No bound applies,
however, to the consumption utility u.

Theorem 3 (Additive Pure-Altruism Representation). Axioms 1-8 hold if and only if
the function U may be chosen so that

U(c) = u(c0) +
∞∑
t=1

αtG(U(tc)) (5)

where α ∈ (0, 1), u : X → R and G : U → R are continuous, nonconstant functions,
and G is strictly increasing and bounded. Moreover, if û, α̂, and Ĝ represent the same �
as in (5), then α̂ = α and there exist a > 0 and b ∈ R such that û(x) = au(x) + b and
Ĝ(Û) = aG( Û−b

a
) for all c, x, and Û .

The theorem’s proof relies on known results in Debreu (1960) and Koopmans (1960).
However, a complication arises in our setting. In general, the set F of streams of future
generations’ well-being induced by consumption streams in C (see (3)) is not a Carte-
sian product, as generation t’s well-being depends on the well-being of its descendants.
Roughly speaking, to deal with this issue, the key is to show that (i) if we take any
stream f in F , there is an open neighborhood of f which belongs to F and has the
structure of a Cartesian product, and (ii) it is possible to “cover” F with countably many
of such neighborhoods which intersect with each other. Given (i) and (ii), we can obtain
a preliminary additive representation on each neighborhood. Relying on these represen-
tations’ uniqueness up to positive affine transformations, we can then “glue” all of them
into a single representation over the entire set F .19

One might wonder whether expression (5) is always well defined for any function G.
By Theorem 1 and Axiom 4, U is a nonconstant representation of � with values in
the interval U ⊂ R since X is connected. Therefore, there always exist streams c such
that U(c) is bounded. This implies joint restrictions on α and G. Proposition 3 identifies
a sufficient (and almost necessary) restriction for (5) to be well defined. It also shows
that the function U in (5) is such that the effect on current well-being of changes in
the consumption of future generations becomes arbitrarily small, if such changes occur
sufficiently far in the future.

0 may progressively care less about its children, grandchildren, and so on: every step in the lineage
reduces the share of genes that generation 0 can expect to have in common with that generation.

19This approach may be useful more generally to obtain separable models of a decision-maker who
exhibits pure altruism towards other individuals in society and takes into account that they are also
purely altruistic towards each other.
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Definition 4. A function U : C → R is H-continuous if, for every ε > 0, there exists
a time T (ε) such that the following holds: if c, c̃ ∈ C satisfy ct = c̃t for t ≤ T (ε),
then |U(c)− U(c̃)| < ε.20

Proposition 3.
(i) In representation (5), U is H-continuous and for ν ′, ν ∈ U

|G(ν ′)−G(ν)| < 1− α
α
|ν ′ − ν| .

(ii) Suppose G is strictly increasing, bounded, and K-Lipschitz continuous with K < 1−α
α

,
i.e., for all ν ′, ν ∈ U

|G(ν ′)−G(ν)| ≤ K |ν ′ − ν| .

Then, there exists a unique H-continuous function U : C → R that solves (5).

This result helps to choose G appropriately in applications. Moreover, it has sev-
eral implications regarding the properties of generation 0’s preference which we present
shortly.

Koopmans’ Stationarity and Imperfect Altruism

Koopmans’ (1960) model of intertemporal preferences is based on the general represen-
tation U(c) = V̂ (u(c0), U(1c)) with V̂ strictly increasing in each argument. To obtain
such a representation in the present paper’s framework, it is enough to add Koopmans’
stationarity axiom to Axioms 5-6.21

Axiom 9 (Koopmans’ Stationarity). 1c % 1c
′ if and only if (c0, 1c) % (c0, 1c

′).

Of course, as Koopmans (1960) showed, if we want to specialize V̂ to obtain the EDU
model, we need stronger separability assumptions. It is easy to see why Axiom 9 rules
out pure altruism. It says that, given her consumption c0, how a grandmother ranks the
consequences of streams 1c and 1c

′ for her son, granddaughter, great granddaughter, and
so on is always pinned down by how she thinks that her son ranks such consequences for
himself and his descendants. Therefore, the grandmother can care about the well-being
of her granddaughter, great granddaughter, and so on only through how they affect her
son’s well-being! This property seems too strong and rather unconvincing, or at least at
odds with the typical figure of a grandparent.

It is also worth emphasizing that, despite its formal similarity with time consistency,
Axiom 9 is conceptually very different. Indeed, Koopmans writes,

20This notion is similar to that of “continuity at infinity” of payoff functions in infinite-horizon games
(see, e.g., Fudenberg and Tirole (1991)).

21This set of axioms imply postulates 2-4 in Koopmans (1960).
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“[Stationarity] does not imply that, after one period has elapsed, the ordering then
applicable to the ‘then’ future will be the same as that now applicable to the
‘present’ future. All postulates are concerned with only one ordering, namely that
guiding decisions to be taken in the present. Any question of change or consistency
of preferences as the time of choice changes is therefore extraneous to the present
study.” (Koopmans et al. (1964), p. 85, emphasis in the original)

It is straightforward to construct examples of preferences {�t}∞t=0 that satisfy Axiom 9
but are not time consistent, and vice versa.

4 Properties of the Additive Pure-Altruism Represen-

tation

This section focuses on the additive pure-altruism representation of Theorem 3. We show
that it implies a number of additional properties of generation 0’s preference and it can
be easily applied to study intertemporal choice problems. We also show how a special
case of representation (5) corresponds to the β-δ model, which was first proposed by
Phelps and Pollak (1968) to capture “imperfect” intergenerational altruism and to study
its effects on savings and economic growth.

4.1 Selfishness Always Dominates

We may wonder whether a directly purely-altruistic generation may be willing to sacrifice
its consumption for the good of future generations, given the utility that it derives from
their improved well-being. Proposition 3 implies that the answer to this question is
no: a directly purely-altruistic generation 0 is always selfish, even though each future
generation’s well-being depends on all its descendants’ well-being and generation 0 fully
anticipates this.

Definition 5 (Selfishness). Let x, y ∈ X be such that (x, c) � (y, c) for all c ∈ C.
Then � exhibit selfishness if, for any t > 0, cx � cy where cx0 = x, cxt = y, cy0 = y, cyt = x,
and cxs = cys otherwise.

Selfishness differs from present bias (Definition 3). It refers to a trade-off that generation
0 may face between achieving higher satisfaction itself rather than granting more satis-
faction to some future generation. Present bias, by contrast, refers to how generation 0’s
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taste for earlier vs. later satisfaction changes between a situation in which it is directly
involved and a situation in which only future generations are involved.

Corollary 1. If axioms 1-8 hold, then � exhibits selfishness.

Representation (5) satisfies further properties regarding how generation 0 views future
generations as selfish and present biased. In a nutshell, generation 0 thinks that all
generations before t agree with generation t− 1 regarding the trade-offs that generation
t faces. First, suppose that generation 0 is indifferent between c and c′ which involve,
for some generation t > 0, the same trade-off as in Definition 3. Then, generation 0
also thinks that all generations s preceding generation t will be indifferent between sc

and sc
′ as well. Second, generation 0 views each future generation t as having its same

preference and hence being selfish as stated in Definition 5. But does generation 0 expect
generations s < t to support generation t’s selfishness? Because of time inconsistency,
the answer can go either way. However, if generation 0 thinks that generation t− 1 does
(not) agree with generation t, then it also thinks that all preceding generations do (not)
agree as well.22

4.2 A Bellman-type Equation for Optimal Consumption Policies

To see how to work with representation (5), consider the following intergenerational cake-
eating problem—it should be clear that the method described here can be generalized
to other Markovian decision problems. Generation 0 must commit to a policy specifying
how society will consume a finite amount of resources b, the cake size. Such a policy
corresponds to a stream (c0, c1, . . .) ∈ RN

+ that satisfies
∑

t≥0 ct ≤ b. Let C(b) be the set of
all nonnegative consumption streams satisfying this constraint. Based on representation
(5), generation 0’s optimal utility is given by

U∗(b) = sup
c0≤b
{u(c0) + αA(b− c0)}, (6)

where
A(b′) = sup

c′∈C(b′)

∞∑
t=0

αtG(U(tc
′)).

If we can solve for A, we can then easily determine the optimal allocation policy. Note
22In a finite-horizon setting, a representation of the form in (5) can imply that generation 0 is not

selfish in the following sense: It may be willing to sacrifice its consumption for the benefit of future
generations that are sufficiently close to it in the lineage. In short, this is because, with finite horizon,
expression (5) can represent well-defined preferences even if the function G is “steeper” than 1−α

α . In
this case, altruism can be strong enough to overcome discounting in the near future.

20



that, for any b ≥ 0, we can express A(b) as

A(b) = sup
c0≤b

{
sup

c′∈C(b−c0)

{
G

(
u(c0) + α

∞∑
t=0

αtG(U(tc
′))

)
+ α

∞∑
t=0

αtG(U(tc
′))

}}
.

With increasing G, this yields the following Bellman-type equation for A:

A(b) = sup
c0≤b
{G(u(c0) + αA(b− c0)) + αA(b− c0)} (7)

Given A, the maximization in (6) determines the optimal c0 and that in (7) determines ct
for all t > 0.

Equation (7) differs from usual Bellman equations mainly because the consumption-
utility term is inside the function G. Indeed, it reduces to a standard equation if G is
linear. However, under minor regularity conditions on G, (7) has a well-defined solu-
tion A. To see this, define the operator J on the set B(R+) of bounded real-valued
functions of R+ by

J (A)(b) = sup
c0≤b
{G(u(c0) + αA(b− c0)) + αA(b− c0)}.

Then, if G is bounded and K-Lipschitz continuous with K < (1 − α)/α, it is easy to
show that J is a contraction and therefore has a unique fixed point. So equation (7)
uniquely defines A. It is straightforward to approximate numerically this fixed-point,
which is just a univariate function, and the rate of convergence of numerical schemes is
given as a function of the Lipschitz constant of G.

When generation 0 cannot commit to a policy, time inconsistency leads to an equi-
librium problem, in which each generation t chooses its ct. Existence and properties
of Markovian equilibria in a similar setting—the ‘buffer-stock model,’ which includes
stochastic shocks to the state (b here)—have been studied by Ray (1987), Bernheim and
Ray (1989), Harris and Laibson (2001), and Quah and Strulovici (2013). Bernheim and
Ray study a set of utility functions that includes those in Theorem 3, so their equilibrium
analysis applies to the preferences studied here.

4.3 Intergenerational Rate of Utility Substitution

Representation (5) has interesting implications on how generation 0 trades off the con-
sumption of different future generations. By Axiom 6, separability holds between its con-
sumption and future generations’ well-being, as well as across their well-being. Nonethe-
less, how generation 0 trades off its consumption and that of generation t can depend
on the well-being—and hence consumption—of all other generations. This is because
generation t’s well-being affects the well-being of all preceding altruistic generations and
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takes account of the well-being of all subsequent generations.

To examine this, we consider generation 0’s discount function between 0 and t. Of
course, intergenerational trade-offs involving consumption also depend on the curvature
of u. To bypass this dependence, first note that by Theorem 3, given α and G, preference
� is entirely driven by the consumption utility u.

Corollary 2 (u-Representation). Given representation (5), there exists a nonconstant
function Û : INu → R (where Iu is u’s range) such that, for all c ∈ C,

U(c) = Û(u(c0), u(c1), . . .).

Relying on this result, given stream c, define us = u(cs) and the discount function as

d(t, c) =
∂Û(u0, u1, . . .)/∂ut

∂Û(u0, u1, . . .)/∂u0

. (8)

That is, d(t, c) is the marginal rate at which generation 0 substitutes consumption utility
between 0 and t. Note that in the EDU model d(t, c) = δt. For d(t, c) to be well defined,
the derivatives in (8) must exist. This is always the case when G is differentiable.23

Proposition 4. Suppose G in representation (5) is differentiable. Then, d(1, c) =

αG′(U(1c)) and, for t > 1,

d(t, c) = αtG′(U(tc))

[
1 +

t−1∑
τ=1

G′(U(t−τc))
τ−1∏
s=1

(1 +G′(U(t−sc)))

]
, (9)

where
∏τ−1

s=1(1 +G′(U(t−sc))) ≡ 1 if τ = 1.

This formula has a simple explanation. Suppose u(ct) rises by a small amount. This
has two effects from generation 0’s viewpoint: (1) generation t’s well-being rises, which
explains the term G′(U(tc)); consequently, (2) well-being also rises for each generation τ
between 1 and t, which explains the summation in (9). Moreover, the rise in U(tc) affects
U(t−τc) through all well-beings of generations between t − τ and t, which explains the
product in (9).

By Proposition 4, for general G the discount function d(t, c) depends not only on
generation t’s consumption, but also on all other future generations’ well-being—hence
it depends on the entire stream c. How d(t, c) varies with c ultimately depends on
the properties of G. If G’ is decreasing (increasing), then generation 0 discounts more
a stream yielding higher (lower) consumption utility to all generations. To state this
formally, for any c, c′ ∈ C, let c ≥u c′ if and only if u(ct) ≥ u(c′t) for all t ≥ 0.

