Accounting for the Evolution of U.S. Wage Inequality

Lutz Hendricks

UNC

Preliminary May 24, 2013

- Wage inequality has increased in the U.S. since the 1970s
 - standard deviation of log wages, college wage premium, "residual" wage inequality, ...
- A vast, most non-structural literature has investigate explanations.
- A structural model allows to investigate shocks and their indirect effects.

- How far can a standard human capital model go towards accounting for changing wage inequality?
- What are the (proximate) causes of rising inequality?
- What happened to lifetime inequality?

- Calibrate a stochastic Roy / Ben-Porath model to match CPS wage moments, 1964 – 2010, men
 - building on Heckman / Lochner / Taber (1998 RED)
- Discrete school choice
- Heterogeneity in "abilities," human capital endowments, shocks
- Rising inequality is due to
 - diverging skill prices (demographics + SBTC)
 - rising schooling
 - rising shock variances

- The model accounts for trends in several inequality statistics
- Rising "overall wage inequality" is 50% skill prices / 50% rising shock variances
- Rising "between group" inequality is almost 100% skill prices
- Rising "within group" inequality is almost 100% shock variances
- Lifetime earnings inequality rises nearly as much as overall wage inequality

- How does it differ from Guvenen and Kuruscu's "A Quantitative Analysis of the Evolution of the U.S. Wage Distribution, 1970-2000"?
- GK argue that single shock (acceleration of SBTC) accounts for everything
 - There is no role for labor supply / demographics
- I run with the Katz and Murphy view that demographics + SBTC drive the college wage premium
- Other differences:
 - stochastic model
 - discrete school choice and skill prices

Model

- General equilibrium
- Overlapping generations
- "Small open economy" no capital, fixed interest rate
- Individuals
 - draw endowments: ability a, human capital h_1
 - choose schooling s: HSD, HSG, CD, CG (Roy model)
 - work and produce human capital (Ben-Porath)

- N_c : size of cohort born in $\tau = c$
- T: fixed lifetime
- *t*: age
- $\ell_{s,c,t}$: time endowment, used for work and studying
- Endowments: $a, h_1 \sim joint Normal$
- Preferences: maximize expected lifetime earnings

In school:

- duration T_s
- $h_{T_s+1} = F(h_1, a, s)$

On the job:

$$h_{t+1} = (1 - \delta_s)h_t + A(a, s)(h_t l_t)^{\alpha_s}$$
(1)

$$A(a,s) = e^{A_s + \theta a} \tag{2}$$

Labor supply in efficiency units

$$e_{i,s,c,t} = \underbrace{q_{i,s,c,t} \zeta_{i,s,c,t} h_{i,s,c,t} (\ell_{s,c,t} - l_{i,s,c,t})}_{\text{shocks}}$$
Ben-Porath

- ζ : transitory shock or measurement error
 - Normal distribution
- q: persistent shock:
 - AR(1) with linear trend in shock variance

(3)

Aggregate production function

$$Y_{\tau} = \left[G_{\tau}^{\rho_{CG}} + (\omega_{CG,\tau}L_{CG,\tau})^{\rho_{CG}}\right]^{1/\rho_{CG}} \tag{4}$$

where

$$G_{ au} = \left[\sum_{s=HSD}^{CD} (\omega_{s, au} L_{s, au})^{
ho_{HS}}
ight]^{1/
ho_{HS}}$$

Skill prices equal marginal products:

$$w_{s,\tau} = \partial Y_{\tau} / \partial L_{s,\tau} \tag{6}$$

 $L_{s,\tau}$: labor supply in efficiency units Constant SBTC: ω_s/ω_{HSG} grows at a constant rate. (5)

Maximizes the expected value of lifetime earnings

$$V(h_{T_s+1}, a, s, c) = \max \mathbb{E} \sum_{t=T_s+1}^{T} R^{-t} \underbrace{w_{s,\tau(c,t)}e_{s,c,t}}_{\text{earnings}}$$

subject to

- Iaw of motion for h
- time constraint $0 \le l_t \le \overline{l}\ell_{s,c,t}$.

The model has a closed form solution.

(7)

Human capital investment is chosen before the current transitory shock, ζ_t , is realized.

Backward induction leads to

$$(h_{i,s,c,t}l_{i,s,c,t})^{1-\alpha_s} = \frac{\alpha A(a,s)}{(1-\delta_s)} \sum_{j=1}^{T-t} X_{s,c,t,j} \frac{\mathbb{E}(q_{i,s,c,t+j}|t)}{q_{i,s,c,t}}$$
(8)

where

$$X_{s,c,t,j} = \left(\frac{1-\delta_s}{R}\right)^j \frac{w_{s,\tau(c,t+j)}}{w_{s,\tau(c,t)}} \ell_{s,c,t+j}$$
(9)

Recursive solution: Solve for $l_t(h_t)$, compute h_{t+1} , and iterate forward.

