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Abstract

How should welfare analysis be conducted when individuals have dynamically inconsis-
tent preferences? Behavioral economists typically treat the preferences of the time-zero
self as the welfare criterion. Critics argue that this practice is unfair to the later time-
dated selves of an individual. In this paper we establish conditions under which the
time-zero welfare criterion is consistent with a multiself Pareto criterion. We find that
these two criteria are consistent as long as the number of time-dated selves (decision
nodes) in the choice problem exceeds a specific threshold. This threshold can be as
small as 3 selves, depending on the application. Thus, the time-zero welfare criterion
prescribes an allocation that may very well leave all selves better off than the equi-
librium of the intra-personal conflict. This result helps to at least partly overcome
common concerns about the welfare criterion that is commonly used when individuals
have dynamically inconsistent preferences.
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1 Introduction

Beginning with the work of Strotz (1956), models with dynamically inconsistent preferences

have been developed to help explain various economic data that are hard to reconcile with

standard models in which preferences are dynamically consistent. However, a long-standing

concern is that models with dynamically inconsistent preferences are ill-suited for welfare

analysis. The fundamental question in welfare economics– How should scarce resources be

allocated?– seems hard to answer because it is unclear how to define a welfare improvement

when all of the time-dated selves of a single individual disagree on how resources should be

allocated over time.

As a practical way forward, O’Donoghue and Rabin (1999, 2000, 2001, 2003, 2007) and

other behavioral economists typically assume that the goal of a policymaker should be to

maximize the utility of the time-zero self.1 This approach is based on the idea of helping

individuals reach the goals that they themselves initially had in mind before they fell victim

to self-control problems. And any deviation from these goals is considered an error in decision

making.

However, critics argue that there isn’t any particularly good reason to equate welfare

with time-zero preferences. They argue that this practice arbitrarily favors the preferences

of the first self at the expense of all the other selves– why should a policymaker want to

hold all of the later selves captive to the desires of the first self? Essentially, the concern is

that committing individuals to their initial goals unfairly forces later selves to do something

that they consider to be suboptimal.2

In this paper we provide an assessment of the practice of using time-zero preferences as

the welfare criterion in models with dynamically inconsistent preferences. We are motivated

by Bryan, Karlan, and Nelson (2010) and others who believe that addressing this controversy

should be at the top of the research agenda in behavioral economics.3 We focus on hyperbolic

discounting with sophisticated decision making over a sequence of consumption choices. Our

main finding is this: the time-zero welfare criterion is consistent with a multiself Pareto

1See Brocas, Carrillo, and Dewatripont (2004) and Bryan, Karlan, and Nelson (2010) for surveys.
2For instance, Gul and Pesendorfer (2004, p.263) point out that welfare analysis based on time-zero

preferences “has the planner forever guarding the perceived interests of the nonexistent former selves,”
which they later describe as “odd”(Gul and Pesendorfer (2008, p.38)). Likewise, Rubinstein (2006, p.248)
states “One criticism made of behavioral economics is the arbitrariness of the welfare criterion...why should
the utility of the first self be the basis for welfare considerations?”And Brocas, Carrillo, and Dewatripont
(2004, p.51) state that “there is no normative foundation”for equating welfare with time-zero preferences.
See Bernheim and Rangel (2009) for additional discussion.

3Bryan, Karlan, and Nelson (2010, p.694) state that “settling on a particular approach and providing
empirical support or clear philosophical arguments for [that approach] are the hard questions....[that deserve]
more thought and research.”
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criterion as long as the number of time-dated selves (i.e., decision nodes) exceeds a specific

threshold. That is, with enough decision nodes in the choice problem, the consumption

sequence or allocation that maximizes time-zero utility (i.e., the “commitment allocation”)

is viewed by all time-dated selves as a strictly better outcome than the allocation that

emerges as the equilibrium of the intra-personal conflict.4 If this condition is met, then

commitment cannot hurt the selves who follow after the first self, even though these later

selves consider the commitment allocation to be suboptimal.

The intuition for why the existence of Pareto gains (in moving from the equilibrium

to the commitment allocation) hinges on the number of selves is as follows. If there is a

small number of selves, then a given self may have the power to significantly influence the

equilibrium allocation. In this case, the equilibrium allocation may be relatively close to

what he wants. However, if there is a large number of selves, then the power to influence

the equilibrium allocation is diffuse. And in this case, the equilibrium allocation is relatively

dissimilar to the desired allocation of a given self and therefore it becomes possible to find

allocations that Pareto dominate the equilibrium. In other words, although a large number of

selves means that there are many conflicting points of view on how resources should ideally

be allocated, it also means that the equilibrium is far away from the wishes of all of the

selves, and this creates space for a Pareto improvement.5

To illustrate our claims, we consider two classic dynamic programming problems: eating

fruit from a tree (renewable resource problem) and eating a cake (nonrenewable resource

problem). These specific examples are just to fix ideas; the general lessons extend to settings

in which there is a binary choice to take an action now or later that repeats itself over and

over (as in the fruit-eating example) and to settings in which a fixed quantity of a resource

is depleted over time (as in the cake-eating example). Taken together, these two examples

span a range of economic settings in which dynamically inconsistent preferences are often

considered.

In the first example, an individual plants a tree at time zero and the tree bears fruit at

4We assume individuals are sophisticated and are therefore fully aware of the choices that future selves
will make, rather than oblivious (naive) to the choices of future selves. We do this because naiveté presents
a conceptual challenge that we are not prepared to deal with. In addition to the usual complication that
different selves of a single individual disagree, naiveté creates the added complication that a given self antici-
pates a different future consumption allocation than he actually experiences. It then becomes philosophically
diffi cult to define the welfare of a given self, and we do not have anything to add to that particular debate.

5The only way to break our threshold result is to assume that each time-dated self only cares about
himself. In this case, the equilibrium is Pareto effi cient no matter how many selves there are, and any
movement away from the equilibrium allocation would hurt at least one of the selves. But in the more
general case in which each self potentially values the consumption of selves that come before and after him,
appropriately discounted to his present vantage point (as in Strotz (1956) and Caplin and Leahy (2004)),
the equilibrium allocation is not necessarily Pareto effi cient and the door is open for a Pareto improvement.
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each subsequent node. All nodes after time zero are called decision nodes. Eventually the

tree dies. The individual faces a repeated choice: pick the fruit now and eat it when it tastes

good, or leave the fruit on the tree for one extra node to fully ripen and eat it when it tastes

great. The fruit spoils completely if left on the tree for more than one node. We focus on the

popular “once-off”quasi-hyperbolic discount function {1, β, β, β, ...}. The individual applies
this sequence to the future, and he applies a potentially different sequence {1, γ, γ, γ, ...} to
his valuation of the past.