23Note that, being increasing, G is already differentiable at almost every point in U .
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Corollary 3. Let d(t, c) be as in Proposition 4. For any t > 0, c ≥u c′ implies d(t, c) ≤
d(t, c′) if and only if G′ is decreasing. Conversely, c ≥u c′ implies d(t, c) ≥ d(t, c′) if and
only if G′ is increasing.

This result shows a tight link between discounting and G’s curvature, which may be
empirically tested. For instance, a concave G implies that, after learning that the living
standards of future generations will not improve as predicted by the historical trend,
generation 0 may become more willing sacrifice its current satisfaction (i.e., u(c0)) to
improve that of future generations (i.e., u(ct) for t > 0).

The only case in which d(t, c) is independent of c is when G is linear. Surprisingly, in
this case, the discount factor takes a very well-known form.

Corollary 4. Suppose G(U) = γU with γ ∈ (0, 1−α
α

). Then, for all t > 0,

d(t, c) = βδt,

where β = γ
1+γ

and δ = (1 + γ)α < 1.

Proof. By Proposition 4, the result is immediate for t = 1, 2. For t > 2,

d(t, c) = αtγ

[
1 + γ

t−1∑
τ=1

(1 + γ)τ−1

]
= αtγ(1 + γ)t−1.

Thus the class of preferences that Phelps and Pollak (1968) invented to model “im-
perfectly” altruistic generations is actually equivalent to a specific version of preferences
that exhibit direct pure altruism. Perhaps ironically, by contrast, the EDU model, which
Phelps and Pollak (1968) viewed as modeling “perfectly” altruistic generations, is actu-
ally a specific version of preferences that exhibit only indirect pure altruism. Thus the
present paper completely reverses the common view on which between exponential and
β-δ discounting captures a stronger degree of intergenerational altruism.

4.4 Quasi-hyperbolic Discounting of Consumption Utilities

Corollary 4 raises a natural question: Which properties of � correspond to linearity of G
and hence to quasi-hyperbolic discounting? As noted, unless G is linear, how generation
0 trades off its consumption and that of generation t depends on the well-being of all
other generations. This observation suggests Axiom 10.
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Axiom 10 (Consumption Independence).
(i) (c0, c1, 2c) � (c′0, c

′
1, 2c) if and only if (c0, c1, 2c

′) � (c′0, c
′
1, 2c

′);
(ii) (c0, c1, 2c) � (c′0, c1, 2c

′) if and only if (c0, c
′
1, 2c) � (c′0, c

′
1, 2c

′).

Intuitively, condition (i) says a grandmother trades off her consumption with that of
her son in a way that does not depend on the consumption and hence well-being of her
son’s descendants. Condition (ii) says that she trades off her consumption with that of
her son’s descendants in a way that does not depend on her son’s consumption.

Theorem 4 (Linear Pure-Altruism Representation). Axiom 1-8 and 10 hold if and only
if the function U may be chosen so that

U(c) = u(c0) +
∞∑
t=1

αtγU(tc), (10)

where α ∈ (0, 1), γ ∈ (0, 1−α
α

), and u : X → R is a continuous nonconstant function.

Corollary 5 (Quasi-hyperbolic Discounting). Axiom 1-8 and 10 hold if and only if there
are β, δ ∈ (0, 1) and a continuous nonconstant function u : X → R such that

U(c) = u(c0) + β
∞∑
t=1

δtu(ct).

Proof. By Theorem 4, for all t, U(c) is a strictly increasing, linear function of U(tc), which
is in turn a strictly increasing, linear function of u(ct). Hence, there exists a function
κ(t) : N \ {0} → R++ such that

U(c) = u(c0) +
∞∑
t=1

κ(t)u(ct).

Clearly, for all t > 0, κ(t) = d(t, c) defined in (8). Corollary 4 implies the result.

This result allows us to understand β-δ discounting of each generation’s consumption
utility in terms of simple properties of generation 0’s directly purely-altruistic preference.
This preference depends on two, conceptually different, entities: generation 0’s physical
consumption and the overall well-being of all future generations, about which generation
0 cares due to altruism. By rationally expecting all future generations to be altruistic
as well, however, generation 0 develops the view that future generations should be more
willing to sacrifice their consumption for the good of their descendant than how much
it itself is willing to sacrifice (present bias). Thus generation 0 treats its consumption
utility and that of all future generations in a systematically different way, a way that is,
however, coherent across generations as captured by our altruism stationarity (Axiom 8).
This explains what Phelps and Pollak (1968) called “imperfect” altruism (β < 1) and the
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stark form it takes in their model. Moreover, generation 0 evaluates its consumption and
the well-being of future generations in a separable way, and trades off its consumption
against that of any future generation in a way that does not depend on other generations’
well-being. This delivers the additive separability in terms of consumption utilities.

Corollary 5 provides a tight link between generation 0’s degree of present bias, β,
and its marginal utility from altruism, γ. In this linear representation, it is possible
to interpret γ as the degree to which generation 0 finds future generations’ well-being
“imaginable” or “vivid.” Note that this is distinct from how much generation 0 cares about
its descendants as the generational distance increases, which is captured by αt. Thus,
we identify two possible determinants of how much generation 0 is altruistic towards
generation t. Corollary 5 implies that β is directly proportional to γ, so generation
0 becomes less present biased when it anticipates more easily the well-being of future
generations.24 For its preference to be well-defined, however, γ cannot rise above a
certain level unless generation 0 discounts at a faster rate α its distance from future
generations.

Comparison with Other Axiomatizations of β-δ Discounting

Other papers axiomatize intertemporal preferences that correspond to the β-δ model
(for example, see Hayashi (2003); Olea and Strzalecki (2014)). These papers, however,
take the perspective of a single individual, not of different generations. To attempt a
comparison with the present paper, note that generation 0—the decision-maker in our
framework—essentially treats its descendants as future copies of itself. Thus, from a
single-individual perspective, one may view our analysis as describing an agent who
perceives himself as a collection of selves, one for each period t, and exhibits direct pure
altruism towards his future selves, expecting that they will do the same. Therefore,
self 0 directly cares about the well-being (i.e., U(tc)) of all his future selves through
intrapersonal altruism,25 an attitude that is revealed by his current, observable preference
over consumption streams.

This property that self 0 directly cares about all his future selves’ well-being would be
the first, key conceptual difference from the previous axiomatizations of β-δ discounting.

24Vividness of the well-being of future generations implied by today’s decisions may be influenced with
specific information campaigns. For example, consider the dramatic images that media and environmen-
tal organizations report on the catastrophic consequences of manmade climate change.

25The idea that an individual over time consists of a collection of selves is not new in economics (see,
for example, Strotz (1955) and Frederick (2003)) and has a long tradition in philosophy (see, for example,
Parfit (1971, 1976, 1982)). In this case, direct pure altruism simply means that the individual’s present
self cares about his future selves and fully anticipates that they will continue to do the same.
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Both Hayashi (2003) and Olea and Strzalecki (2014) adopt the common view that the
decision-maker cares about his per-period consumption utilities.26 Within this frame-
work, they replace Koopmans’ (1960) stationarity (Axiom 9) with quasi-stationarity,
namely stationarity from period 1 onward. However, quasi-stationarity seems difficult to
justify when the decision-maker evaluates streams based only on consumption utilities.
If he views consumption in the same way in all periods, why should stationarity hold
between period 1 and later periods, but not between period 0 and 1? This issue does
not arise with altruism stationarity (Axiom 8), for self 1’s well-being is equivalent to the
well-being of all future selves, but is different from self 0’s immediate consumption.

Second, to obtain the β-δ representation, Olea and Strzalecki (2014) need to ensure that
current and future per-period utilities are cardinally equivalent. Their ingenious axioms
permit useful experiments to identify and measure β and δ, but seem difficult to interpret.
Moreover, they introduce an explicit present-bias axiom to obtain β ≤ 1. By contrast,
when self-0 directly cares about the well-being he ascribes to all his future, similarly
altruistic selves, present bias follows as a general, logical consequence (Proposition 2).
Moreover, β-δ discounting is tightly linked with an intuitive consumption-independence
condition (Axiom 10).

Echenique et al. (2014) propose a different, interesting method to characterize several
models of intertemporal choice, including the EDU and β-δ model. Their starting point
is a data set consisting of a decision-maker’s choices of finite consumption streams from
standard budget sets and the prices of consumption at all dates that define such sets.
They then identify versions of the Generalized Axiom of Revealed Preference that the
data must satisfy to be consistent with the EDU and β-δ model, respectively. Using
real data from the experiment in Andreoni and Sprenger (2012), they apply their axioms
to classify subjects across models: roughly only one third of the 97 subjects is consis-
tent with either EDU or β-δ discounting, and about a half violates time separability in
consumption.

26This seems, at least, the most natural interpretation of the second paper, which is based on the idea
of annuity compensation: to avoid relying on assumptions of the form of u to elicit β and δ separately,
the idea is to consider fix compensation levels—and hence fixed u’s—and vary the time horizon at which
they occur, so as to find exact points of indifference for the decision-maker and hence infer the parameters
of the model. The decision-maker has different subjective views of the time distance between period 0
and 1 and between any two future periods. If he cares only about the u’s that he gets in each period,
then it is possible to objectively space out these u’s in an appropriate way so as to identify β and δ.

26



5 Welfare Analysis with Intergenerational Altruism

Models that allow for time-inconsistent preferences pose serious conceptual problems
when defining welfare criteria and addressing policy questions (see, e.g., Rubinstein
(2003); Bernheim and Rangel (2007, 2009)). Discussing β-δ discounting, Rubinstein
(2003) notes,

“Policy questions were freely discussed in these models even though welfare assess-
ment is particularly tricky in the presence of time inconsistency. The literature
often assumed, though with some hesitation, that the welfare criterion is the utility
function with stationary discounting rate δ (which is independent of β).” (p. 1208)

Other, perhaps more fundamental, issues are whether time inconsistency across genera-
tions’ preferences justifies some form of paternalistic interventions by a social planner,
and whether such preferences may have other properties that are normatively appealing.
Identifying and assessing rigorously these properties may be useful, for instance, if the
planner responds only to the preference of the currently alive generation, as in the case
of democratic governments.

An immediate consequence of the present paper is to weaken the case for paternalis-
tic interventions. If intergenerational time inconsistency were the result of some form of
bounded rationality or lack of consideration for future generations, one might be tempted
to argue that society can benefit from delegating its choices to a paternalistic planner.
This argument, however, is invalid if time inconsistency is the logical consequence of
direct pure altruism which every generation fully takes into account. In this case, the
currently alive generation 0 is already taking account of the preferences that it expects
all future generations to have, a property that is revealed through its current preference.
Thus, unless the planner has good reasons to believe that generation 0 anticipates fu-
ture generations’ preferences in a systematically incorrect way, we may argue that she
should simply adopt a “libertarian” stance and measure the welfare of any stream c using
WL(c) = U(c). This is the welfare criterion that is usually and uncontroversially applied
for time-consistent models, such as EDU.

Given the relationship between time consistency and the degree of intergenerational
altruism highlighted in this paper, a libertarian criterion WL seems even more appro-
priate for our model than for the standard, time-consistent model. For the latter model
WL corresponds to evaluating consumption streams for the entire society based only on
generation 0’s consumption utility and how it thinks that generation 1 will rank the
remaining entire streams. For our model, by contrast, WL evaluates streams based on
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generation 0’s consumption utility and how it thinks that all future generations will rank
the streams they will face for their remaining future. For example, consider two policies,
A and B, inducing streams cA and cB such that 1c

A ∼ 1c
B but tc

A � tc
B for all t > 1.

Then the WL based on the standard, time-consistent model (such as EDU) implies that
policy A is as desirable as B. By contrast, the WL based on our model implies that A
is strictly more desirable. Thus, the second criterion is more sensitive to the long-run
consequences of policies and treats future generations in a more fair way rather than
catering entirely to generation 1. These properties seem appealing for a welfare criterion.

In the case of our additive pure-altruism representation in Theorem 3, its core axioms
also suggest that generation 0 treats future generations in an equitable and coherent way,
thereby adding normative appeal to the criterion WL(c) = U(c) for this representation.
Intergenerational separability (Axiom 6) implies that the well-being of some generation
t affect neither how generation 0 evaluates its own physical consumption nor how it
cares about other generations’ well-being. Altruism stationarity (Axiom 8) implies that
generation 0 treats the well-being of all future generations in a coherent way.

Despite generation 0’s direct pure altruism, one may still argue that a libertarian crite-
rion does not sufficiently take into account the preferences of future generations. Thus,
we may want to consider paternalistic welfare criteria that aggregate the preferences (i.e.,
well-being) across all generations. A natural question is also whether we can find an ag-
gregator which, despite the preferences’ time inconsistency, renders the social planner
time consistent. A simple candidate seems

WD(c) =
∞∑
t=0

w(t)U(tc), (11)

where w : N→ R++. In this case, we obtain the following.

Proposition 5. Suppose U(c) can be represented as in Theorem 4 and Corollary 5, with
corresponding parameters (u, α, γ) and (u, β, δ). Then,

WD(c) =
∞∑
t=0

δtu(ct) (12)

if and only if w(t) = αt.