Choose schooling to maximize

$$W_s(p_s, h_1, a, s, c) = \underbrace{\ln V(F[h_1, a, s], a, s, c)}_{\text{lifetime earnings}} + \mu_{s,c} + \underbrace{\pi p_s + \pi_a(T_s - T_1)a}_{\text{"psychic cost"}}$$

The household values:

- lifetime earnings V
- school "costs" $\mu_{s,c}$: common; allow the model to match cohort schooling
- "psychic costs" generate imperfect ability sorting

With Type I Extreme Value shocks p_s : school choice has a closed form solution.

- IQ as a proxy for unobserved ability.
- Helps with identification of ability dispersion (θ) and school choice

$$IQ = a + \sigma_{IQ}\varepsilon_{IQ} \tag{10}$$

$$\varepsilon_{IQ} \sim N(0,1)$$
 (11)

Calibration

Mean and standard deviation of log wage by (s, c, t):

- March CPS, <u>1964 2011</u>
- Men born between 1935 and 1968.

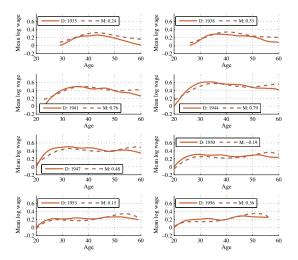
Test scores (IQ):

- mean scores of high school and college students
- selected cohorts
- Taubman and Wales (1972) and NLSY79

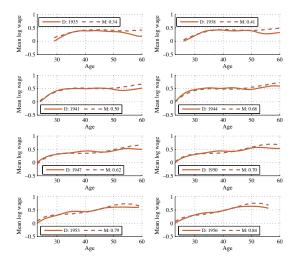
Shocks:

• PSID: covariance matrix of log wages

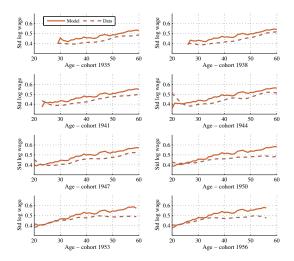
- schooling technology = job training technology
- for aggregation:
 - cohorts born before 1935 look like 1935 cohort
 - cohorts born after 1968 look like 1968 cohort


Parameter	Description	Value
Т	Lifespan	65
τ	Birth cohorts	1935, 1938, 1941,, 1962, 1965, 1968
T_s	School duration	2, 3, 5, 7
$\ell_{t,s,\tau}$	Market hours	CPS data
$\ell_{t,s, au}$ n/a	Nodes of skill price spline	1950, 1957, 1964,, 2010, 2021, 2032
R	Gross interest rate	1.04

- Simulate 1,000 individuals in each cohort.
- Choose school costs $\mu_{s,c}$ to match the fraction of persons choosing each school level in each cohort.
- Choose variance of transitory shocks to best fit variance of wages across ages (for each s, τ)
- Minimize sum of squared deviations from calibration targets.


- 36 calibrated parameters governing endowments, technologies, shocks
- 36 parameters governing skill prices
 - unrestricted skill weight on HSG labor by year
 - for all other school groups: skill weight in 1964 and rate of SBTC
- Of note: Ben-Porath curvature parameters α_s near 0.4
 - much lower than most previous estimates (>0.8)

D		
Parameter	Description	Value
On-the-job training		
A_s	Productivity	0.14, 0.12, 0.15, 0.23
α_s	Curvature	0.49, 0.40, 0.38, 0.46
δ_s	Depreciation rate	0.050, 0.040, 0.048, 0.088
Endowments		
σ_{h1}	Dispersion of h_1	0.290
$\boldsymbol{\theta}$	Ability scale factor	0.098
π_1	Psychic cost scale factor	0.257
Yap	Ability weight in psychic cost	0.111
Yah	Governs correlation of $\ln h_1$ and a	0.328
σ_{IO}	Noise in IQ	0.610
Shocks		
$\sigma(q_1)$	Std dev of first shock	0.03, 0.01, 0.29, 0.29
ρ_s	Shock persistence	0.98, 0.97, 0.99, 0.98
$\sigma(\zeta)$, 1964	Std deviation of shocks	0.12, 0.11, 0.08, 0.08
$\sigma(\xi)$, 2010	Std deviation of shocks	0.12, 0.16, 0.11, 0.14
Other		
Δw_s	Skill price growth rate, 1964-2010 [pct]	-1.27, -0.69, -0.61, -0.02
$(1 + \rho_{HS})^{-1}$, $(1 + \rho_{CG})^{-1}$	Substitution elasticities	6.03, 4.09


Model Fit: Mean Log Wages (HSG)

Model Fit: Mean Log Wages (CG)