We analytically prove four fundamental points. All of these points are robust to the

particular value of γ. First, the commitment allocation will never multiself Pareto dominate

the equilibrium allocation if there are only two decision nodes. Second, as long as there

are more than two decision nodes, there is a non-empty parameter space over β for which

the commitment allocation multiself Pareto dominates the equilibrium allocation. Third,

this non-empty parameter space expands as the number of decision nodes increases, and

this space ultimately subsumes the entire β-space as the model approaches infinitely many

(countable) decision nodes. In other words, if the tree lives forever, then the commitment

allocation multiself Pareto dominates the equilibrium allocation for any parameterization.

Fourth, and most importantly, the commitment allocation will multiself Pareto dominate the

equilibrium allocation if and only if the number of decision nodes exceeds a threshold. This

threshold is decreasing in β and increasing in the relative utility of immediate consumption

(i.e., the relative utility of eating unripe fruit).

We provide numerical calculations to show the relevance of these analytical results. For

instance, suppose fruit tastes twice as good if it fully ripens. The time-zero self wants to be

patient at each node and wait for the fruit to ripen. But the individual discounts the future

by too much to be patient, say β = 0.4. In this case, in equilibrium the individual always

eats unripe fruit from the tree at every decision node. And yet, if there are just 3 or more

decision nodes, then all of the selves would prefer the commitment allocation of fully ripe

fruit over the equilibrium.6 These thresholds hold for any assumptions about the degree of

backward discounting of past consumption.

Notice the surprise in these results. If there are only two selves that follow after the time-

zero self in the choice problem, then committing both of these later selves to being patient

and eating fully ripe fruit will not make both of them happy. But simply adding one more

self or decision node to the lineup, for a total of three time-dated selves to follow after the

time-zero self, can completely change the welfare conclusion because now all three of these

later selves agree that commitment dominates the equilibrium. Almost paradoxically, as the

6If we instead assume that fruit tastes only 33% better if left to fully ripen, then the threshold number
of decision nodes increases to 6.
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number of selves increases and there are more conflicting points of view on how resources

should ideally be allocated over time, it becomes easier for the selves to reach a unanimous

agreement that the commitment allocation beats the equilibrium allocation.

In the second example, an individual eats an infinitely divisible cake over a specified

number of decision nodes. The cake does not spoil, nor does it grow. This is a classic

first model in textbooks on dynamic programming because it captures essential trade-offs

that are common across many dynamic problems. We consider both the “once-off”quasi-

hyperbolic discount function {1, β, β, β, ...} as well as the typical quasi-hyperbolic discount
function {1, βδ, βδ2, βδ3, ...}. The individual values the past according to either {1, γ, γ, γ, ...}
or {1, γη, γη2, γη3, ...}. In all cases, the results align with our findings from the fruit tree

example: if the number of decision nodes exceeds a specific threshold, then the commitment

allocation multiself Pareto dominates the equilibrium allocation. Here commitment implies

a gradual rate of consumption, whereas the rate of consumption is more rapid in equilibrium,

leaving very little cake for later selves.

We consider a range of assumptions about the degree of forward and backward discount-

ing. For example, in the case of once-off quasi-hyperbolic discounting of both the past and

the future, the threshold number of decision nodes ranges from a low of 4 to a high of 9 for

the rectangle defined by β ∈ [0.2, 0.8] and γ ∈ [0, 1]. Any number of decision nodes above

these threshold values leads to the conclusion that commitment represents a multiself Pareto

improvement over the equilibrium. In other words, simply expanding the number of oppor-

tunities that the individual has to eat a portion of the fixed quantity of cake (i.e., expanding

the number of time-dated selves of a single individual) brings the time-zero welfare criterion

into alignment with the multiself Pareto criterion.

We view this paper as a step toward a better understanding of when the time-zero welfare

criterion that has been popularized by O’Donoghue and Rabin and others can be justified

on Pareto grounds. We claim that it may be enough to know the total number of decision

nodels (time-dated selves) in a choice problem in order to determine whether this practice

has a Pareto foundation. While it may not be possible to completely generalize our claim to

every conceivable setting, knowing the number of selves is indeed enough in the two settings

(renewable and nonrenewable resources) that we consider.

1.1 Related Literature

Our finding that commitment may be Pareto improving is related to a series of papers by

David Laibson. Laibson (1996) shows that the saving rate that the time-zero individual

would commit himself to follow in an infinite-horizon setting is Pareto superior to the equi-
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librium saving rate (also see Goldman (1979)). Similarly, Laibson, Repetto, and Tobacman

(1998) consider the welfare gains of commitment to the plan that a dynamically-consistent

(exponential) individual follows, and they quantify these gains from the perspective of various

selves in a finite-horizon life-cycle economy. Likewise, Laibson (1997) computes the welfare

gains associated with “partial commitment”– the gains that result from a lack of access to

instantaneous credit and a lack of ability to immediately liquidate asset holdings– and Crop-

per and Laibson (1999) compute the optimal capital subsidy that would perfectly replicate

the consumption-saving allocation preferred by the time-zero self. While these studies are

related to our paper, they do not uncover the fundamental connection between the number

of decision nodes and the appropriateness of the time-zero welfare criterion.7

İmrohoroğlu, İmrohoroğlu, and Joines (2003) perform two related sets of welfare experi-

ments (full commitment and partial commitment). Their first set is very similar to Laibson,

Repetto, and Tobacman (1998) in that they also consider the welfare gains that accrue to

each self from commitment to the plan that a dynamically-consistent (exponential) individ-

ual would follow in a finite-horizon life-cycle economy. Their second set of experiments is

similar to Laibson (1997) in that both studies consider the gains that accrue to each self

from partial commitment, though the papers differ in that partial commitment in Laibson’s

paper relates to credit market frictions while social security is the partial commitment device

in İmrohoroğlu, İmrohoroğlu, and Joines. Once again, the role of the frequency of choice

(i.e., the number of decision nodes) is not the focus of their paper.

Finally, we conclude our introductory remarks with a subtle point concerning choice

versus paternalism. Although it may seem paternalistic to equate welfare with time-zero

preferences, there is a sense in which doing so is choice-based rather than paternalistic. It

is choice-based in the sense that Bernheim and Rangel (2009) define choice-based welfare

criteria: the commitment allocation would be chosen over the equilibrium allocation by all

the selves if such a choice were always available. In other words, if all the time-dated selves of

a single individual could step outside of time and coordinate, we cannot say what allocation

would result from such coordination in general, but we can say that they would all agree

that the commitment allocation dominates the non-cooperative equilibrium allocation.