One direction of this result follows from an intuitive argument—the other is provided in
Appendix A. Let W (c) =

∑∞
t=0 α

tU(tc). Using α-γ representation of U(c) in Theorem 4,
we have

W (c) = u(c0) + (1 + γ)α
∑
t≥1

αt−1U(tc) = u(c0) + (1 + γ)αW (1c).
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This shows why the planner is time consistent and W (c) corresponds to the sum of
consumption utilities exponentially discounted with factor δ̂ = (1 + γ)α. Of course, we
know from Corollaries 4 and 5 that δ̂ = δ in the β-δ version of U(c). However, to see
why this has to be the case for any δ̂, note that the α-γ representation satisfies

U(c) = u(c0) + γαW (1c) = u(c0) +
γα

δ̂

∑
t>0

δ̂tu(ct).

It follows that U(c) must have a quasi-hyperbolic representation in terms of consumption
utilities, where the long-run discount factor coincides with the planner’s factor.

Proposition 5 is remarkable for several reasons. First, for a specific, though renowned,
model of intergenerational altruism, there exists a paternalistic welfare criterion that
aggregates the time-inconsistent preferences of all generations, yet renders the social
planner time consistent. Moreover, this criterion is completely determined by properties
of generation 0’s revealed preference: its consumption utility, u, its constant marginal
utility of altruism, γ, and the rate at which it discounts the gap from future generations,
α. Second, it is well-known that, if we want the social planner to be time consistent,
to treat the consumption of different generations in an additively separable way, and
to conform to each generation’s consumption utility, then WD must take the form of
exponential discounting as in (12) for some discount factor δ̂. This renders the criterion
in (12) a natural and appealing benchmark.

Third, a result similar to Proposition 5 does not hold for more general representations
of directly purely-altruistic preferences, such as that in Theorem 3. Even if we consider
WD(c) =

∑∞
t=0 α

tU(tc),27 when U(tc) can be represented as in (5) with a general func-
tion G, the planner need not satisfy the standard notion of time consistency—that is,
WD(c0, 1c) ≥ WD(c0, 1c

′) if and only ifWD(1c) ≥ WD(1c
′). The reason is that generation

0 and the planner trade off the well-being of future generations in different ways. Thus,
when the planner has to take into account the preference of generation 0, she may strictly
prefer (c0, 1c) to (c0, 1c

′). However, if the planner disregards generation 0’s opinion, she
may strictly prefer 1c

′ to 1c.28

One may wonder whether in the case of indirect pure altruism it is possible to aggregate
the preferences of all time-consistent generations with a criterion that renders the planner
time consistent. In the case of EDU—i.e., U(tc) =

∑∞
t=0 δ

tu(ct)—one might rely on δ

to aggregate well-being across generations using the criterion Ŵ (c) =
∑∞

t=0 δ
tU(tc) (see,

27Note that a welfare criterion of the form W (c) =
∑∞
t=0 r

tU(tc) with 0 < r < 1 trades off streams of
well-being in a time-consistent manner.

28Formally, it is possible to construct examples in which
∑∞
t=1 α

tG(U(tc)) >
∑∞
t=1 α

tG(U(tc
′)) and∑∞

t=1 α
t[G(U(tc)) + U(tc)] >

∑∞
t=1 α

t[G(U(tc
′)) + U(tc

′)], but
∑∞
t=1 α

tU(tc) <
∑∞
t=1 α

tU(tc
′). In this

case, WD(c0, 1c) > WD(c0, 1c
′), but WD(1c) < WD(1c

′).

29



e.g., Ray (2014)). Doing so, however, makes the planner time inconsistent. Indeed, one
can show that Ŵ (c) = u(c0)+

∑∞
t=1 δ

t(1 + t)u(ct).

In short, except for the case of Phelps and Pollack’s (1968) quasi-hyperbolic model,
pure altruism across generations—whether direct or indirect—raises serious challenges if
we want to construct a welfare criterion that both takes into account the preferences of
all generations and renders a planner time consistent.
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A Appendix: Proofs of the Main Results

A.1 Proof of Proposition 2

Let U(c) = V (c0, U(1c), U(2c), . . .) where V is strictly increasing in U(tc) for all t > 0. By
definition, (x, c) � (y, c) means that U(x, c) > U(y, c). Hence, for all 0 ≤ s ≤ t,

U(szt, x, c) > U(szt, y, c),

where, for s < t, szt = (zs, . . . , zt) and tzt = zt. This follows by induction. For s = t,

U(tzt, x, c) = V (tzt, U(x, c), U(c), . . .) > V (tzt, U(y, c), U(c), . . .) = U(tzt, y, c).

Now suppose that the claim holds for r + 1 ≤ s ≤ t, with 0 ≤ r < t. Then

U(rzt, x, c) = V (zr, U(r+1zt, x, c), . . . , U(tzt, x, c), U(x, c), . . .)

> V (zr, U(r+1zt, y, c), . . . , U(tzt, y, c), U(y, c), . . .) = U(rzt, y, c).

By definition, (0zt, x, w, c
′) ∼ (0zt, y, h, c

′) means that

V (z0, U(1zt, x, w, c
′), . . . , U(tzt, x, w, c

′), U(x,w, c′), U(w, c′), . . .)

= V (z0, U(1zt, y, h, c
′), . . . , U(tzt, y, h, c

′), U(y, h, c′), U(h, c′), . . .).

Since U(0zt, x, c) > U(0zt, y, c) for all c,

V (z0, U(1zt, y, w, c
′), . . . , U(tzt, y, w, c

′), U(y, w, c′), U(w, c′), . . .)

< V (z0, U(1zt, y, h, c
′), . . . , U(zt, y, h, c

′), U(y, h, c′), U(h, c′), . . .).

This implies that U(h, c′) > U(w, c′). Otherwise, U(y, h, c′) ≤ U(y, w, c′) and, by induction,
U(szt, y, h, c

′) ≤ U(szt, y, w, c
′) for all 0 ≤ s ≤ t, which is a contradiction.

Finally, we must have U(x,w, c′) > U(y, h, c′). Otherwise, again by induction, for all 0 ≤ s ≤ t

U(szt, y, h, c
′) > U(szt, x, w, c

′),

which contradicts (0zt, x, w, c
′) ∼ (0zt, y, h, c

′).

Suppose that we replace condition (0zt, x, w, c
′) ∼ (0zt, y, h, c

′) with (0zt, x, t+2zs, w, c
′) ∼

(0zt, y, t+2zs, h, c
′) where s ≥ t + 2. By the same argument as before, (0zt, y, t+2zs, w, c

′) ≺
(0zt, y, t+2zs, h, c

′) and so (h, c′) � (w, c′). If not, by induction (τzs, w, c
′) % (τzs, h, c

′) for
all 0 ≤ τ ≤ s (where zt+1 = y). Then, we must have (x, t+2zs, w, c

′) � (y, t+2zs, h, c
′). If

not, since (τzs, h, c
′) � (τzs, w, c

′) for all t + 2 ≤ τ ≤ s, we would have (0zt, y, t+2zs, h, c
′) �
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(0zt, x, t+2zs, w, c
′).

A.2 Proof of Theorem 3

By the definition of F in (3), note that F need not be a Cartesian product, as ft depends on fs
for s > t. Letting tf = (ft, ft+1, . . .), we can denote elements in F by (f1, f2, . . . , ft−1, tf). On
F0 = X ×F (where f0(c) = c0), the primitive � induces a �∗ with representation V : F0 → R;
by Theorem 2, �∗ is well defined. If F0 were a Cartesian product, we could mimic the steps
in Debreu (1960) (Theorem 3) and Koopmans (1972) on the domain F0 to prove our theorem.
However, this is not possible. We will then proceed as follows. In step 1, we show that�∗ satisfies
the essentiality and strong separability properties at the heart of Debreu’s (1960) Theorem 3. In
step 2, we show that the ranking of streams (f0, f1, f2, 3f) ∈ F0 depends only on a function of 3f ;
so we can restrict attention to a four dimensional space. In step 3, we show that this space is a
Cartesian product ‘locally;’ so we can apply Debreu’s result to obtain an additive representation
‘locally.’ Since additive representations are unique up to positive, affine transformations, we can
extend uniquely the additive representation to the entire F0. In step 4, we show that this
representation takes the form in our Theorem 3.

Step 1. Lemma 1 says that, if (f0, f1, f2, 3f) �∗ (f ′0, f
′
1, f
′
2, 3f

′), then changing the common
components of (f0, f1, f2, 3f) and (f ′0, f

′
1, f
′
2, 3f

′) in the same way leaves the ranking under �∗

unchanged.

Lemma 1. Fix any nonempty subset π of {0, 1, 2, 3}. Then

(f0, f1, f2, 3f) �∗ (f ′0, f
′
1, f
′
2, 3f

′)⇔ (f̂0, f̂1, f̂2, 3f̂) �∗ (f̂ ′0, f̂
′
1, f̂
′
2, 3f̂

′),

where ft = f̂t, f ′t = f̂ ′t, 3f = 3f̂ , and 3f
′ = 3f̂

′ if t or 3 are in π, and ft = f ′t, f̂t = f̂ ′t, 3f = 3f
′,

and 3f̂ = 3f̂
′ if t or 3 are not in π.

Proof. Recall that tc ∼ tc
′ is equivalent to ft = f ′t . Then, by Axiom 6, for any π

V (f0, f1, f2, 3f) > V (f ′0, f
′
1, f
′
2, 3f

′)⇔ V (f̂0, f̂1, f̂2, 3f̂) > V (f̂ ′0, f̂
′
1, f̂
′
2, 3f̂

′).

Using Lemma 1 with π = {0} and π = {1, 2, 3}, we obtain the following.

Lemma 2. The function V : F0 → R can be written in the form

V (f) = W (u(f0), d(1f)), (13)
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where u : X → Iu ⊂ R and d : F → D ⊂ R. W is jointly continuous in its two arguments and
strictly increasing in each of them, u is continuous, and Iu and D are non-degenerate intervals.

Proof. Consider �∗ on X × F and Lemma 1 with π = {0} and π = {1, 2, 3}. By an argument
similar to that in Section 5 of Koopmans’ (1960), for any f we can write V (f) = W (u(f0), d(1f)),
where u(f0) = V (f0, 1f̂) for some 1f̂ ∈ F and d(1f) = V (f ′0, 1f) for some f ′0 ∈ X. Recall that
V (f(c)) = U(c) for all c ∈ C. Hence, the continuity property of U implies continuity of u. By
Axiom 4, neither u nor d can be constant. Since X is connected, u takes all values in a connected
interval Iu ⊂ R. Since d(1f(c)) = U(f ′0, 1c), U is continuous, and X is connected, d takes all
values in a connected interval D ⊂ R. By definition of u and Lemma 1 with π = {0}, W must
be strictly increasing in its first argument on Iu. Similarly, by definition of d and Lemma 1
with π = {1, 2, 3}, W must be strictly increasing in its second argument on D. Given ĉ, U(·, 1ĉ)

takes values in an interval. Then the strictly increasing W (·, d(1f(ĉ))) also takes values in an
interval and hence must be continuous in its first argument on Iu. By a similar argument, W
must be continuous in its second argument, and hence jointly continuous on Iu ×D.

Hereafter, let u = sup Iu and u = inf Iu. Also note that the function d in Lemma 2 defines a
ranking on F .

Lemma 3. There exist x, y, z, x′, y′, z′ ∈ X and c ∈ C such that (i) (z, c) � (z′, c), (ii)
(y, z, c) ∼ (y′z′, c), and (iii) (x, y, z, c) ∼ (x′, y′, z′, c).

Proof. By Axiom 4, there exist z, z′ ∈ X and c ∈ C such that (z, c) � (z′, c). Using represen-
tation (13), we have u(z) > u(z′). Now, consider (y′, z, c) and (y, z′, c) where y = z and y′ = z′.
By Axiom 7(i), (y′, z, c) � (y′, z′, c).

Case 1: (y, z′, c) % (y′, z, c). Since Iu is connected, we can modify y to y′′ ∈ X so that u(y′′)

takes any value in [u(y′), u(y)]. By Axiom 2, there exists y′′ such that (y′′, z′, c) ∼ (y′, z, c);
moreover, we must have u(y′′) > u(y′). Now consider (x, y′′, z′, c) and (x′, y′, z, c) where x = z

and x′ = z′. By Axiom 7(i), (x′, z, c) � (x′, z′, c); so, by Axiom 8, (x′, y′, z, c) � (x′, y′′, z′, c).

Case 1.1: (x, y′′, z′, c) % (x′, y′, z, c). Since we can modify x to x′′ ∈ X so that u(x′′) takes
any value in [u(x′), u(x)], by Axiom 2, there exists x′′ such that (x′′, y′′, z′, c) ∼ (x′, y′, z, c).

Case 1.2: (x, y′′, z′, c) ≺ (x′, y′, z, c). We can modify z and y′′ to ỹ, z̃ ∈ X so that u(z̃) and u(ỹ)

take any value in [u(z′), u(z)] and [u(y′), u(y′′)]. Moreover, we can do so maintaining (ỹ, z′, c) ∼
(y′, z̃, c) by Axiom 2. Since (x, y′, z′, c) � (x′, y′, z′, c), by Axiom 2, there exist ỹ and z̃ such that
(x, ỹ, z′, c) ∼ (x′, y′, z̃, c). Finally, we must have u(z̃) > u(z′), so (z̃, c) � (z′, c).

