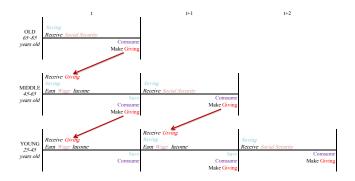
The Role of Inter vivos giving in General Equilibrium

Jane Yoo, Ajou University


May 24, 2013

Jane Yoo, Ajou University The Role of Inter vivos giving in General Equilibrium

- 4 同 2 4 日 2 4 日 2

Introduction Stylized Facts Related Literature

Timeline of Inter Vivos Giving

Jane Yoo, Ajou University The Role of Inter vivos giving in General Equilibrium

・ロト ・回ト ・ヨト ・ヨト

Introduction Stylized Facts Related Literature

- Research Questions:
 - "What is the role of parents' giving in an economy?"
 - It may generate the substantial "Wealth Inequality"
 - It may improve someone's "Welfare"
 - Can this gift be "Pareto-improving"?
- The journey to answer these questions
 - Stylized Facts on intergenerational transfers
 - Previous Literature
 - Model
 - Public Policy Analysis
 - Results

イロト イポト イヨト イヨト

Introduction Stylized Facts Related Literature

Objective:

- Based on lower bound facts from the microdata, present the theoretical model of inter vivos giving in general equilibrium
- Some useful stylized facts are
 - ▶ 72% of intergenerational transfer: given to children by parents
 - 18% of intergenerational transfer: generational-skipping transfer
 - ▶ 70% of inter vivos giving is in financial assets including cash
 - Current gift/estate tax scheme is gift-friendly
- In general equilibrium, can we realize the welfare gains by a public reinforcement of inter vivos giving?

(ロ) (同) (E) (E) (E)

Introduction Stylized Facts Related Literature

SCF: Triennial Household Wealth and Asset Survey(1995-2010)

- Each survey contains wealth profiles of 4000 households
- The total wealth in the SCF closely matches with the aggregate data
- Provides the descriptive wealth composition of rich households
- The Pseudo Panel: Tracking down a representative cohort (64 Cohorts born between 1915 and 1978; 306 observations in each cohort on average)

$$y_{i,t} = \alpha + f(age: \theta) + \beta_{1,i} cohort_i + \beta_{2,t} time_t + \epsilon_{i,t}$$
 (1)

イロト イポト イヨト イヨト

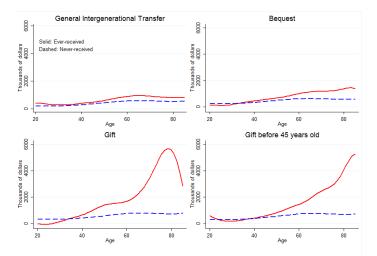
Introduction	
Model	
Result	
Conclusion	

Introduction Stylized Facts Related Literature

Section X: Inheritance/Trust/Transfer

- Have you (or your [husband/wife/partner]) ever received an inheritance, or been given substantial assets in a trust or in some other form?
- Was that an inheritance, a trust, or what?
- In what year did you receive it?

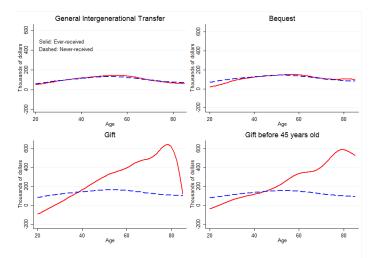
	Households Households ever received from parents when they were						
	ever Received	younger than 25 26 to 35 36 to 45 46 to 55 56 to 65 66 to 7					66 to 75
Inter vivos giving							
Fraction of Observations ^a	0.584	0.095	0.161	0.153	0.102	0.054	0.019
Mean amount ^b	143	144	166	181	256	256	194
Median amount ^b	7.97	6.50	7.98	7.56	11.68	14.49	12.38
Bequest							
Fraction of Observations ^a	2.382	0.190	0.359	0.547	0.696	0.485	0.181
Mean amount ^b	708	686	717	717	766	673	475
Median amount ^b	43.67	29.52	33.74	47.09	49.23	50.33	45.12


° in Percentage

^b in Thousands of Dollars

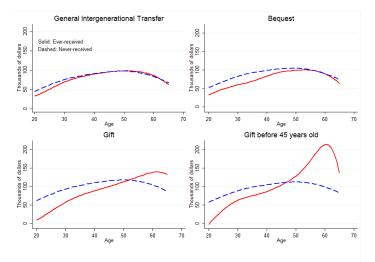
イロン イヨン イヨン イヨン

Introduction Stylized Facts Related Literature


Empirical Results: Wealth Profiles

・ロト ・日本 ・モート ・モート

Introduction Stylized Facts Related Literature


Empirical Results: Income Profiles

・ロト ・日本 ・モート ・モート

Introduction Stylized Facts Related Literature

Empirical Results: Wage Profiles

・ロト ・日本 ・モート ・モート

Literature review

- Macro Literature with Heterogeneous Agents: Wealth Inequality and the Intergenerational Transfers Huggett (1996); De Nardi (2004); Nishiyama (2002); Cagetti and De Nardi(2008)
- Public Finance Literature on Social Security: Welfare Analysis on the Intergenerational Transfers Auerbach et al. (1983); Auerbach and Kotlikoff (1987); Hubbard and Judd (1987); Imrohoroglu, Imrohoroglu, and Joines (1995); Krueger and Kubler (2006)
- Some Empirical Evidences on the Role of Inter Vivos Giving Cox and Jappelli(1990); Cox(1990)