7In each of these studies, Laibson and his coauthors focus on the special case of infinite backward
discounting (no weight is given to past consumption), whereas we generalize the multiself welfare calculations
to allow for a range of assumptions about backward discounting. By doing this, we address Bernheim and
Rangel’s (2009) concern that typical multiself Pareto analysis suffers from the “conceptual deficiency”that
individuals are assumed to derive no utility at all from past consumption. Bernheim and Rangel argue
that there is no empirical basis for such an assumption, nor is there a solid basis for making any other
specific assumption about backward discounting “because we lack critical information [about] backward
looking preferences” (p.89). Consequently, they advocate, in part, that we “adopt a notion of multiself
Pareto effi ciency that is robust with respect to a wider range of possibilities [about the nature of backward
discounting]”(p.88). For this reason, we consider a range of assumptions about backward discounting.
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2 Notation and Definitions

Time is discrete and indexed by a finite number of selves or nodes t = 0, 1, 2, ..., T . Nothing

happens at t = 0; no decisions are made and no economic activities occur (e.g., no con-

sumption, no income received, etc.). It is an inaction node. It is there simply to allow us to

consider what self 0 would like his future selves to do. All the other nodes t > 0 are action

nodes or decision nodes.

Definition 1 An allocation is a vector of consumption decisions c = {c1, c2, ..., cT}. The
set of feasible allocations is S.

Definition 2 Following Caplin and Leahy (2004), lifetime utility is a mapping U(t, c) :

RT 7→ R that depends on the vantage point t ∈ [0, T ]. Note that this definition is gen-

eral enough to include any assumption about how the individual values past consumption,

including the common special case in which he places no value on past consumption.

Definition 3 Following the terminology of Bernheim and Rangel (2009), an allocation c′ ∈
S strictly multiself Pareto dominates another allocation c′′ ∈ S if and only if

U(t, c′) > U(t, c′′) for all t ∈ [0, T ].

If the inequality holds for a wide range of parameterizations of a given model, then we say

that c′ strictly and robustly multiself Pareto dominates c′′.

Definition 4 The commitment allocation c0 is the optimal allocation from the vantage

point of self 0,

c0 = arg max
c∈S

U(0, c).

Definition 5 The equilibrium allocation c∗ is the allocation that actually materializes
from the internal conflict among the many time-dated selves who potentially each have a

different view on optimal decision making. We assume individuals are sophisticated and
are therefore fully aware of the choices that future selves will make, rather than oblivious

(naive) to the choices of future selves.

Definition 6 The Pareto set, P = {c ∈ S: c = arg maxU(t, c) for at least one t ∈ [0, T ]}.
The elements of P are Pareto optima. Note that c0 is one such element.

Definition 7 Dynamic inconsistency is a situation in which c0 6= c∗.
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The thrust of this paper is to understand the conditions under which c0 strictly multiself

Pareto dominates c∗. Of course, even though c0 is an element of the Pareto set and c∗ may

not be an element of the Pareto set, there is no guarantee that c0 strictly multiself Pareto

dominates c∗ because such requires that all selves be made better off in moving from c∗ to

c0.

3 Dynamic Program Part I: Eating Fruit from a Tree

An individual plants a tree at t = 0. At each subsequent node (beginning at t = 1) the tree

bears exactly one piece of new fruit. The fruit may be consumed immediately or it may be

left on the tree an additional period to fully ripen. Either way, the fruit tastes good, but it

tastes better if it is left to fully ripen. The fruit is totally rotten if it is left on the tree for

more than one additional period. The last piece of new fruit is produced at t = T −1, which

may be consumed immediately or consumed one period later at t = T , after which the tree

dies and no consumption takes place beyond T . Throughout the paper we refer to T as the

number of decision nodes.

In this example we assume utility is linear to facilitate a variety of analytical results (in

the next section utility is concave). Therefore, at each age t ∈ [1, T − 1] the individual faces

a simple choice. Take a small amount of utility now c− or a larger amount c+ one period

later. The choice repeats itself over and over, for all t ∈ [1, T − 1].

Following Laibson (2003) and many others, a given self t applies the following forward

discount function to future period utility that is s periods from the present8

F (s) =

{
1 for s = 0

β for s > 0

with β < 1, and he applies the following backward discount function to past utility that is

s periods from the present

B(s) =

{
1 for s = 0

γ for s > 0

with γ < 1.

From the perspective of t = 0, the individual wants to always be patient and eat ripe

fruit, c+ at t ∈ [2, T ], because there is no perceived cost of waiting for the fruit to ripen.

8This is a simple way to capture “present-biased”dynamically-inconsistent preferences. This is a typical
calibration (Laibson (2003)) of quasi-hyperbolic discounting, and its simplicity allows us to derive a variety
of analytical results. We will pursue the more generic βδ form in the next section of the paper.
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Hence the ideal allocation of self 0 is

c1 = 0,

ct = c+ for t ∈ [2, T ].

Likewise, from the perspective of any t > 0, the individual would want future selves to

be patient at all nodes t+ 1 and beyond, but he will be impatient at the current time if

c− > βc+ =⇒ β <
c−

c+
.

Let us assume this condition is met so that we can have a meaningful discussion about

dynamic inconsistency. Hence, self t will be impatient at the current moment and eat

unripened fruit. And there is no way for him to impose on later selves his preference for

patience at later dates, nor do past choices affect the options currently available to him.

Hence, he recognizes that, in equilibrium, all selves will choose to eat the fruit immediately

rather than let it ripen; the equilibrium allocation therefore is

ct = c− for t ∈ [1, T − 1]

cT = 0.

3.1 Welfare

The lifetime utility of the individual at age t is

U(t, c) =

 β
∑T

s=1
cs t = 0

γ
∑t−1

s=1
cs + ct + β

∑T

s=t+1
cs t ∈ [1, T ]

where we are handling the boundaries t = 1 and t = T by making use of the summation

notation for an empty sum
∑b

i=a xi = 0 when b < a.

3.2 T = 2

The equilibrium allocation is c∗ = (c−, 0), which confers utility U(1, c∗) = c− to self 1. On

the other hand the commitment allocation c0 = (0, c+) confers utility U(1, c0) = βc+, which

is less than U(1, c∗) because we have already assumed β < c−/c+. The equilibrium allocation

dominates the commitment allocation from the perspective of self 1 and hence commitment

cannot represent a Pareto improvement (regardless of how self 2 feels about the commitment

allocation over the equilibrium allocation).
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3.3 T > 2: The Case of γ = β

An allocation c confers lifetime utility from the perspective of vantage point t > 0 according

to

U(t, c) = β
t−1∑
s=1

cs + ct + β
T∑

s=t+1

cs for t ∈ [1, T ].

Self 1

U(1, c0) = 0 + β

T∑
s=2

c+ = β(T − 1)c+

U(1, c∗) = c− + β
T−1∑
s=2

c− = c− + β(T − 2)c−.

He prefers commitment over the equilibrium, U(1, c0) > U(1, c∗), if

β(T − 1)c+ > c− + β(T − 2)c−

or

β >
c−

T (c+ − c−) + 2c− − c+ ≡ β̄(T ).

Self t ∈ [2, T − 1]

U(t, c0) = c+ + β
T∑
s=3

c+ = c+ + β(T − 2)c+

U(t, c∗) = c− + β
T∑
s=3

c− = c− + β(T − 2)c−

and hence

U(t, c0) > U(t, c∗) for all t ∈ [2, T − 1].