Case 2: (y, z′, c) ≺ (y′, z, c). We can modify z to ẑ ∈ X so that u(ẑ) takes any value in
[u(z′), u(z)]. Since (y, z′, c) � (y′, z′, c), by Axiom 2 there exists ẑ such that (y, z′, c) ∼ (y′, ẑ, c),
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and by Axiom 7(i) we must have (ẑ, c) � (z′, c) and hence u(ẑ) > u(z′). Now consider (x, y, z′, c)

and (x′, y′, ẑ, c) where x = z and x′ = z′.

Case 2.1: (x, y, z′, c) % (x′, y′, ẑ, c). We can modify x to x̂ so that u(x̂) takes any value in
[u(x′), u(x)]. By Axiom 7(i), (x′, z′, c) ≺ (x′, ẑ, c); so, by Axiom 8, (x′, y, z′, c) ≺ (x′, y′, ẑ, c).
Then, by Axiom 2 there exists x̂ such that (x̂, y, z′, c) ∼ (x′, y′, ẑ, c).

Case 2.2: (x, y, z′, c) ≺ (x′, y′, ẑ, c). We can modify y and ẑ to ŷ and ẑ′ so that u(ŷ) and u(ẑ′)

take any value in [u(y′), u(y)] and [u(z′), u(ẑ)]. Moreover, we can do so maintaining (ŷ, z′, c) ∼
(y′, ẑ′, c) by Axiom 2. Since (x, y′, z′, c) � (x′, y′, z′, c), by Axiom 2 there exists ŷ and ẑ′ such
that (x, ŷ, z′, c) ∼ (x′, y′, ẑ′, c).

Hereafter, for t ∈ {0, 1, 2, 3}, we will refer to the factor t of F0 as the component of position
t+1 in the representation (f0, f1, f2, 3f) of every f ∈ F0 (e.g., the factor 2 is the third component
of every (f0, f1, f2, 3f) ∈ F0).

Definition 6 (Debreu (1960)). For t ∈ {0, 1, 2}, if f �∗ f ′ for some f, f ′ ∈ F0 with fs = f ′s

for all s 6= t, then the factor t of F0 is called essential for �∗. If (f0, f1, f2, 3f) �∗ (f ′0, f
′
1, f
′
2, 3f

′)

for some f, f ′ ∈ F0 with fs = f ′s for s = 0, 1, 2, then the factor 3 is called essential for �∗.

Lemma 4. For all t ∈ {0, 1, 2, 3}, the factor t of F0 is essential.

Proof. By Axiom 4, the factor 0 is essential. Using the streams in Lemma 3, let 1c = (x, y, z, c)

and 1c
′ = (x′, y′, z′, c) and consider the corresponding f and f ′ in F0 with any f0 = f ′0. We

have f1 = f ′1, f2 = f ′2, f3 > f ′3, and ft = f ′t for all t > 3. By Axiom 7(i), (f0, f3, f4, 5f) �∗

(f ′0, f
′
3, f
′
4, 5f

′), hence the factor 1 is essential. By Axiom 8, (f0, f2, f3, 4f) �∗ (f ′0, f
′
2, f
′
3, 4f

′)

and (f0, f1, f2, 3f) �∗ (f ′0, f
′
1, f
′
2, 3f

′). So the factors 2 and 3 are essential.

Step 2. By Lemma 1 with π = {2, 3}, �∗ also satisfies the following property:

(f0, f1, 2f) �∗ (f0, f1, 2f
′)⇔ (f̂0, f̂1, 2f) �∗ (f̂0, f̂1, 2f

′).

Define Q̃ = {(f1(c), d(2f(c))) : c ∈ C}. Note that Q̃ ⊂ U × D, but it need not be a Cartesian
product because the value of d affects that of f1.

Lemma 5. There exists a continuous function Ṽ : X × Q̃ → R such that, for all f ∈ F0,

V (f) = Ṽ (f0, f1, d(2f)), (14)
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where d is the function defined in Lemma 2. For any f1, f ′1, d
′, and d′′ we have the following:

(5.i) if (f1, d
′′) and (f ′1, d

′′) are in Q̃, Ṽ (f0, f1, d
′′) > Ṽ (f0, f

′
1, d
′′) iff29 f1 > f ′1;

(5.ii) if (f1, d
′) and (f1, d

′′) are in Q̃, Ṽ (f0, f1, d
′) > Ṽ (f0, f1, d

′′) iff d′ > d′′.

Proof. Recall that d(·) defines a ranking on F and that 2f ∈ F . For any (f0, f1, 2f) and
(f ′0, f

′
1, 2f

′) such that both (f0, f1, 2f
′) and (f ′0, f

′
1, 2f) are in F0, by Lemma 1 with π = {2, 3},

V (f0, f1, 2f) ≥ V (f0, f1, 2f
′) iff V (f ′0, f

′
1, 2f) ≥ V (f ′0, f

′
1, 2f

′). Moreover, for any (f1, 2f) and
(f1, 2f

′) in F , by Axiom 8, V (f0, f1, 2f) ≥ V (f0, f1, 2f
′) iff W (u(f0), d(2f)) ≥ W (u(f0), d(2f

′)),
and therefore iff d(2f) ≥ d(2f

′). So, the ranking of (f0, f1, 2f) and (f0, f1, 2f
′) depends only on

the value of d(·). Now, for any f ∈ F0, set

Ṽ (f0, f1, d(2f)) = V (f0, f1, 2f).

The previous argument implies property (5.i).

Ṽ is well defined for the following reasons. First, if (f0, f1, 2f) and (f ′0, f
′
1, 2f

′) are such that
ft = f ′t for t = 0, 1 and d(2f) = d(2f

′), then V (f0, f1, 2f) = V (f ′0, f
′
1, 2f

′) again by Axiom 8.
Second, if (f0, f1, 2f) and (f ′0, f

′
1, 2f

′) are such that either (f0, f1, 2f
′) /∈ F0 or (f ′0, f

′
1, 2f) /∈ F0,

then (f0, f1) 6= (f ′0, f
′
1). So, even if d(2f) = d(2f

′), Ṽ (f0, f1, d(2f)) can be different from
Ṽ (f ′0, f

′
1, d(2f

′)).

Consider now (f1, d
′′), (f ′1, d

′′) ∈ Q̃. There exist c, c′ ∈ C, such that ft = ft(c) and f ′t = ft(c
′)

for t = 0, 1, and d(2f(c)) = d(2f(c′)) = d′′. By Lemma 2, without loss, we can assume that

2c = 2c
′ so that 2f(c) = 2f(c′) = 2f

′′. By Axiom 7(i), then V (f0, f1, 2f
′′) > V (f0, f

′
1, 2f

′′) iff
f1 > f ′1, and property (5.ii) follows from (14).

Finally, Ṽ is continuous for the following reasons. For any (f1, d) ∈ Q̃, Ṽ (·, f1, d) = U(·, 1c)

for any c such that f1 = f1(c) and d = d(2f(c)). Hence, the continuity property of U implies
that Ṽ is continuous in its first argument. Given any f0 and d ∈ D, Ṽ (f0, ·, d) = U(f0, ·, 2c) for
some c such that f0(c) = f0 and d = d(2f(c)). Hence, Ṽ must take value in a connected interval
and, being strictly increasing, it must be continuous in its second argument given f0 and d. By
a similar argument, for any (f0, f1), Ṽ (f0, f1, ·) must take values in a connected interval and,
being strictly increasing, it must be continuous in its last argument. It follows that Ṽ must be
continuous on the connected set X × Q̃.

Now define Q = {(f1(c), f2(c), d(3f(c))) : c ∈ C}. By an argument similar to that in the proof
of Lemma 5, using Lemma 1 with π = {3}, we obtain the following.

29Hereafter, “iff” stands for “if and only if.”
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Lemma 6. There exists a continuous function V : X ×Q → R such that, for all f ∈ F0,

V (f) = V (f0, f1, f2, d(3f)), (15)

where d is the function defined in Lemma 2. Moreover, for any f1, f ′1, f2, f ′2, d
′, and d′′ we

have the following:
(6.i) if (f1, f2, d

′), (f ′1, f2, d
′) ∈ Q, then V (f0, f1, f2, d

′) > V (f0, f
′
1, f2, d

′) iff f1 > f ′1;
(6.ii) if (f1, f2, d

′), (f1, f
′
2, d
′) ∈ Q, then V (f0, f1, f2, d

′) > V (f0, f1, f
′
2, d
′) iff f2 > f ′2;

(6.iii) if (f1, f2, d
′), (f1, f2, d

′′) ∈ Q, then V (f0, f1, f2, d
′) > V (f0, f1, f2, d

′′) iff d′ > d′′.

Hereafter, for any c ∈ C, let d3(c) = d(3f(c)). Also, we say that c ∈ C induces (f0, f1, f2, d3) ∈
X×Q if ft(c) = ft for t = 0, 1, 2 and d3(c) = d3. Note that the function V defines a preference �̄
on X ×Q; moreover, by definition, for c, c′ ∈ C

(f0(c), f1(c), f2(c), d3(c))�̄(f0(c′), f1(c′), f2(c′), d3(c′))⇔ f(c) �∗ f(c′).

Lemma 7. The preference �̄ satisfies the following property (see Definition 4 in Debreu
(1960)). Fix any nonempty subset π of {0, 1, 2, 3}. Then

(f0, f1, f2, d3)�̄(f ′0, f
′
1, f
′
2, d
′
3)⇔ (f̂0, f̂1, f̂2, d̂3)�̄(f̂ ′0, f̂

′
1, f̂
′
2, d̂
′
3)

where ft = f̂t, f ′t = f̂ ′t, d3 = d̂3, and d′3 = d̂′3 if t or 3 are in π, and ft = f ′t, f̂t = f̂ ′t, d3 = d′3,
and d̂3 = d̂′3 if t or 3 are not in π.

Proof. Given π, let πc be its complement. If 3 ∈ πc, then there exist c, c′, ĉ, ĉ′ ∈ C such
that, for t = 0, 1, 2, ft = ft(c), f ′t = ft(c

′), f̂ ′t = ft(ĉ
′), f̂t = ft(ĉ), d(3f(c)) = d(3f(c′)), and

d(3f(ĉ)) = d(3f(ĉ′)). Then, by Lemma 2, f2(c) = f2(c0, c1, c2, 3c
′) and f2(ĉ) = f2(ĉ0, ĉ1, ĉ2, 3ĉ

′).
Similarly, by Lemma 5, f1(c) = f1(c0, c1, c2, 3c

′) and f1(ĉ) = f1(ĉ0, ĉ1, ĉ2, 3ĉ
′). Therefore, we can

take 3c = 3c
′ and 3ĉ = 3ĉ

′, so that 3f = 3f
′ and 3f̂ = 3f̂

′.30 It follows from Lemma 1, that

V (f0, f1, f2, 3f) > V (f ′0, f
′
1, f
′
2, 3f

′)⇔ V (f̂0, f̂1, f̂2, 3f̂) > V (f̂ ′0, f̂
′
1, f̂
′
2, 3f̂

′).

Hence, by (15), the result follows.

Suppose 3 ∈ π. Again, there exist c, c′, ĉ, ĉ′ ∈ C, each inducing the respective element of
X×Q—in particular, d(3f(c)) = d(3f(ĉ)) and d(3f(c′)) = d(3f(ĉ′)). Then, by Lemma 2, f2(c) =

f2(c0, c1, c2, 3ĉ) and f2(c′) = f2(c′0, c
′
1, c
′
2, 3ĉ

′). Similarly, by Lemma 5, f1(c) = f1(c0, c1, c2, 3ĉ)

and f1(c′) = f1(c′0, c
′
1, c
′
2, 3ĉ

′). Therefore, we can take 3c = 3ĉ and 3c
′ = 3ĉ

′, so that 3f = 3f̂ and

30Recall that by Lemma 6, if (f0, f1, f2, 3f̃) and (f0, f1, f2, 3f̃
′) are in F0 and d(3f̃) = d(3f̃

′), then
V (f0, f1, f2, 3f̃) = V (f0, f1, f2, 3f̃

′).
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3f
′ = 3f̂

′. It follows again from Lemma 1, that

V (f0, f1, f2, 3f) > V (f ′0, f
′
1, f
′
2, 3f

′)⇔ V (f̂0, f̂1, f̂2, 3f̂) > V (f̂ ′0, f̂
′
1, f̂
′
2, 3f̂

′).

Hence, by (15), the result follows.

Step 3: Let O be the set of vectors (f1(c), f2(c), d(3f(c))) for c ∈ C, such that u < u(ct) < u

for t = 1, 2 and d(3f(c)) ∈ intD. It is straightforward to check that O is nonempty and that Q
is included in the closure of O.31

Lemma 8. For any (f1, f2, d3) ∈ O, there exists η > 0 such that the rectangle

R(f1, f2, d3; η) = (f1 − η, f1 + η)× (f2 − η, f2 + η)× (d3 − η, d3 + η)

lies in O.