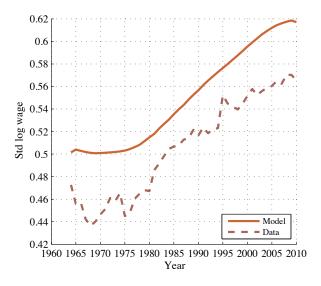
Model Fit: Standard Deviation (HSG)

Model Fit: Standard Deviation (HSG)

Results

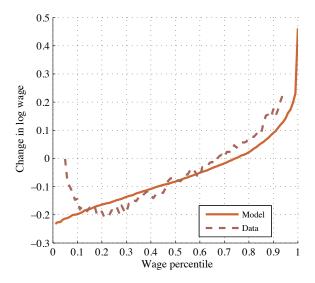
- How far can a simple human capital model go towards accounting for wage distribution facts?
- What is the contribution of various "shocks" to changing wage inequality?
- Limetime earnings inequality?

Use counterfactual experiments to shut down one shock at a time


- fixed wages: $w_{s,\tau} = w_{s,1964}$
- I fixed schooling at level of 1935 cohort
- Solution fixed shock variances: $\sigma_{\xi,s,\tau} = \sigma_{\xi,s,1964}$

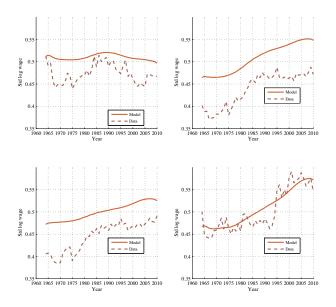
Two cases:

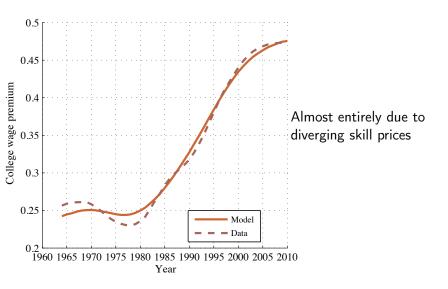
- Direct effect: holding human capital investments and school choices constant
- Otal effect: allowing human capital investments to adjust


All inequality statistics hold population composition constant at cross-year average.

Overall Wage Dispersion

Roughly 50% due to diverging skill prices, 50% due to rising shock variances

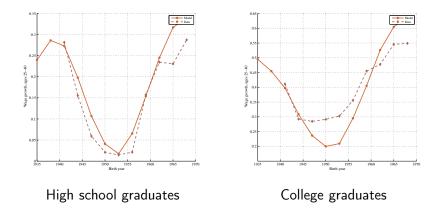

Fanning Out of the Wage Distribution



Residual Wage Inequality



Wage Dispersion and Schooling

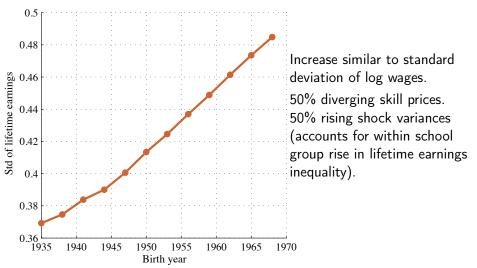


College Premium: Young and Old

Early decline in the young college premium is due to falling human capital investment of high school graduates in the 1970s.

Returns to Experience

Changes are 50% skill prices / 50% human capital investment.


- Overall wage inequality: 50% due to diverging skill prices / 50% due to rising shock variances
- Within group inequality: due to rising shock variances
- College wage premium: due to diverging skill prices Human capital investment plays a role for the divergent behavior of young / old.
- Returns to experience: 50% skill prices; 50% human capital investment.
- S Rising education matters only for skill prices.
- Secondary effects are generally small.

Why Are Indirect Effects Small?

• Optimal human capital investment:

$$(h_{i,s,c,t}l_{i,s,c,t})^{1-lpha_s} = rac{lpha A(a,s)}{(1-\delta_s)} \sum_{j=1}^{T-t} X_{s,c,t,j} rac{\mathbb{E}(q_{i,s,c,t+j}|t)}{q_{i,s,c,t}}$$

- Investment response is the same for all individuals in a [school, age] cell (except for interaction with expected shock growth term)
- Small effect on within group inequality
- Rising shock variances affect $\mathbb{E}(q_{i,s,c,t+j}|t)/q_{i,s,c,t}$
 - Investment response is the same for all individuals in a [school, age] cell
 - Small amplification of within group inequality
 - Since *Var(q)* rises by similar amounts for CG and HSG: small effect on college premium.

- Predictability = [var of lifetime earnings without shocks] / [var of lifetime earnings]
- Huggett / Ventura / Yaron (2011 AER): 0.6
- This model: 0.25
 - 0.1 for college educated workers
 - 0.25 for high school educated workers
- Why so much smaller than HVY?

The End