Self T

U(T, c0) = c+ + β

T∑
s=3

c+ = c+ + β(T − 2)c+

U(T, c∗) = β

T∑
s=2

c− = β(T − 1)c− = βc− + β(T − 2)c−
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and hence

U(T, c0) > U(T, c∗).

Notice that self 1 is the only potential holdup in drawing the conclusion that the commit-

ment allocation Pareto dominates the equilibrium allocation. Also recall that we assumed

that β < c−/c+ so that there is enough discounting to ensure disagreement between the

multiple selves (otherwise preferences are time consistent and all the selves choose to be

patient, just like self 0 would like). Hence, to get time-inconsistent preferences and a Pareto

role for commitment, we need

β ∈
(
β̄(T ),

c−

c+

)
.

With some algebra we can write

c−

c+
− β̄(T ) =

c−

c+

(
(T − 2)(c+ − c−)

(T − 2)(c+ − c−) + c+

)
> 0 for all T > 2.

This proves that there always exists a non-empty range of values for β for which the commit-

ment allocation Pareto dominates the equilibrium allocation as long as T > 2. Moreover the

larger is T , the larger is the parameter space that can deliver a Pareto gain from commitment.

In fact,

lim
T→∞

β̄(T ) = 0,

which means that the commitment allocation Pareto dominates the equilibrium allocation

for any β < c−/c+ if the tree lives forever.

Figure 1 is a graph of the parameter space β ∈
(
β̄(T ), c−/c+

)
as a function of T . Note the

convexity of the lower bound: β̄(T ) falls rapidly as T increases, which means the parameter

space opens up rapidly as T increases. This is true for any assumptions about the other

parameters (c− and c+).

A little more understanding can be gleaned from inverting the condition β > β̄(T ), while

recognizing that T is an integer,

T ≥ T̄

(
2 +

c− − βc+
β(c+ − c−)

)
,

where we define T̄ (x) as a mapping of real number x to the smallest integer that is greater

than x. This condition ensures that the commitment allocation multiself Pareto dominates

the equilibrium allocation. We know that T̄ > 2 because we have already assumed that the
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decision problem is dynamically inconsistent (β < c−/c+). And we also note that

∂

∂β

(
2 +

c− − βc+
β(c+ − c−)

)
< 0

∂

∂c−

(
2 +

c− − βc+
β(c+ − c−)

)
> 0.

As β increases, the necessary number of decision nodes either stays the same or decreases.

Likewise, as c− increases (i.e., as the utility from eating unripened fruit increases), the

necessary number of decision nodes either stays the same or increases. The change in β and

c− must be large enough to cross a jump discontinuity in the function T̄ (x), in order to

trigger a change in the number of decision nodes that are necessary for our Pareto result.

To get a feel for the magnitudes, suppose c− = 1/2 and c+ = 1 (the fruit tastes twice as

good if left to ripen). If the individual discounts the future extremely heavily (say β = 0.1)

then there must be 11 or more nodes in order for the holdup self (self 1) to prefer to always

be patient and eat ripe fruit. But at more modest levels of discounting (say β = 0.4), then

just 3 nodes is enough to ensure that the holdup self prefers to always be patient and wait

for the fruit to ripen. That is, in this particular parameterization, just 3 nodes is enough to

ensure that all selves would prefer the commitment allocation of always waiting to let the

fruit ripen over the equilibrium allocation of always eating unripe fruit.

Alternatively, suppose c− = 3/4 and c+ = 1. Then there must be 29 or more decision

nodes when β = 0.1 and there must be 6 or more decision nodes when β = 0.4.

3.4 T > 2: The Case of γ = 0

An allocation c confers lifetime utility from the perspective of vantage point t > 0 according

to

U(t, c) = ct + β
T∑

s=t+1

cs for t ∈ [1, T ].

Self 1

U(1, c0) = 0 + β
T∑
s=2

c+ = β(T − 1)c+

U(1, c∗) = c− + β
T−1∑
s=2

c− = c− + β(T − 2)c−.
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He prefers commitment over the equilibrium, U(1, c0) > U(1, c∗), if

β(T − 1)c+ > c− + β(T − 2)c−

or

β >
c−

T (c+ − c−) + 2c− − c+ ≡ β̄(T ).

Self t ∈ [2, T − 1]

U(t, c0) = c+ + β
T∑

s=t+1

c+ = c+ + β(T − t)c+

U(t, c∗) = c− + β
T−1∑
s=t+1

c− = c− + β(T − t− 1)c−.

And hence

U(t, c0) > U(t, c∗) for all t ∈ [2, T − 1].

Self T

U(T, c0) = c+

U(T, c∗) = 0

and hence

U(T, c0) > U(T, c∗).

Once again, we arrive at the same result: self 1 is the only potential holdup in drawing

the conclusion that the commitment allocation Pareto dominates the equilibrium allocation,

and self 1 prefers commitment under the same condition as above

β >
c−

T (c+ − c−) + 2c− − c+ ≡ β̄(T ).
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3.5 Intuition and Summary of Findings

We know self 1 is the holdup. Let’s take a deeper look at why the time grid matters. Consider

how his ideal allocation c1 compares to c0 and c∗. For T > 2,

c0 = (0, c+, ..., c+)

c1 = (c−, 0, c+, ..., c+)

c∗ = (c−, ..., c−, 0).

Self 1 disagrees with Self 0’s ideal allocation only at nodes t = 1 and t = 2. On the other

hand, self 1 disagrees with the equilibrium allocation at every node except t = 1. In other

words, as T increases, the equilibrium allocation starts to look less and less like the desires

of self 1 and the commitment allocation starts to look more and more like the desires of self

1. This pattern can be seen in Figures 2 and 3, which show the specific cases of T = 2 and

T = 6 to illustrate this point.

Formally,

U(1, c0) = β(T − 1)c+

U(1, c1) = c− + β(T − 2)c+

U(1, c∗) = c− + β(T − 2)c−.

Compute forward first differences D in the T dimension

D[U(1, c1)− U(1, c0)] =
[
c− + β(T − 1)c+ − βTc+

]
−
[
c− + β(T − 2)c+ − β(T − 1)c+

]
= 0

D[U(1, c1)− U(1, c∗)] = [c− + β(T − 1)c+ − c− − β(T − 1)c−]

−[c− + β(T − 2)c+ − c− − β(T − 2)c−]

= β(c+ − c−) > 0.

Hence, as T increases, the utility gap between c1 and c0 stays fixed, while the utility gap

between c1 versus c∗ increases without bound. In other words, while self 1 may prefer c∗

over c0 at very low T , this preference is guaranteed to eventually reverse itself as T increases.