Proof. Fix (f1, f2, d3) ∈ O and, for the inducing c, let ut = u(ct) for t = 1, 2. Since d3 ∈ intD,
there is an interval (d3, d3) ⊂ D containing d3. Since u < u2 < u, given d3, there is an interval
(f

2
(d3), f2(d3)) ⊂ U , containing f2 and spanned by u2 ∈ intIu. Let η′ > 0 be such that

[d3 − η′, d3 + η′] ⊂ (d3, d3). By the properties of W in Lemma 2, there exists η′ > 0 such that
f

2
(d3) < f

2
(d3 +η′) < f2 and f2(d3) > f2(d3−η′) > f2. Hence, for all d′3 ∈ [d3−η′, d3 +η′], all

f ′2 ∈ [f2−ε(η′), f2+ε(η′)] are achievable by changing only u2, where ε(η′) = min{f2−f2
(d3+η′),

f2(d3−η′)−f2}. Since u < u1 < u, given f2 and d3, there is an interval (f
1
(f2, d3), f1(f2, d3)) ⊂

U , containing f1 and spanned by u1 ∈ intIu. By the properties of Ṽ in Lemma 5, there exist
η′′ > 0 and ε′′ > 0 such that [d3−η′′, d3 +η′′] ⊂ (d3, d3), [f2−ε′′, f2 +ε′′] ⊂ (f

2
(d3), f2(d3)), and

f
1
(f2, d3) < f

1
(f2 + ε′′, d3 + η′′) < f1 and f1(f2, d3) > f1(f2 − ε′′, d3 − η′′) > f1. Hence, for all

(f ′′2 , d
′′
3) ∈ [f2−ε′′, f2+ε′′]× [d3−η′′, d3+η′′], all f ′′1 ∈ [f1−δ(ε′′, η′′), f1+δ(ε′′, η′′)] are achievable

by changing only u1, where δ(ε′′, η′′) = min{f1− f1
(f2 + ε′′, d3 + η′′), f1(f2− ε′′, d3− η′′)− f1}.

Let η̂ = min{η′, η′′}, ε = min{ε(η̂), ε′′}, and δ = δ(ε, η̂). Noting that ε(η̂) ≥ ε(η′) and letting
η = min{η̂, ε, δ}, we have that all (f ′1, f

′
2, d
′
3) in R(f1, f2, d3; η) are induced by some c ∈ C and

belong to O.

31To see that O 6= ∅, consider any constant c′ ∈ C such that u < u(c′0) < u. By changing c′3 so that
u(c3) varies continuously in an open interval around u(c′3), by continuity of U we can continuously span
an open interval around f3(c′). By Axiom 7(i), this variation in c3 leads to variations in f2(c), which
must span an open interval around f2(c′), again by continuity of U . Since we are not changing c′2, by
Lemma 2, d3(c) must change in an open interval around d3(c′). Finally, by Lemma 5, f1(c) must also
vary continuously in an open interval around f1(c′). To see that Q ⊂ clO, notice that any point of Q
induced by some c ∈ C can be approximated, by slightly modifying c, by a c′ such that d3(c′) ∈ intD
and u(c′t) ∈ intIu for t = 1, 2, i.e., a point in O.
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Lemma 9. O is connected.

Proof. We will show that O is path connected and hence connected. Take any (f ′1, f
′
2, d
′
3),

(f ′′1 , f
′′
2 , d
′′
3) ∈ O with inducing streams c′, c′′ ∈ C. By definition, u(c′t), u(c′′t ) ∈ intIu for t = 1, 2

and d′3, d′′3 ∈ intD. Since D is an interval, we can vary consumption from t = 3 onward, creating
a path from 3c

′ to 3c
′′ so as to cover the interval between d′3 and d′′3. Along this path d3 remains

in intD; moreover, by Lemma 2, f2 varies covering an interval between f ′2 and f2(c′0, c
′
1, c
′
2, 3c

′′),
and by Lemma 5, f1 varies covering an interval between f ′1 and f1(c′0, c

′
1, c
′
2, 3c

′′). Since c′1 and
c′2 are unchanged, all (f1, f2, d3) along the path are in O. Now fix 3c = 3c

′′ and vary c2 to
create a path from c′2 to c′′2 so as to cover the interval between u(c′2) and u(c′′2). Along this
path u(c2) remains in intIu; moreover, by Lemma 2, f2 varies covering the interval between
f2(c′0, c

′
1, c
′
2, 3c

′′) and f2(c′0, c
′
1, c
′′
2, 3c

′′), and by Lemma 5, f1 varies covering an interval between
f1(c′0, c

′
1, c
′
2, 3c

′′) and f1(c′0, c
′
1, c
′′
2, 3c

′′). Since c′1 is unchanged, again all (f1, f2, d3) along this
second path are in O. Finally, fix 2c = 2c

′′ and vary c1 to create a path from c′1 to c′′1 so as to
cover the interval between u(c′1) and u(c′′1). Along this path u(c1) remains in intIu; moreover, by
Lemma 2, f1 varies covering the interval between f1(c′0, c

′
1, c
′′
2, 3c

′′) and f1(c′0, c
′′
1, c
′′
2, 3c

′′). Since
c′′2 is unchanged, again all (f1, f2, d3) along this third path are in O. The three paths together
form a connected path from (f ′1, f

′
2, d
′
3) to (f ′′1 , f

′′
2 , d
′′
3) which never leaves O.

We are now ready to obtain an additive representation of �̄, relying on Debreu (1960).

Lemma 10. The preference �̄ over X ×Q can be represented by an additive function

V 0(f0, f1, f2, d3) = û(f0) + a(f1) + b(f2) + ζ(d3),

where û, a, b, and ζ are continuous, and a, b, ζ are strictly increasing on U .

Proof. We first show that �̄ has an additive representation over X×O. By continuity, we then
extend this representation to X ×Q. The representation of �̄ over X ×Q immediately implies
the desired representation of �∗ on F0.

The set O may be expressed as a countable union of open rectangles {Ri}i∈N of the form in
Lemma 8, and such that for any j there is an i < j such that Ri ∩ Rj 6= ∅. To construct
{Ri}i∈N, proceed as follows. Let {Bn}∞n=1 be the sequence of closed balls of radius n centered
at the origin in R3. Then, let

Kn = {o ∈ O | o ∈ Bn,B1/n(o) ⊂ O},

where B1/n(o) is the open ball of radius 1/n centered at point o. For each n, Kn is compact32

32Kn is clearly bounded. Consider any sequence {om} ⊂ Kn converging to o′. Since Bn is closed,
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and the increasing sequence {Kn}∞n=1 converges to O. So, each Kn can be covered by finitely
many rectangles of the form in Lemma 8. Since Kn ⊂ Kn+1, when moving from Kn to Kn+1,
one can cover Kn+1 by simply adding rectangles to those used to cover Kn. Without loss, any
added rectangle contains a point with rational coordinates not contained in other rectangles, so
that the list of rectangles needed to cover O, denoted by {Ri}i∈N, is countable. Finally, since
O is connected, each Rj must intersect at least another Ri. For simplicity, we can relabel the
rectangles so that, for each j, we have Rj ∩Ri 6= ∅ for some i < j.

For any Ri, Lemmas 4 and 7 guarantee that the hypotheses of Debreu’s (1960) Theorem 3 are
satisfied on X ×Ri. Therefore, �̄ may be expressed over each X ×Ri as

V i(f0, f1, f2, d3) = ûi(f0) + ai(f1) + bi(f2) + ζi(d3),

for functions ûi, ai, bi, and ζi that are continuous and, except for ûi, strictly increasing by the
properties of V̄ which induces �̄.33

By construction, R0 and R1 have a nonempty open intersection. Over X × (R0 ∩ R1) rep-
resentations V 0 and V 1 must be positive affine transformations of each other (Debreu’s (1960)
Theorem 3). So there exist constants ρ > 0 and χ ∈ R such that, on X × (R0 ∩R1),

û0(f0) = ρû1(f0) + χ, a0(f1) = ρa1(f1), b0(f2) = ρb1(f2), ζ0(d3) = ρζ1(d3).

Using these conditions, we can extend û0, a0, b0, and ζ0 to the set X × (R0 ∪R1). Indeed, each
function ai, bi, and ζi is defined on Rik which denotes the projection of Ri on the kth dimension
of Q. Consider a0. By extending a0 over R1

1 \ R0
1 using a1, the resulting function a0 is well

defined and continuous on R0
1∪R1

1. By a similar reasoning for b0 and ζ0, the function V 0 can be
extended to X × (R0

1 ∪R1
1)× (R0

2 ∪R1
2)× (R0

3 ∪R1
3). Since this product includes X ×R0 ∪R1,

the function V 0 is, in particular, well defined and continuous on it.

Finally, since for each j > 0 we have Rj ∩Ri 6= ∅ for some i < j, we can extend by induction
representation V 0 from X × R0 to X × (∪i∈NRi) = X × O, in countably many steps. Notice
that the functions a, b, and ζ (we henceforth omit the superscript ‘0’) entering the formula of
V 0 are defined, through the induction, over the respective projections of O.

Since any point of X × O is contained in X ×Ri for some i ∈ N, V 0 and its components û,
a, b, and ζ are continuous over X × O. Moreover, V 0 represents �̄ on X × O. To see this,
we need to check that for any (f ′0, f

′
1, f
′
2, d
′
3) and (f ′′0 , f

′′
1 , f

′′
2 , d
′′
3) in X × O, V 0(f ′0, f

′
1, f
′
2, d
′
3) >

V 0(f ′′0 , f
′′
1 , f

′′
2 , d
′′
3) iff (f ′0, f

′
1, f
′
2, d
′
3)�̄ (f ′′0 , f

′′
1 , f

′′
2 , d
′′
3). Note that (f ′1, f

′
2, d
′
3) and (f ′′1 , f

′′
2 , d
′′
3) must

both belong to some Kn in the previous construction. Since V 0 represents �̄ on X × Kn, it

o′ ∈ Bn. There remains to show that B1/n(o′) ⊂ O. Let o′′ be any point such that ||o′ − o′′|| = r < 1/n.
Then ||o′′ − om|| ≤ r + ||o′ − om||. So, for m large enough, o′′ ∈ B1/n(om) and hence o′′ ∈ O.

33While Debreu’s theorem requires that the preference domain be a Cartesian product, it does not
assume compactness of the sets forming the product.
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ranks (f ′0, f
′
1, f
′
2, d
′
3) and (f ′′0 , f

′′
1 , f

′′
2 , d
′′
3) correctly, which proves the claim.

It remains to show that V 0 can be extended to the entire domain X × Q, additively, and
that it represents �̄ over this domain. We first show that V 0 can be extended to a continuous
function over X × Q. Recall that V is continuous and represents �̄ over X × Q—and hence
over X ×O. So, there exists a strictly increasing map φ : Y → Y 0 such that V 0 = φ ◦ V , where
Y 0 and Y are the ranges of V 0 and V on X ×O. Y 0 and Y are intervals of R because X ×O is
connected and V 0 and V are continuous over this domain. Since φ is strictly increasing, it must
be continuous on its domain, otherwise it would not cover Y 0. Let Y be the range of V over
X × Q. Since X × Q ⊂ cl(X × O) and V is continuous, Y contains at most two more points
than Y (its boundaries), and this may occur only when the relevant boundaries are finite. One
can extend φ to these points, whenever applicable, by taking the limit of φ: for example, if ȳ
denotes the upper bound of Y and y /∈ Y , one may define φ(ȳ) as limy↑ȳ φ(y).34 Finally, we can
extend V 0 to X ×Q by letting V 0 = φ ◦V over this domain. By construction, V 0 is continuous
as the composition of continuous functions.

Next, we show that this extension of V 0 to X × Q still obeys the additive representation
obtained on X ×O in terms of û, a, b and ζ. We first show that a, b, and ζ can be extended on
the relevant projections of Q (not just of O). Since O is connected and Q ⊂ clO, the extension
is only needed (possibly) at the two boundaries of D for ζ, and at the boundaries of U for a and
b; these extensions are necessary only if these boundaries are achieved by some (f1, f2, d3) ∈ Q.

To extend ζ, suppose that there is an (f1, f2, d3) ∈ Q such that d3 is the upper bound of D—the
other case follows similarly. Without loss, we can choose f1, f2 ∈ intU .35 By perturbing c3, we
can then construct a sequence {(fn1 , fn2 , dn3 )} such that fn1 and fn2 are in some compactK ⊂ intU
and dn3 ∈ intD for all n, and dn3 → d3. By construction, each (fn1 , f

n
2 , d

n
3 ) ∈ O. Fixing some f0,

the sum û(f0) + a(fn1 ) + b(fn2 ) + ζ(dn3 ) is well defined and equal to V 0(f0, f
n
1 , f

n
2 , d

n
3 ) for each n.

Moreover, possibly moving to subsequences, fn1 → f̂1 and fn2 → f̂2 for some f̂1, f̂2 ∈ K. Since a
and b are continuous over K, a(fn1 ) and b(fn2 ) converge on these subsequences. Therefore, ζ(d3)

34One can show that for ȳ ∈ Y \ Y , limy↑ȳ φ(y) must be finite. Suppose not: First, there exist i)
s̄ = (f̄0, f̄1, f̄2, d̄) ∈ X×Q such that V̄ (s̄) = ȳ, which means that the agent prefers s̄ to any other stream;
and ii) a sequence sn = (fn0 , f

n
1 , f

n
2 , d

n) ∈ X ×O that converges to s̄, and such that V 0(sn) diverges to
+∞. Because V 0 is additive, this means that there must be at least one sequence, among û(fn0 ), a(fn1 ),
b(fn2 ), and ζ(dn), with a subsequence diverging to +∞. For example, suppose that dn is such that ζ(dn)
diverges to +∞. Then, for any stream c such that d(3f(c)) = d̄, we have V̄ (f0(c), f1(c), f2(c), d̄(c)) = ȳ.
Indeed, fix any c0 and ct’s such that u < u(ct) < ū for t ∈ 1, 2. Choosing the sequence of continuation
streams (c3, . . .) corresponding to the sequence of dn converging to d̄, V 0 evaluated at those streams
(and the fixed c0, c1, c2) must diverge to +∞. This implies that V̄ converges to ȳ for that sequence. By
continuity of V̄ over its entire domain, this implies that when choosing (c3, . . .) such that d(3f(c)) = d̄, we
have V̄ (f0(c), f1(c), f2(c), d(3f(c))) = ȳ, regardless of the values of c0, c1, c2. This, however, violates the
fact that preferences are strictly increasing in u(c0) (Lemma 2), a contradiction. A similar contradiction
can be derived if instead û(fn0 ), or a(fn1 ), or b(fn2 ) has a subsequence diverging to +∞. This shows that
necessarily Y0 is bounded above whenever ȳ ∈ Ȳ \ Y . By a similar argument for the lower bound, we
conclude that φ is bounded at any boundary for which it needs to be extended.

35This can be achieved by changing c1 and c2 of the stream inducing (f1, f2, d3), without affecting d3.
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is well defined as the difference V 0(f0, f̂1, f̂2, d3)− û(f0)−a(f̂1)− b(f̂2), because V 0 has already
been extended to (f0, f̂1, f̂2, d3). Moreover, since V 0 was extended continuously over X × Q,
ζ must also be continuous at d3.

We can similarly extend b to the boundary of U , whenever needed. To see this, take any
(f1, f2, d3) ∈ Q such that f2 lies at a boundary of U , say f2 = ν̄—again, the other case follows
similarly. Moreover, we can choose c1 in the inducing stream c ∈ C so that f1 ∈ intU . By
perturbing c2, we can build a sequence {(fn1 , fn2 , d3)} such that fn1 is in a compact K ⊂ intU
and fn2 ∈ intU for all n, and fn2 → ν. Possibly taking a subsequence such that fn1 → f̂1 for
some f̂1 ∈ K, we obtain a well define limit for V 0, a, and ζ, from which we can obtain the value
of b(ν̄). The argument for a is identical.

In conclusion, the function û(·) + a(·) + b(·) + ζ(·) is equal to V 0 over the entire set X ×Q,
and represents �̄ over this domain.

Step 4: By Lemma 1 with π = {1, 2, 3}, for any f0 ∈ X, the induced preference �∗−0 on F is
independent of f0. By Lemma 10, we can conclude that �∗−0 has a representation

V ∗−0(f1, f2, 3f) = a(f1) + b(f2) + ζ(d(3f)). (16)

Note that Axiom 8 holds for any f0. So if f1 = f ′1, (f1, f2, 3f) %∗−0 (f ′1, f
′
2, 3f

′) iff (f2, f3, 4f) %∗−0

(f ′2, f
′
3, 4f

′).

Lemma 11. There exist α > 0, ξ ∈ R, and G : U → R continuous and strictly increasing such
that, for any finite T ≥ 2 any f ∈ F ,

V ∗−0(f) =
T∑
t=1

αtG(ft) + αT d̃(T+1f) + ξ
T−2∑
t=0

αt. (17)

Proof. Consider again R0 in the proof of Lemma 10. By definition of a rectangle, if (f1, f2, 3f)

and (f ′1, f
′
2, 3f

′) are such that (f1, f2, d(3f)), (f ′1, f
′
2, d(3f

′)) ∈ R0, then all f̂1 ∈ R0
1 are feasible

with both (f2, 3f) and (f ′2, 3f
′). By the stationarity property of �∗−0, we have

a(f̂1) + b(f2) + ζ(d(3f)) ≥ a(f̂1Let) + b(f ′2) + ζ(d(3f
′))

iff
a(f2) + b(f3) + ζ(d(4f)) ≥ a(f ′2) + b(f ′3) + ζ(d(4f

′)).

Hence, since additive representations are unique up to positive affine transformations, for all
(f2, 3f) such that (f1, f2, d(3f)) ∈ R0,

α(a(f2) + b(f3) + ζ(d(4f))) + ξ = b(f2) + ζ(d(3f)) (18)
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for some α > 0 and ξ ∈ R.

The argument used for R0 can be equivalently applied to any Ri in the covering {Ri}i∈N of O.
Moreover, since for each j > 0 we have Rj ∩Ri 6= ∅ for some i < j, it is clear that the α in (18)
must be the same for all f ∈ F such that (f1, f2, d(3f)) ∈ O. That (18) must hold for all f ∈ F
is implied by the following two observations. First, if c ∈ C induces (f1, f2, d3) ∈ O, it imposes
no restriction on d(4f(c)), which can take any value in D—hence 4f can take any value in F .
To see this, recall that for f ∈ F we defined d(f) = V (f̂0, f) for some f̂0 ∈ X, and V (f̂0, f) =

Ṽ (f̂0, f1, d(2f)) by Lemma 5. So, since Ṽ is strictly increasing in its second and third argument,
the condition d3(c) ∈ intD only implies f3(c) ∈ intU , but d(4f(c)) can be at the boundary of
D. Therefore, (18) already holds for any value of 4f ∈ F . Second, suppose that f is such that
(f1, f2, d(3f)) is at boundary of Q. Take a sequence {fn} such that (fn1 , f

n
2 , d(3f

n)) ∈ O for all
n and converges to (f1, f2, d(3f)). The sequence can be chosen so that 4f is fixed: perturbing
only c1, c2, and c3 is enough to guarantee that we are in O. Now recall that the functions a, b,
and ζ are continuous by Lemma 10. Then, the right-hand side of (18) converges, as do the first
two terms of the left-hand side. The last term is constant and equal to ζ(d(4f)), so it converges
trivially. Therefore (18) holds everywhere.

We conclude that, for all f ∈ F ,

V ∗−0(f1, f2, 3f) = a(f1) + ξ + αV ∗−0(f2, f3, 4f).

Therefore, using this condition recursively and (16), for any f ∈ F and finite T > 2, we have

V ∗−0(f1, f2, 3f) =

T−1∑
t=0

αta(ft+1) + αT−1(b(fT+1) + ζ(d(T+2f))) + ξ
T−2∑
t=0

αt.

The result then follows by defining G = α−1a and d̃(·) = α−1(b(·) + ζ(d(·))).

By Lemma 11, for any finite T ≥ 2, we can represent � for streams c as

U(c) = û(c0) +
T∑
t=1

αtG(U(tc)) + αT d̃(U(T+1c), U(T+2c), . . .) + ξ
T−2∑
t=0

αt. (19)

The next two technical lemmas will be useful to complete the proof of our theorem.

Lemma 12. For any constant streams c, c′ ∈ C, c � c′ iff û(c0) > û(c′0).

Proof. Suppose û(x) > û(y) and consider c = (x, x, . . .) and ĉ = (x, y, . . .). For any t ≥ 0 and
c′′ ∈ C, define ct = (c0, . . . , ct, c

′′) and ĉt = (ĉ0, . . . , ĉt, c
′′). For t = 0, we have U(ct) = U(ĉt).

For any t > 0, using (19), we first have U(tc
t) > U(tĉ

t). Then, using again (19) backward
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recursively and monotonicity of G, we conclude that U(ct) ≥ U(ĉt). Since this is true for any
t ≥ 0 and c′′ ∈ C, Axiom 7(ii) implies c % ĉ. Now note that, again by (19), ĉ � (y, y, . . .).
Hence, by Axiom 1, c � (y, y, . . .).

Now suppose û(x) = û(y) and consider c = (x, x, . . .) and ĉ = (y, y, . . .). For any t and
c′′ ∈ C, define ct and ĉt as before. Using again (19) backward recursively and the fact that G is
a function, we conclude that U(ct) = U(ĉt). Since this is true for any t and c′′ ∈ C, Axiom 7(ii)
implies c ∼ c′.

Lemma 13. For any c ∈ C, there exists x ∈ X such that c ∼ (x, x, . . .).

Proof. By Lemma 19 in Appendix B, for any c ∈ C, there exists y ∈ X such that c ∼
(c0, y, y, . . .). Suppose (c0, y, y, . . .) 6∼ (y, y, . . .). If (c0, y, y, . . .) � (y, y, . . .), then û(c0) >

û(y). Let ĉ = (c0, c0, . . .) and c̃ = (c0, y, y, . . .). For any t ≥ 0 and any c′′ ∈ C, consider
ĉt = (ĉ0, . . . , ĉt, c

′′) and c̃t = (c̃0, . . . , c̃t, c
′′). We have ĉt % c̃t. Indeed, for t = 0, ĉt = c̃t.

For t > 0, we can proceed using (19). Since û(c0) > û(y), U(tĉ
t) > U(tc̃

t). For s < t, since
û(ĉts) ≥ û(c̃ts) and G is strictly increasing, we have U(sĉ

t) ≥ U(sc̃
t). By Axiom 7(ii), we then

have ĉ % c̃ and hence (c0, c0, . . .) % c � (y, y, . . .). Since X is connected, by Axiom 2, there
exists x ∈ X such that (x, x, . . .) ∼ c. The case (c0, y, y, . . .) ≺ (y, y, . . .) follows similarly.

We can now prove that α < 1.

Lemma 14. α < 1.

Proof. Consider consumption streams that are constant from t = 3 onward. Then ft is constant
for t ≥ 3. So we can write d(3f) = d(4f) = e(f3) in (18) and thus obtain

(1− α)e(f3) = αb(f3) + αa(f2)− b(f2) + ξ.

First, note that f3 > f ′3 implies e(f3) > e(f ′3). By Lemma 12, f3 > f ′3 implies u(c3) > u(c′3).
Define c = (c3, c3, . . .) and c′ = (c3, c

′
3, c
′
3, . . . ). Replicating the argument in the proof of Lemma

13, we have c % (c3, c3, c
′
3, c
′
3, . . . ). Moreover, by Axiom 7(i), (c3, c3, c

′
3, c
′
3, . . . ) � c′. Then,

by Axiom 1 and Lemma 2, W (u(c3), d(f3, f3, . . .)) > W (u(c3), d(f ′3, f
′
3, . . .)), which holds iff

d(f3, f3, . . .) > d(f ′3, f
′
3, . . .).

Second, we can find ĉ, c̃ ∈ C, constant from t = 3 onward, such that f2(ĉ) = f2(c̃) and
f3(ĉ) > f3(c̃). Consider x, y ∈ X with u(x) > u(y) and the streams (x, y, y, . . .) and (y, x, x, . . .).
By the previous argument based on Axiom 7(ii), (x, x, x, . . .) � (x, y, y, . . .). If (x, y, y, . . .) %

(y, x, x, . . .), then by (19) and continuity of û there exists z ∈ X such that (x, y, y, . . .) ∼
(z, x, x, . . .). In this case, let ĉ = (c0, c1, z, x, x, . . .). If (x, y, y, . . .) ≺ (y, x, x, . . .), then by
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Axiom 2 there exists w ∈ X such that (x, y, y, . . .) ∼ (y, w,w, . . .). Moreover, u(w) > u(y).
Otherwise, since (y, y, y, . . .) % (y, w,w, . . .) for u(y) ≥ u(w) (again by the same argument
as before), we would have (x, y, y, . . .) � (y, w,w, . . .) by (19) and Axiom 1. In this case, let
ĉ = (c0, c1, y, w,w, . . .). Finally, let c̃ = (c0, c1, x, y, y, . . .).

To conclude the proof, note that for c ∈ {ĉ, c̃}, (1 − α)e(f3(c)) = αb(f3(c)) + ξ′ for some
constant ξ′. Since b and e are strictly increasing, we must have α < 1.

Note that, if c is constant from any T ≥ 3 onward, by Lemma 14 and (18)

d̃(U(T c), U(T+1c), . . .) =
α

1− α
G(U(T c)) +

ξ

α(1− α)
.

So, for eventually constant streams, we can write

U(c) = û(c0) +
T∑
t=1

αtG(U(tc)) +
αT+1

1− α
G(U(T+1c)) +

1 + α(1− αT−1)

α(1− α)
ξ. (20)

Lemma 15. G is bounded on U .

Proof. By Axiom 3, V ∗−0 is finite for all c ∈ C. Suppose that G is unbounded above—the other
case follows similarly. Then, for each r ∈ R++, there must be a stream cr with utility U r such
that Gr ≡ G(U r) ≥ r. Moreover, for r > r′, we can choose cr and cr

′ so that Gr > Gr
′ ,

relying on continuity of G and connectedness of U . By Lemma 13, for each r we can also let
cr be constant. As a preliminary observation, note the following: given r′ > r, a stream c that
equals cr for the first k periods and cr′ forever after must satisfy G(U(c)) ≥ r. This is because,
by definition, U(tc) > U(tc

r) for t ≥ k; then, by monotonicity of G and using (20) backward
recursively, we have U(tc) > U(tc

r) for 0 ≤ t < k.