In sum, when there is a small number of decision nodes (i.e., a small number of selves),

a given self may have the power to significantly influence the equilibrium allocation. If so,
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then the equilibrium allocation may not be so bad from his perspective; in fact, it may be

relatively close to what he wants. However, when there is a large number of selves, then the

power to influence the equilibrium allocation is diffuse among selves. No one self has much

power to influence the equilibrium outcome and hence the equilibrium is relatively dissimilar

to the desires of a given self. And in such an environment where power is diffuse and no self

gets what he wants, it is possible to find allocations that Pareto dominate the equilibrium

allocation. In other words, just because the many selves disagree on the ideal allocation

of resources doesn’t mean that they can’t all agree that certain allocations are better than

others; and, the further the equilibrium allocation gets from any one self’s ideal allocation,

the more room there is for such an agreement.

We can summarize the result thus far as follows:

Result 1 When there are only two decision nodes, the commitment allocation will never
multiself Pareto dominate the equilibrium allocation.

Result 2 When the number of decision nodes is greater than two, there is a non-empty
parameter space over β for which the commitment allocation multiself Pareto dominates the

equilibrium allocation.

Result 3 The non-empty parameter space grows wider as the number of decision nodes
increases, and this space ultimately subsumes the entire parameter space as the model ap-

proaches infinitely many (countable) decision nodes.

Result 4 The commitment allocation will multiself Pareto dominate the equilibrium allo-

cation if and only if the number of decision nodes exceeds a threshold. This threshold is

decreasing in the forward discount factor β and increasing in the utility of immediate con-

sumption c−.

3.6 T > 2: The Generic Case (Unrestricted γ)

Finally, up to this point we have focused on two special cases of γ = β and γ = 0. The

purpose of this section is to illustrate that we have not lost any generality in doing so, though

the more general case is more cumbersome algebraically. All the same results hold when we

allow for any value of γ < 1: the commitment allocation Pareto dominates the equilibrium

allocation if and only if self 1 prefers commitment, and this happens if β > β̄(T ) as in Figure

1. All the lessons and intuition from the previous special cases therefore carry over to the

case of generic γ. Hence, this subsection is presented for technical completeness. Readers

who are less interested in the technical details can skip to the cake-eating problem.
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An allocation c confers lifetime utility from the perspective of vantage point t > 0

according to

U(t, c) = γ

t−1∑
s=1

cs + ct + β

T∑
s=t+1

cs for t ∈ [1, T ].

Self 1

U(1, c0) = 0 + β
T∑
s=2

c+ = β(T − 1)c+

U(1, c∗) = c− + β
T−1∑
s=2

c− = c− + β(T − 2)c−.

He prefers commitment over the equilibrium, U(1, c0) > U(1, c∗), if

β(T − 1)c+ > c− + β(T − 2)c−

or

β >
c−

T (c+ − c−) + 2c− − c+ ≡ β̄(T )

which is just the same parameter space as in the previous cases (it doesn’t matter how he

discounts past consumption because there is no past consumption).

But the results for self t ∈ [2, T − 1] are more complicated than in the previous special

cases

U(t, c0) = γ
t−1∑
s=2

c+ + c+ + β
T∑

s=t+1

c+ = γ(t− 2)c+ + c+ + β(T − t)c+

U(t, c∗) = γ

t−1∑
s=1

c− + c− + β

T−1∑
s=t+1

c− = γ(t− 1)c− + c− + β(T − t− 1)c−.

And hence

U(t, c0) > U(t, c∗) for all t ∈ [2, T − 1]

if

β >
γ [(t− 1)c− − (t− 2)c+] + c− − c+

(T − t)c+ − (T − t− 1)c−
≡ β̂(γ, T, t) for all t ∈ [2, T − 1].

Self T

U(T, c0) = c+ + γ
T∑
s=3

c+ = c+ + γ(T − 2)c+
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U(T, c∗) = γ
T∑
s=2

c− = γ(T − 1)c− = γc− + γ(T − 2)c−

and hence it is always the case that

U(T, c0) > U(T, c∗).

In summary, for a given number of nodes T , the commitment allocation dominates the

equilibrium allocation from the perspective of self 1 if

β ∈
(
β̄(T ),

c−

c+

)
.

Likewise, for a given number of nodes T , and for a given backward discount factor γ, the

commitment allocation dominates the equilibrium allocation from the perspective of self

t ∈ [2, T − 1] if

β ∈
(
β̂(γ, T, t),

c−

c+

)
.

However, it can be show that

β̂(γ, T, t) < β̄(T ) for all t ∈ [2, T − 1] and for all γ < 1

which means that if the commitment allocation dominates the equilibrium allocation from

the perspective of self 1, then the commitment allocation will multiself Pareto dominate the

equilibrium allocation.

To see this, note that

∂β̂(γ, T, t)

∂t
= (c− − c+)×

(
γ(T − 2) (c+ − c−) + c+ − c−
[(T − t)c+ − (T − t− 1)c−]2

)
< 0 for all t ≥ 2

which means that

2 = arg max
t

β̂(γ, T, t)

β̂(γ, T, 2) =
γc− + c− − c+

(T − 2)c+ − (T − 3)c−
.

Further note that β̂(γ, T, 2) is maximized in the γ dimension as γ → 1 (we are assuming γ

cannot exceed 1). Rewrite

β̄(T ) =
c−

(T − 2)(c+ − c−) + c+
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β̂(1, T, 2) =
2c− − c+

(T − 2)(c+ − c−) + c−

and compute

β̄(T )− β̂(1, T, 2) =
c−[(T − 2)(c+ − c−) + c−]− (2c− − c+)[(T − 2)(c+ − c−) + c+]

[(T − 2)(c+ − c−) + c+][(T − 2)(c+ − c−) + c−]
.

The denominator is positive, and with some algebra the numerator can be rewritten as

(
c+ − c−

)2
(T − 1) > 0

and hence

β̄(T ) > β̂(1, T, 2) > β̂(γ, T, t), for all t ∈ [2, T − 1] and for all γ < 1.

Hence, as in the special cases in the previous subsections, self 1 is the holdup. The com-

mitment allocation Pareto dominates the equilibrium allocation if and only if self 1 prefers

commitment, and this happens if β > β̄(T ) as in Figure 1, and therefore all the lessons and

intuition from the previous special cases carry over to the case of generic γ.

4 Dynamic Programming Part II: Cake-Eating

The cake-eating problem is a first model in most lectures and textbooks on dynamic pro-

gramming. There is an infinitely divisible quantity of cake C. At t = 0 the individual

orders a cake that will arrive at t = 1, and hence no cake can be eaten at t = 0 but cake

may be eaten at all the other T decision nodes. The cake doesn’t spoil (nor does it grow).

The flow of consumption of the cake at node t is ct. Any cake not yet consumed is avail-

able for consumption at future decision nodes. The period utility function u(ct) satisfies

u′ > 0, u′′ < 0.9

Self t applies the following forward discount function F (s) to future period utility that

is s years away, with F (0) = 1. He likewise applies the backward discount function B(s) to

past period utility that is s years away, with B(0) = 1.

9Unlike the fruit tree example in which we had the luxury of assuming linear utility, which helped us derive
a variety of analytical results, here we must assume utility is strictly concave. Without concavity, there is
no solution to the time-zero cake-eating problem under once-off discounting {1, β, β, β, ...} because the time-
zero self doesn’t care when the cake is eaten. And under quasi-hyperbolic discounting {1, βδ, βδ2, βδ3, ...}
with linear utility, then there is a well-defined solution to the time-zero problem but it is the same as the
equilibrium allocation: eat all the cake at t = 1, and in this case, commitment has nothing to offer.
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4.1 The Case of T = 2

Consumption takes place at t = 1 and t = 2 but not at t = 0. From the perspective of t = 0,

the optimal allocation solves

max : F (1)u(c1) + F (2)u(c2), s.t. c1 + c2 = C,

which gives the first order condition

u′(c1)

u′(c2)
=
F (2)

F (1)
.

However, the preferences of self 1 will prevail and actual consumption solves

max : u(c1) + F (1)u(c2), s.t. c1 + c2 = C,

which has the first order condition

u′(c1)

u′(c2)
= F (1).

Note that the first order conditions will differ, except in the special case of exponen-

tial discounting F (2) = (F (1))2. Hence, time-inconsistent preferences creates disagreement

about which consumption allocation is optimal, and in a three period setting this necessarily

implies that the commitment allocation cannot multi-self Pareto dominate the actual allo-

cation, because the actual allocation is the optimal allocation of self 1. However, as with the

previous example, there is a deeper point at work here: this logic is specific to the low fre-

quency setting. If we add more decision nodes, we will see that even though preferences are

non-stationary and each self has a different perspective on what is optimal, it is possible to

construct examples where the commitment allocation dominates the actual allocation from

the perspective of all the selves. When there are more selves (i.e., more decision nodes) it is

easier to identify allocations that make everyone better off.

4.2 The Case of T ≥ 2

Now it becomes a numerical issue to determine how many decision nodes are needed to

generate a Pareto argument for commitment. We assume log utility.
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4.2.1 The Time-Zero Allocation (Commitment Allocation)

Self 0 would like his future selves to obey

max :
T∑
t=1

F (t) ln ct, s.t.
T∑
t=1

ct = C,

which has the following solution (commitment allocation)

ct =
CF (t)∑T
s=1 F (s)

, for all t > 0.

4.2.2 Non-Cooperative Equilibrium Allocation

We solve the problem recursively:

At vantage point T − 1 he solves

max : ln cT−1 + F (1) ln cT , s.t. cT−1 + cT = C −
T−2∑
t=1

ct.

The first order condition is

cT = F (1)cT−1,

which implies

cT−1 =
C −

∑T−2
t=1 ct

1 + F (1)
.

At vantage point T − 2 he solves

max : ln cT−2 + F (1) ln cT−1 + F (2) ln cT

s.t.10

cT−2 + cT−1 + cT = C −
T−3∑
t=1

ct

cT−1 =
C −

∑T−2
t=1 ct

1 + F (1)

cT = F (1)cT−1

or

10The first of these constraints– remaining consumption must equal remaining cake– is actually redun-
dant because this constraint was already imposed in the first step of the recursive solution.
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max : ln cT−2 + F (1) ln

(
C −

∑T−2
t=1 ct

1 + F (1)

)
+ F (2) ln

(
F (1)

C −
∑T−2

t=1 ct
1 + F (1)

)
which is the same as maximizing

max : ln cT−2 + F (1) ln

(
C −

T−3∑
t=1

ct − cT−2

)
+ F (2) ln

(
C −

T−3∑
t=1

ct − cT−2

)

or

max : ln cT−2 + (F (1) + F (2)) ln

(
C −

T−3∑
t=1

ct − cT−2

)
.

The first order condition is

1

cT−2
− F (1) + F (2)

C −
∑T−3

t=1 ct − cT−2
= 0

cT−2 =
C −

∑T−3
t=1 ct

1 + F (1) + F (2)
.

At vantage point T − 3 he solves

max : ln cT−3 + F (1) ln cT−2 + F (2) ln cT−1 + F (3) ln cT

s.t.11

cT−3 + cT−2 + cT−1 + cT = C −
T−4∑
t=1

ct

cT−2 =
C −

∑T−3
t=1 ct

1 + F (1) + F (2)

cT−1 =
C −

∑T−2
t=1 ct

1 + F (1)

cT = F (1)cT−1.

Note that

cT−2 =
C −

∑T−3
t=1 ct

1 + F (1) + F (2)
=
C −

∑T−4
t=1 ct − cT−3

1 + F (1) + F (2)

11Again, the first constraint is redundant and can be dropped.
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cT−1 =
C −

∑T−2
t=1 ct

1 + F (1)
=
C −

∑T−4
t=1 ct − cT−3 − cT−2

1 + F (1)

=
C −

∑T−4
t=1 ct − cT−3

1 + F (1)
− 1

1 + F (1)

C −
∑T−4

t=1 ct − cT−3
1 + F (1) + F (2)

=

(
C −

T−4∑
t=1

ct − cT−3

)(
1

1 + F (1)

)(
F (1) + F (2)

1 + F (1) + F (2)

)
.

Hence

max : ln cT−3 + F (1) ln

(
C −

∑T−4
t=1 ct − cT−3

1 + F (1) + F (2)

)

+F (2) ln

((
C −

T−4∑
t=1

ct − cT−3

)(
1

1 + F (1)

)(
F (1) + F (2)

1 + F (1) + F (2)

))

+F (3) ln

(
F (1)

(
C −

T−4∑
t=1

ct − cT−3

)(
1

1 + F (1)

)(
F (1) + F (2)

1 + F (1) + F (2)

))

which is the same as maximizing

max : ln cT−3 + F (1) ln

(
C −

T−4∑
t=1

ct − cT−3

)
+ F (2) ln

(
C −

T−4∑
t=1

ct − cT−3

)

+F (3) ln

(
C −

T−4∑
t=1

ct − cT−3

)

or

max : ln cT−3 + (F (1) + F (2) + F (3)) ln

(
C −

T−4∑
t=1

ct − cT−3

)
which has the first order condition

1

cT−3
− F (1) + F (2) + F (3)

C −
∑T−4

t=1 ct − cT−3
= 0

which implies

cT−3 =
C −

∑T−4
t=1 ct

1 + F (1) + F (2) + F (3)
.