Now construct stream ĉ as follows. For some M > 1 and each t > 0, consider the constant
stream c(M/α)t with the property αtG(M/α)t ≥ M t. Then, let ĉ0 be such that u < û(ĉ0) < u

and, for each t > 1, let ĉt = c
(M/α)t

t . Now, for any T > 0, let cT be equal to ĉ up to T and to
c(M/α)T thereafter. Using (20), we have

U(cT ) =û(ĉ0) +

T−1∑
t=1

αtG(U(tc
T )) +

αT

1− α
G(M/α)T +

1 + α(1− αT−2)

α(1− α)
ξ

≥û(ĉ0) +

T−1∑
t=1

M t +
1

1− α
MT +

1 + α(1− αT−2)

α(1− α)
ξ,

where the inequality follows by recursively applying our preliminary observation. Note that the
lower bound on U(cT ) goes to +∞ as T →∞.
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Now fix any T and cT . To simplify notation, let c̃ = cT . Using Axiom 7(ii), we have U(ĉ) ≥
U(c̃). To see this, consider any t ≥ 0 and c′′ ∈ C, and let ĉt = (ĉ0, . . . , ĉt, c

′′) and c̃t =

(c̃0, . . . , c̃t, c
′′). For t ≤ T , we have ĉt ∼ c̃t because the two streams are identical. For t > T , we

first have that u(ĉs) > u(c̃s) for T < s ≤ t by Lemma 12. Hence, U(ĉt, c
′′) > U(c̃t, c

′′). Second,
using again monotonicity of G and (17) recursively, we conclude U(ĉt) ≥ U(c̃t). By Axiom 7(ii),
we then have the claimed property.

It follows that, for any T , U(ĉ) ≥ U(cT ) and hence, since û(ĉ0) is bounded by assumption,
V ∗−0(f(ĉ)) must be infinite, violating Axiom 3.

Lemma 16. For any c ∈ C, U(c) = û(c0) +
∑∞

t=1 α
tG(U(tc)).

Proof. Again by Axiom 3, V ∗−0 is finite for all c ∈ C. Using (17) for any finite T and observing
that T f can take any value in F , we conclude that the function d̃ must be finite because G is
bounded. The result then follows by letting T →∞, relying on α < 1 and ignoring the additive
constant.

To conclude, both functions U and U represent � over C. So, they are strictly increasing
transformations of one another. Letting G denote the function of U such that G(U(c)) =

G(U(c)) for all c, we obtain representation (5). For uniqueness, note that the additive form of
U is unique up to positive affine transformations, i.e., Ũ = ρU + χ for ρ > 0 and χ ∈ R. So,

Ũ(c) = ρû(c0) + χ+
∞∑
t=1

αtρG(U(tc)) = ρû(c0) + χ+
∞∑
t=1

αtρG

(
Ũ(tc)− χ

ρ

)
.

A.3 Proof of Proposition 3

Part (i). Take ν ′, ν ∈ U . By definition, there exist c′, c ∈ C such that U(c′) = ν ′ and U(c) = ν.
By Lemma 13, we can take c′ = (x, x, . . .) and c = (y, y, . . .) for some x, y ∈ X. Suppose
u(x) > u(y). Then, by Lemma 12, U(x, . . .) > U(y, . . . ). By representation (5),

U(x)− α

1− α
G(U(x)) > U(y)− α

1− α
G(U(y)).

Rearranging, we get that for any ν ′ > ν in U

G(ν ′)−G(ν) <
1− α
α

(ν ′ − ν).
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Lemma 17. For any ε > 0, there exists a constant K ∈ (1−α
2α ,

1−α
α ) such that, for all ν ′ > ν

in U ,
G(ν ′)−G(ν) ≤ max{K(ν ′ − ν), ε} (21)

Proof. See Appendix B (Online Appendix).

To show that U is H-continuous, consider any c, c̃ ∈ C and define cT = (c0, c1, . . . , cT , c) and
c̃T = (c0, c1, . . . , cT , c̃). Using Lemma 17, we will show that for any ε > 0, there exists T such
that

|U(cT )− U(c̃T )| < 2αε

1− α
. (22)

To do so, let M = α
1−α2 supν∈U |G(U)| and δ = (1 + K)α). Since K < (1 − α)/α, we have

δ < 1. Let T denote the first time such that KMδT < ε. Note that for all t < T , we have
max{KMδt, ε} = KMδt.

We first show that for all t < T , we have |U(ct)−U(c̃t)| ≤Mδt. The proof works by induction.
For t = 0, we have ct0 = c̃t0, so

|U(c0)− U(c̃0)| =
∞∑
s=1

αs|G(U(sc
0))−G(U(sc̃

0))| ≤M

Suppose the claim holds for t < T − 1, we will show it holds for t+ 1. We have

|U(ct+1)− U(c̃t+1)| ≤ α|G(U(1c
t+1))−G(U(1c̃

t+1))| (23)

+α
∞∑
s=1

αs|G(U(s+1c
t+1))−G(U(s+1c̃

t+1))|.

By the induction hypothesis, the sum in (23) is bounded above byMδt. And because t < T −1,
we have KMδt ≥ ε. Therefore,

|U(c)− U(c′)| ≤ αKMδt + αMδt ≤Mδt+1,

which shows the claim.

Finally, for t = T , (23) still applies, but this time the first term is bounded by αε, because
KMδT < ε. This implies that

|U(c)− U(c′)| ≤ αε+ αMδT ≤ αε+ αε/K = δε/K.

Since δ < 1 and K > (1− α)/2α, (22) follows.

Part (ii). Let C(M) be the set of consumption streams such that |u(ct)| ≤ M for all t, and
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B(M) be the space of bounded real-valued functions with domain C(M). Endowed with the
sup norm ‖U‖∞ = supc∈C(M) |U(c)|, B(M) is a complete metric space. Let J be the operator
on B(M) defined by

J (U)(c) = u(c0) +
∞∑
t=1

αtG(U(tc)).

By construction, J (U) is bounded over C(M), as u is bounded by M and U is bounded over
C(M). Moreover, since G is K-Lipschitz continuous with K < (1 − α)/α, J must be a con-
traction, as is easily checked. So, J has a unique fixed point; call it UM . As M increases, the
domain of UM increases. However, for any M,N , uniqueness of the fixed point guarantees that
UM and UN coincide on the intersection of their domains. Thus, we obtain a unique solution
U∗ to (5) over C(B) = ∪MC(M).

Let H be the set of H-continuous functions. To verify that U∗ ∈ H, it suffices to show that
(a) J maps H onto itself, and (b) H is closed under the sup norm. Indeed, this will guarantee
that J ’s fixed-point belongs to H. To show (a), take any U ∈ H and ε > 0. Since α < 1 and
G is bounded, there is T > 0 such that αT 2Ḡ

1−α < ε/2, where Ḡ = supν∈U |G(ν)|. Moreover, since
U ∈ H, there exists N such |U(c)− U(c̃)| < ε/2 whenever ct = c̃t for all t ≤ N . For any c and
c̃,

|J (U)(c)− J (U)(c̃)| ≤

∣∣∣∣∣
∞∑
t=1

αt [G(U(tc))−G(U(tc̃))]

∣∣∣∣∣
≤ K

T−1∑
t=1

αt|U(tc)− U(tc̃)|+ αT
2Ḡ

1− α
.

whereK is the Lipschitz constant ofG. The first term is less than Kα
(1−α) maxt≤T−1 |U(tc)−U(tc̃)|.

Now suppose that ct = c̃t for all t ≤ N ′ = N + T . This implies that (tc)t′ = (tc̃)t′ for all t ≤ T

and t′ ≤ N , because tc is truncating at most T elements of c, and c and c̃ were identical up to
time T+N , by construction. By definition of N , we have |U(tc)−U(tc̃)| < ε/2 for all t ≤ T and,
hence, |J (U)(c) − J (U)(c̃)| < ε. Setting T (ε) = N ′ shows that J (U) satisfies H-continuity.
To prove (b), consider a sequence {Um} in H that converges to some limit U in the sup norm.
Now fix ε > 0. There is m such that ‖Um − U‖∞ < ε/3. Since Um ∈ H, there is N such that
|Um(c)− Um(c̃)| < ε/3 whenever ct = c̃t for all t ≤ N . Thus, for such c, c̃,

|U(c)− U(c̃)| ≤ |U(c)− Um(c)|+ |Um(c)− Um(c̃)|+ |Um(c̃)− U(c̃)| < ε,

which shows that U ∈ H.

To extend the definition of U∗ from C(B) to C, for any c ∈ C \ C(B), consider any sequence
{cn} in C(B) such that cnt = ct for all t ≤ n, and let U∗(c) = limn→+∞ U

∗(cn). This limit is well-
defined and independent of the chosen sequence. To see this, note that, for any such sequence
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{cn} and any ε > 0, H-continuity of U∗ implies that there is T such that |U∗(c) − U∗(c̃)| < ε

whenever ct = c̃t for all t ≤ T . Hence, |U∗(cn) − U∗(cm)| < ε for all n,m ≥ T , since the
consumption levels of cn and cm coincide up to min{n,m}. So, {U∗(cn)} forms a Cauchy
sequence in R and thus converges. Moreover, the limit is independent of the chosen sequence,
as for any ε > 0, |U∗(cn)− U∗(c̃n)| < ε for n large enough and sequences {cn} and {c̃n} of the
type constructed above.

The limit U thus defined satisfies representation (5). Since U∗ is a fixed point of J on C(B)

and cn belongs to C(B), for each n

U∗(cn) = u(cn0 ) +
∞∑
t=1

αtG(U∗(tc
n))

The left-hand side converges to U∗(c). Moreover, for each t, U∗(tcn) converges to U∗(tc) (which
is similarly well defined). Since G is continuous, G(U∗(tc

n)) converges to G(U∗(tc)) for each
t. Since α < 1 and G is bounded, by the dominated convergence theorem, the right-hand side
converges to u(c0) +

∑∞
t=1 α

tG(U∗(tc)), which proves that (5) holds for all c ∈ C.

Finally, there is a unique H-continuous extension of U∗ from C(B) to C that solves (5). To
see this, let U be any H-continuous solution to (5). Since U is a fixed point of J and the
fixed point is unique on C(B), U must coincide with U∗ on C(B). Take any c ∈ C \ C(B) and
ε > 0. By H-continuity of U and U∗, both |U(c)− U(c̃)| and |U∗(c)− U∗(c̃)| are less than ε/2
for some c̃ ∈ C(B) equal to c for all t up to a large N . Since U and U∗ must be equal at c̃,
|U(c)− U∗(c)| < ε. Since ε was arbitrary, U(c) = U∗(c) for all c, establishing uniqueness.

A.4 Proof of Theorem 4

Using Axiom 10 and Theorem 3, we also have

(c0, c1, 2c) � (c0, c
′
1, 2c)⇔ (ĉ0, c1, 2c

′) � (ĉ0, c
′
1, 2c

′) (24)

(c0, c1, 2c) � (c0, c1, 2c
′)⇔ (ĉ0, c

′
1, 2c) � (ĉ0, c

′
1, 2c

′) (25)

(c0, c1, 2c) � (c′0, c1, 2c)⇔ (c0, c
′
1, 2c

′) � (c′0, c
′
1, 2c

′) (26)

(c0, c1, 2c) � (c0, c
′
1, 2c

′)⇔ (ĉ0, c1, 2c) � (ĉ0, c
′
1, 2c

′) (27)

By Debreu’s (1960) Theorem 3, conditions (24)-(27) and (i)-(ii) in Axiom 10 imply that � can
be represented by

w0(c0) + w1(c1) + w2(2c),

for some continuous and nonconstant functions w0, w1, and w2. By Theorem 3, � is also
represented by

u(c0) + αG(u(c1) + g(2c)) + αg(2c),
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where g(2c) =
∑∞

t=2 α
t−1G(U(tc)). It follows that

u(c0) + αG(u(c1) + g(2c)) + αg(2c) = ξ [w0(c0) + w1(c1) + w2(2c)] + χ,

for some ξ > 0 and χ ∈ R. This implies that

αG(u(c1) + g(2c)) + αg(2c) = ξ [w1(c1) + w2(2c)] ,

and therefore G must be affine. Since G must be increasing, without loss of generality let G(U)

= γU with γ > 0. Finally, by Proposition 3, γ < 1−α
α .

A.5 Proof of Proposition 5

By assumption, for all t,

U(tc) = u(ct) +

∞∑
τ=t+1

βδτ−tu(cτ ), (28)

where 0 < β = γ
1+γ < 1, 0 < δ = (1 + γ)α < 1, 0 < α < 1.

For the “if part” see the main text. For the “only if” part, using (28), we get

∞∑
t=0

w(t)U(tc) = w(0)u(c0) +
∞∑
t=1

u(ct)

[
w(t) + βδt

(
t−1∑
τ=0

w(τ)

δτ

)]
.