Note the pattern that has emerged, standing n nodes back from the final node

cT−n =
C −

∑T−(n+1)
t=1 ct

1 +
∑n

t=1 F (t)
.
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For convenience, change the index dummy from t to s

cT−n =
C −

∑T−(n+1)
s=1 cs

1 +
∑n

s=1 F (s)

and note that standing n nodes back from the last node is the same as standing at node

t = T − n, so

ct =
C −

∑t−1
s=1 cs

1 +
∑T−t

s=1 F (s)
, for t > 0,

and hence we have the following recursion

ct+1 =
C −

∑t
s=1 cs

1 +
∑T−t−1

s=1 F (s)

=
C −

∑t−1
s=1 cs − ct

1 +
∑T−t−1

s=1 F (s)

=
C −

∑t−1
s=1 cs

1 +
∑T−t−1

s=1 F (s)
− ct

1 +
∑T−t−1

s=1 F (s)

= ct
1 +

∑T−t
s=1 F (s)

1 +
∑T−t−1

s=1 F (s)
− ct

1 +
∑T−t−1

s=1 F (s)

= ct

( ∑T−t
s=1 F (s)

1 +
∑T−t−1

s=1 F (s)

)
< ct.

4.2.3 Special Case: Once-OffDiscounting

For a delay of length s,

F (s) =

{
1 for s = 0

β for s > 0

B(s) =

{
1 for s = 0

γ for s > 0.

Self 0 would like his future selves to obey (commitment allocation)

ct = C/T , for all t.

However, the equilibrium consumption recursion satisfies
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ct+1 = ct

(
β(T − t)

1 + β(T − t− 1)

)
which has the closed form solution

ct = c1

t−1∏
s=1

(
β(T − s)

1 + β(T − s− 1)

)
, for t > 0,

where we recall the notation for an empty product
∏b

i=a xi = 1 when b < a, and

c1 =
C

1 + β(T − 1)
.

For self t > 0, a consumption allocation c confers utility

U(t, c) = γ
t−1∑
s=1

ln cs + ln ct + β
T∑

s=t+1

ln cs.

Table 1 reports the number of decision nodes to that are needed to ensure that the

commitment allocation is a multiself Pareto improvement over the equilibrium allocation.

In other words, Table 1 reports the number of decision nodes that are needed to ensure that

U(t, c0) > U(t, c∗) for all t.

Table 1. Necessary and Suffi cient Decision Nodes for Pareto Improvement

β = 0.2 β = 0.3 β = 0.4 β = 0.5 β = 0.6 β = 0.7 β = 0.8

γ = 1 T ≥ 9 T ≥ 8 T ≥ 8 T ≥ 8 T ≥ 8 T ≥ 8 T ≥ 8

γ = β T ≥ 6 T ≥ 5 T ≥ 5 T ≥ 4 T ≥ 4 T ≥ 4 T ≥ 4

γ = 0 T ≥ 6 T ≥ 5 T ≥ 5 T ≥ 4 T ≥ 4 T ≥ 4 T ≥ 4

Note: β is the forward discount factor and γ is the backward discount factor,

and T is the number of nodes that ensure U(t, c0) > U(t, c∗) for all t.

There are three basic results in Table 1.

Result 5 If the number of decision nodes is equal to or greater than a given threshold, then
the commitment allocation multiself Pareto dominates the equilibrium allocation.

When there is a small number of decision nodes (i.e., a small number of selves), a given

self may have the power to significantly influence the equilibrium allocation. In this case,

the equilibrium allocation may not be so bad from his perspective. However, when there is a
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large number of selves, then the power to influence the equilibrium allocation is diffuse among

selves; no one self has much power, and hence the equilibrium is relatively dissimilar to the

desires of a given self. Table 1 reports the threshold at which power becomes diffuse enough

that all the selves are far enough from what they want that they all prefer the commitment

allocation to the equilibrium allocation.

Result 6 The necessary and suffi cient number of decision nodes (to ensure that the commit-
ment allocation multiself Pareto dominates the equilibrium allocation) is increasing in the

degree of forward discounting.

Considering an extreme case helps to highlight the intuition for this result. As β → 0, it is

impossible for the commitment allocation to Pareto dominate the equilibrium allocation. To

see this, it is enough to show that at least one self prefers the actual allocation. Consider self

1. The allocation that maximizes his utility is limβ→0 c1 = C with limβ→0 ct = 0, for t > 1.

The individual wants everything now and wants future selves to have nothing. And in this

special case, the individual is able to perfectly enforce his will because eating all the cake

at t = 1 will eliminate all opportunities for future decision making. Hence it is impossible

for the commitment allocation (which sets consumption to C/T for all t) to dominate the

actual allocation for any finite T because the first self prefers the equilibrium allocation.

Result 7 The necessary and suffi cient number of decision nodes is decreasing in the degree
of backward discounting.

We now quantify the welfare gains (or losses) from commitment. Let c0(C) denote the

commitment allocation as a function of the size of the cake, and let c∗(C) denote the actual

allocation as a function of the cake. Define ∆t as the solution to

U(t, c0(C∆t)) = U(t, c∗(C)).

Note that

U(t, c0(C∆t)) = U(t, c0(C)) + γ(t− 1) ln ∆t + ln ∆t + β(T − t) ln ∆t

and hence

∆t = exp

(
U(t, c∗(C))− U(t, c0(C))

γ(t− 1) + 1 + β(T − t)

)
, for t > 0.

The function 1−∆t tells us what fraction of the cake self t would be willing to give up

in order to consume the commitment allocation (∆tC/T ). Figures 4, 5, and 6 plot 1 − ∆t
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for each self t > 0, for various assumptions about the total number of nodes T and discount

factors β and γ. In generating these figures we have assumed β = 0.5 in order to give a

feel for the magnitude of the potential welfare gains from commitment. The overall visual

appearance of these graphs is not terribly sensitive to the precise value of β.

4.2.4 Special Case: Quasi-hyperbolic Discounting

For a delay of length s,

F (s) =

{
1 for s = 0

βδs for s > 0

B(s) =

{
1 for s = 0

γηs for s > 0.

Self 0 would like his future selves to obey (commitment allocation)

ct =
Cδt∑T
s=1 δ

s
= Cδt

(
1− δ

δ − δT+1
)
, for all t > 0.12

However, the equilibrium consumption allocation is

c1 =
C

1 + β
∑T−1

s=1 δ
s

=
C

1 + β

(
δ − δT

1− δ

)

ct+1 = ct

(
β
∑T−t

s=1 δ
s

1 + β
∑T−t−1

s=1 δs

)
= βct


δ − δT−t+1

1− δ

1 + β

(
δ − δT−t

1− δ

)
 , for t > 0.

For self t > 0, a consumption allocation c confers utility

U(t, c) = γ
t−1∑
s=1

ηt−s ln cs + ln ct + β

T∑
s=t+1

δs−t ln cs.

As above, let c0(C) denote the commitment allocation as a function of the size of the cake,

and let c∗(C) denote the actual allocation as a function of the cake. Define ∆t as the solution

12Recall that a one-dollar annuity that lasts for T periods at rate r per period has a present value∑T
s=1 1/(1 + r)s = (1− 1/(1 + r)T )/r. Setting δ = 1/(1 + r) gives the reduced form shown in the equation

above.
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to

U(t, c0(C∆t)) = U(t, c∗(C)).