By assumption,
∑∞

t=0w(t)U(tc) =
∑∞

t=0 δ
tu(ct). So the coefficients of u(ct) must match for

all t. For t = 0, w(0) = 1. Then, for t = 1, w(1) = (1− β)δ = α. Now suppose w(t) = αt for all
t = 0, . . . , τ . Then,

w(τ + 1) = δτ+1 − βδτ+1 1− ατ+1

δτ+1

1− α
δ

= ατ+1.

Hence, by induction, w(t) = αt for all t.
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B Online Appendix: Omitted Proofs

B.1 Proof of Theorem 1

The proof follows and generalizes that of Diamond (1965), and is based on the following lemmas.

Lemma 18 (Debreu (1954)). Let C be a completely ordered set and Z = (z0, z1, ...) be a
countable subset of C. If for every c, c′ ∈ C such that c ≺ c′, there is z ∈ Z such that c - z - c′,
then there exists on C a real, order-preserving function, continuous in any natural topology.36

Lemma 19. For any c ∈ C, there exists x ∈ X such that c ∼ (c0, x, x, . . .).

Proof. Given c, let Dc = {(c0, y, y, . . .) : y ∈ X}, A = {d ∈ Dc : d - c}, and B = {d ∈ Dc :

d % c}. By Axiom 1, A ∪B = Dc; by Axiom 2, A and B are closed; by Axiom 3, A and B are
nonempty. Moreover, Dc is connected. Indeed, for any continuous function φ : Dc → {0, 1}, the
function φ̄ : X → {0, 1} defined by φ̄(x) = φ(c0, x, x, . . .) is also continuous. Connectedness of
X implies that φ̄ is constant and, hence, that φ is constant, showing connectedness of Dc. This
implies that A ∩B 6= ∅.

To conclude the proof of Theorem 1, let Z0 be a countable dense subset ofX, which exists since
X is separable, and let Z be the subset of C consisting of streams (x, y, y, . . .) with x, y ∈ Z0.
Lemma 19 implies that Z satisfies the hypothesis of Lemma 18, which yields the result. Indeed,
by Lemma 19 there are x, y ∈ X such that (c0, x, x, . . .) ∼ c ≺ c′ ∼ (c′0, y, y, . . .). Consider
the set E ⊂ X2 consisting of (z, w) such that (c0, x, x, . . .) ≺ (z, w,w, . . .) ≺ (c′0, y, y, . . .). E
is nonempty by connectedness of X and open by Axiom 2. Since Z is dense in X2, E must
contain an element of Z.

B.2 Proof of Proposition 1

Recall that by assumption �t=�0 for all t ≥ 0. Suppose that V (c0, U(1c), U(2c), . . .) =

V (c0, U(1c)) for all c ∈ C and V is strictly increasing in U(1c). If 1c ∼1
1c
′, then U(1c)

= U(1c
′) and, since V is a function, V (c0, U(1c)) = V (c0, U(1c

′)); hence (c0, 1c) ∼0 (c0, 1c
′).

If 1c �1
1c
′, then U(1c) > U(1c

′) and, since V is strictly increasing in its second argument,
V (c0, U(1c)) > V (c0, U(1c

′)); hence (c0, 1c) �0 (c0, 1c
′).

Suppose 1c ∼1
1c
′ implies (c0, 1c) ∼0 (c0, 1c

′). Then, for any (U(1c), U(2c), . . .) and (U(1c
′),

U(2c
′), . . .) such that U(1c) = U(1c

′),

V (c0, U(1c), U(2c), . . .) = V (c0, U(1c
′), U(2c

′), . . .).

36A natural topology is one under which Axiom 2 holds for that topology.
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So V can depend only on its first two arguments. Suppose 1c �1
1c
′ implies (c0, 1c) �0 (c0, 1c

′).
Then, U(1c) > U(1c

′). Moreover, it must be that V (c0, U(1c)) > V (c0, U(1c
′)); that is, V must

be strictly increasing in its second argument.

B.3 Proof of Corollary 1

By Theorem 3, � can be represented by

U(c) = u(c0) +
∞∑
t=1

αtG(U(tc)).

Since (x, c) � (y, c), u(x) = u(y) +u for some u > 0. Hence, for any t > 0, U(cx)−U(cy) equals
u−

∑t
s=1 α

s∆Gs, where ∆Gs is defined recursively as follows: for s = t,

∆Gt = G(U(tc
y))−G(U(tc

y)− u),

otherwise

∆Gs = G(Us(sc
y))−G

(
Us(sc

y)−
t−s∑
k=1

αk∆Gs+k

)
.

By Proposition 3, ∆Gt <
1−α
α u and

∆Gt−1 = G(Ut−1(t−1c
y))−G (Ut−1(t−1c

y)− α∆Gt)

< (1− α)∆Gt <
(1− α)2

α
u.

Now, suppose that, for all k such that s < k ≤ t− 1, ∆Gk <
(1−α)2

α u. It follows that

∆Gs <
1− α
α

[
t−s∑
τ=1

ατ∆Gs+τ

]
<

1− α
α

[
t−s−1∑
τ=1

ατ
(1− α)2

α
+ αt−s

(1− α)

α

]
u

=
(1− α)2

α

[
t−s−2∑
τ=0

ατ (1− α) + αt−s−1

]
u =

(1− α)2

α
u.

Therefore,

t∑
s=1

αs∆Gs < u

[
αt

1− α
α

+
t−1∑
s=1

αs
(1− α)2

α

]
= u(1− α).

We conclude that U(cx)− U(cy) > αu > 0.
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B.4 Proof of Corollary 2

By representation (5), U clearly depends on c0 only through u0 = u(c0). This implies that
U(1c)—and hence also U(c) (from (5))—depends on c1 only through u1 = u(c1). By induction,
U(c) depends on (c0, . . . , ct) only through (u0, . . . , ut), for each t. There remains to establish
the result at infinity: If c and c̃ are two streams such that u(ct) = u(c̃t) for all t, we need to
show that U(c) = U(c̃). From the previous step, assume without loss of generality that ct = c̃t

for all t ≤ T , where T is any large, finite constant. Since U is H-continuous, we can choose T
so that |U(c′)−U(c̃′)| < ε for all c′, c̃′ that coincide up to T . Since c and c̃ satisfy this property,
|U(c) − U(c̃)| < ε, and since ε was arbitrary, U(c) = U(c̃). This shows that the sequence
{ut = u(ct)}∞t=0 of period-utility levels entirely determines the value of U(c), proving the result.

B.5 Proof of Proposition 4

Consider representation (5) in Theorem 3. For every c ∈ C, we have sequences {us}∞s=0 and
{Us}∞s=0, where us = u(cs) and Us = Û(us, us+1, . . .). Since u is continuous and X is connected,
the range of u is a connected interval Iu ⊂ R. Recall that the range of U is also a connected
interval U ⊂ R. Using the notation,

d(t, c) =
∂U0/∂ut
∂U0/∂u0

.

Note that ∂Us
∂us

= 1 for all s ≥ 0. Since G is differentiable, we have

∂U0

∂ut
=

t−1∑
τ=0

αt−τG′(U t−τ )
∂U t−τ
∂ut

.

More generally, for 1 ≤ τ ≤ t,

∂U t−τ
∂ut

=

τ−1∑
s=0

ατ−sG′(U t−s)
∂U t−s
∂ut

.

So, for τ = 1, ∂Ut−1

∂ut
= αG′(U t). More generally, for 2 ≤ τ ≤ t,

∂U t−τ
∂ut

= α

(τ−1)−1∑
s=0

α(τ−1)−sG′(U t−s)
∂U t−s
∂ut

+ αG′(U t−(τ−1))
∂U t−(τ−1)

∂ut

=
∂U t−(τ−1)

∂ut
α(1 +G′(U t−(τ−1))).
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So,
∂U t−τ
∂ut

= ατG′(U t)

τ−1∏
s=1

(1 +G′(U t−s)).

Let
∏τ−1
s=1(1 +G′(U t−s)) = 1 if τ = 1. Then,

∂U0

∂ut
= αtG′(U t) +G′(U t)

t−1∑
τ=1

αtG′(U t−τ )
τ−1∏
s=1

(1 +G′(U t−s))

= αtG′(U t)

[
1 +

t−1∑
τ=1

G′(U t−τ )
τ−1∏
s=1

(1 +G′(U t−s))

]
.

B.6 Proof of Corollary 3

For every c ∈ C, consider the sequence {Us}s=0 in the proof of Proposition 4. Using represen-
tation (5) and Axiom 7(ii) as in Lemma 12, we have that c ≥u c′ implies Us ≥ U ′s for all s ≥ 0.
It is immediate that, if G′ is increasing (decreasing), then d(t, c) ≥ (≤) d(t, c′) for all t > 0.
On the other hand, suppose G′ is not increasing, i.e., there is U > U ′ in U such that G′(U) <

G′(U ′)—the other case is similar. By definition and Lemma 19, U = U(c) and U ′ = U(c′) for
some constant streams c and c′. By Lemma 12, c ≥u c′. However, for all t > 0, d(t, c) < d(t, c′).

B.7 Proof of Lemma 17

Recall that for any ν ′ > ν in U

G(ν ′)−G(ν) <
1− α
α

(ν ′ − ν).

We will show that, for any ε > 0 small enough, there exists a constant K < 1−α
α such that

G(ν ′)−G(ν) ≤ max{K(ν ′ − ν), ε} (29)

for all ν ′ > ν in U .

Case (i): Suppose first that U is bounded and let U = cl(U). If necessary, extend G to U
by continuity. Since U is compact and G is continuous, it is also uniformly continuous. Hence,
for any ε > 0, there exists η(ε) > 0 such that |ν − ν ′| < η(ε) implies |G(ν)−G(ν ′)| < ε. Let
∆(ε) = {(ν, ν ′) ∈ U2 | ν ≥ ν ′ + η(ε)}. The function F (ν, ν ′) = G(ν)−G(ν′)

ν−ν′ is continuous and
strictly less37 than 1−α

α on the compact set ∆(ε) and thus has a strictly positive upper bound

37This is true by assumption if ν and ν′ belong to U , and it is easy to show that it is still true if either
ν or ν′ belongs to U \ U . For example, if ν′ is the infimum of U , one can take any point ν̃ ∈ (ν′, ν). By
assumption G(ν)−G(ν̃) < (1−α)/α(ν − ν̃) and, by continuity of G, G(ν̃)−G(ν′) ≤ (1−α)/α(ν̃ − ν′).
Combining these inequalities yields the result, as is easily seen. (One way of showing this is to use the
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K < 1−α
α . By construction, (29) holds for any (ν, ν ′) ∈ ∆(ε) and any (ν, ν ′) ∈ U2 \∆(ε).

Case (ii): Suppose that U is unbounded both above and below—the intermediate cases follow
by combining the two cases shown here. Let G = infν∈U G(ν) and G = supν∈U G(ν), which
are finite and distinct because G is bounded and strictly increasing. Fix any ε < G − G. Let
ν(ε) = G−1(G + ε) and ν(ε) = G−1(G − ε). If either ν ≤ ν(ε) and ν ′ ≤ ν(ε), or ν ≥ ν(ε) and
ν ′ ≥ ν(ε), then (29) holds by construction. Now take any ν, ν ∈ U with ν > ν(ε) + 2( αε

1−α + 1)

and ν < ν(ε) − 2( αε
1−α + 1). On the compact set [ν, ν], the continuous function G is uniformly

continuous, so there exists η > 0 and η(ε) = min{η, 1
2(v−ν(ε)), 1

2(ν(ε)−ν)} such that |ν − ν ′| <
η(ε) implies |G(ν)−G(ν ′)| < ε. Let ∆′(ε) = {(ν, ν ′) ∈ [ν, ν]2 | ν ≥ ν ′ + η(ε)}. By the same
argument as before, the function F (ν, ν ′) = G(ν)−G(ν′)

ν−ν′ has a strictly positive upper bound
K1 <

1−α
α on the set ∆′(ε).

Define νm = 1
2(ν + ν(ε)) and νm = 1

2(v+ ν(ε)). The only difficulty is to show the claim when
ν ′ < ν(ε) ≤ ν < ν or ν ′ < v ≤ ν(ε) < ν. We focus on the first case. If ν ′ < v(ε), by construction
νm − ν ′ ≥ η(ε) and hence

G(νm)−G(ν ′)

νm − ν ′
< K1. (30)

Now note that
ν − νm > ν − νm =

1

2
(ν − ν(ε)) >

αε

1− α
+ 1.

Hence, there exists a strictly positive K2 <
1−α
α such that, for all ν > ν, we have ν−νm > ε/K2.

Since ν > ν(ε) and νm > ν(ε), it follows that

G(ν)−G(νm)

ν − νm
≤ ε

ν − νm
< K2. (31)

For any strictly positive a, b, c, d, (a+ c)/(b+ d) ≤ max{a/b, c/d}. Combining this inequality
to (30) and (31), we conclude that

G(ν)−G(ν ′)

ν − ν ′
≤ max{K1,K2}.

By a similar argument, for all ν ′ < v ≤ ν(ε) < ν,

G(ν)−G(ν ′)

ν − ν ′
≤ max{K1,K3}

for some strictly positive K3 <
1−α
α . Letting K = max{K1,K2,K3} then proves the claim of

the lemma.

fact that a/b < c/d ⇒ (a + b)/(c + d) < c/d for a, b, c, d strictly positive—see the argument at the end
of this proof.)
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