Note that

U(t, c0(C∆t)) = U(t, c0(C)) +

(
γ
t−1∑
s=1

ηt−s + 1 + β
T∑

s=t+1

δs−t

)
ln ∆t

and hence

∆t = exp

 U(t, c∗(C))− U(t, c0(C))

γ
∑t−1

s=1
ηt−s + 1 + β

∑T

s=t+1
δs−t


= exp

 U(t, c∗(C))− U(t, c0(C))

γ
∑t−1

s=1
ηs + 1 + β

∑T−t

s=1
δs



= exp

 U(t, c∗(C))− U(t, c0(C))

γ

(
η − ηt
1− η

)
+ 1 + β

(
δ − δT−t+1

1− δ

)
 , for t > 0.

We will avoid duplicating too many tables and figures because it is suffi cient to say that

the principle lesson continues to go through: for a given parameterization (now there are

four parameters instead of two, β, δ, γ, η) there is a threshold number of decision nodes,

below which the commitment allocation does not make all the selves better off relative to

the equilibrium, and above which the commitment allocation multiself Pareto dominates the

equilibrium.

For example, consider a fairly typical calibration of the quasi-hyperbolic forward discount

function β = 0.8, δ = 0.95, and suppose the backward discount function takes the same shape

γ = 0.8, η = 0.95. In this case, as long as there are 4 or more decision nodes (T ≥ 4) then

the commitment allocation multiself Pareto dominates the equilibrium allocation. Suppose

T = 7; that is, suppose the cake can be eaten each day for a week. In this case we know

that all 7 selves will prefer commitment because there are more than 4 decision nodes, and

their willingness to pay 1−∆t for the commitment allocation is monotonically increasing in

t (the age of the self). Self 1 would give up 0.85% of the cake to commitment himself to the

time-zero allocation, while self 7 would give up 6.60% for commitment.

Suppose we keep the same assumptions about the forward discount function β = 0.8, δ =

0.95, but now we assume the individual doesn’t care about the past (γ = 0). As in the
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previous example, it still happens to be the case that as long as there are 4 or more decision

nodes (T ≥ 4) then the commitment allocation multiself Pareto dominates the equilibrium

allocation. If we continue to assume the individual has one week to eat the cake (T = 7),

then willingness to pay 1−∆t for the commitment allocation is monotonically increasing in

t. Self 1 would give up 0.85% of the cake to commitment himself to the time-zero allocation,

while self 7 would give up 33.66% for commitment. The oldest self is, of course, willing to

pay a huge premium for commitment because commitment leaves him a bigger piece of cake

at day 7 than the equilibrium outcome. Self 0 would like to leave 12.18% of the cake for day

7 while the equilibrium allocation only leaves 8.08% for day 7. The latter is 33.66% less than

the former and hence this is self 7’s willingness to pay for commitment. Of course, self 7’s

ideal allocation is to eat all of the cake on day 7, so neither the commitment allocation nor

the equilibrium allocation come close to his first best. But our point is not that commitment

helps all selves reach their first best, our point is that commitment can help all selves do

better than the equilibrium if there are enough decision nodes (selves) in the choice problem.

5 Concluding Remarks

In this paper we have tried to make some progress toward laying a stronger philosophical

foundation for the O’Donoghue-Rabin approach to behavioral welfare analysis (i.e., equating

welfare with time-zero preferences). Critics of this approach worry that it is ad hoc or

arbitrary. And our sense is that even among behavioral economists who support equating

welfare with time-zero preferences on intuitive grounds, they too would like to see more

formal work to strengthen the logical underpinnings of such an approach. Our finding that

equating welfare with time-zero preferences is consistent with a multiself Pareto criterion, as

long as the number of decision nodes exceeds a specific threshold, provides a little stronger

foundation than has previously existed.

We conclude with the fundamental question that we opened with in the introduction:

How should scarce resources be allocated when individuals have dynamically inconsistent

preferences? Critics of behavioral economics may argue that meaningful welfare analysis

is hopeless because the time-dated selves of a single individual disagree on how resources

should be allocated over time. But just because the different selves each have different ideas

on how resources should ideally be allocated over time doesn’t mean that they can’t at least

agree that some allocations (commitment) are better than others (equilibrium). And our

contribution is to show that as the number of decision nodes increases and therefore there

are more conflicting points of view on how resources should ideally be allocated over time,

almost paradoxically it becomes easier for the selves to reach a unanimous agreement that
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the commitment allocation beats the equilibrium allocation. The reason is that with many

selves instead of just a few, the power to influence the equilibrium allocation becomes diffuse

and the equilibrium therefore diverges from the ideal allocations of any of the selves. This

gap opens the door for a Pareto improvement.

While we do not expect that our findings will necessarily extend to every conceivable

economic setting for which time-inconsistent preferences could be studied, the fact that

our findings persist across a broad space of model settings (renewable and nonrenewable

resources) seems to be an important consideration in the ongoing welfare debate. At a

minimum, we can safely conclude that the O’Donoghue-Rabin approach to behavioral welfare

analysis (i.e., equating welfare with time-zero preferences) may have a firmer philosophical

foundation than previously supposed.

There are at least two interesting extensions to this paper. First, rather than just compar-

ing the time-zero allocation to the equilibrium allocation, it would be interesting to compare

the ideal allocations of all the time-dated selves to the equilibrium allocation, and then see

which of these Pareto optima tend to Pareto dominate the equilibrium. This will provide

additional insights as to whether the time-zero allocation is just one of many Pareto optima

that Pareto dominate the equilibrium, or whether it is instead one of just a few allocations

that share this feature. Understanding the answer to this question would help to better

understand the concern that the time-zero criterion is arbitrary. Second, it would also be

interesting (and ambitious) to characterize the entire set of feasible allocations that Pareto

dominate the equilibrium allocation. Note that this second set may include allocations that

are not Pareto optimal. Characterizing the scope and boundaries of this set would provide

further understanding of multiself welfare analysis and the validity of the time-zero welfare

criterion.
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Figure 2. 3 Allocations and 2 Decision Nodes (T = 2)
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Figure 3. 3 Allocations and 6 Decision Nodes (T = 6)
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Figure 4. Willingness to Pay for Commitment: The Case of β = 0.5, γ = 1
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Note: 1 −∆t is the fraction of cake self t would give up;
β and γ are the forward and backward discount factors.
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Figure 5. Willingness to Pay for Commitment: The Case of β = γ = 0.5
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Note: 1 −∆t is the fraction of cake self t would give up;
β and γ are the forward and backward discount factors.
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Figure 6. Willingness to Pay for Commitment: The Case of β = 0.5, γ = 0

Note: 1 −∆t is the fraction of cake self t would give up;
β and γ are the forward and backward discount factors.
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