・ロン ・回 と ・ ヨ と ・ ヨ と

Introduction	Environment
Model	Bellman Equation
Result	Stationary Equilibria
Conclusion	Calibration

Preference: Joy of Giving Utility (Blinder, 1975)

$$\mathbb{E}_{0}\sum_{i=1}^{3}\beta^{i-1}\left[\left(\frac{c_{i}^{1-\sigma}}{1-\sigma}\right)+\Lambda_{i}\left(\frac{g_{i}^{1-\eta}}{1-\eta}\right)\right]$$
(2)

 $\Lambda_1=0$ and $\Lambda_2=\Lambda_3=\Lambda:$ a normalized weight on utility from the inter vivos giving relative to utility based on consumption

- Models of Giving
 - Altruism: Barro(1974), Becker(1974)
 - Uncertain Lifetime: Huggett(1996), De Nardi(2004)
 - Strategic Motive: Bernheim, Shleifer and Summers(1985)
 - Joy of Giving (A warm glow or Impure Altruism): Blinder(1975), Andreoni(1989)

(ロ) (同) (E) (E) (E)

Introduction	Environment
Model	Bellman Equation
Result	Stationary Equilibria
Conclusion	Calibration

▶ The Old Generation's Problem, i=3

$$V_3(a_2, ss) = \max_{\{c_3, g_3\}} [U(c_3, g_3)]$$
(3)

s.t.

$$c_3 = (1 + r(1 - \tau_k))a_2 + ss - \left(\frac{1}{1 - \tau_g}\right)g_3$$
 (4)

- Policy functions: $c_3(a_2, ss)$, $g_3(a_2, ss)$
- Distributions defined: $\Phi_3(g_3)$

- 4 同 6 4 日 6 4 日 6

Introduction	Environment
Model	Bellman Equation
Result	Stationary Equilibria
Conclusion	Calibration

$$V_2(a_1, \hat{g}_3, \varepsilon_2) = \max_{\{c_2, a_2, g_2\}} [U(c_2, g_2) + \beta V_3(a_2, ss)]$$
(5)

s.t.

$$c_2 + a_2 \le (1 + r(1 - \tau_k))a_1 + (1 - \tau_w)w\bar{h}(\varepsilon) + \widehat{g}_3 - \left(\frac{1}{1 - \tau_g}\right)g_2$$

(6)

$$a_2 \ge 0 \tag{7}$$

・ロト ・回ト ・ヨト ・ヨト

- ▶ Policy functions: $c_2(a_1, \hat{g}_3, \varepsilon_2), a_2(a_1, \hat{g}_3, \varepsilon_2), g_2(a_1, \hat{g}_3, \varepsilon_2)$
- Distributions defined: $\Psi_2(a_2)$, $\Phi_2(g_2)$

Introduction	Environment
Model	Bellman Equation
Result	Stationary Equilibria
Conclusion	Calibration

• The Young Generation's Problem (i = 1)

$$V_{1}(\widehat{g_{2}},\varepsilon_{1}) = \max_{\{c_{1},a_{1}\}} [U(c_{1}) + \beta \sum_{\varepsilon} \int_{\widehat{g}} V_{2}(a_{1},\widehat{g_{3}},\varepsilon_{2})\pi(\varepsilon_{2} \mid \varepsilon_{1})d\hat{\Phi}_{3}]$$
(8)

s.t.

$$c_1 + a_1 \le (1 - \tau_w) w \bar{h}(\varepsilon) + \widehat{g}_2 \tag{9}$$

and

$$a_1 \ge 0$$
 (10)

- Policy functions: $c_1(\hat{g}_2, \varepsilon_1)$, $a_2(\hat{g}_2, \varepsilon_1)$
- Distributions defined: $\Psi_1(a_1)$
- A fraction of $f(\epsilon)$ of the population have the shock ϵ

Introduction	
Model	Bellman Equation
Result	Stationary Equilibria
Conclusion	Calibration

At a point in time, individuals are heterogeneous in their age *i* and in their state $s = (a, \hat{g}, \varepsilon) \in S = A \times \hat{G} \times E$ where $A \subset R^+$, $\hat{G} \subset R^+$ and $E = \{\epsilon_1, ..., \epsilon_N\}$

• The distribution of individual states across age i = 1

$$\begin{aligned} \operatorname{Prob}(\mathsf{a}_{i} = \mathsf{a}', \widehat{g_{i+2}} = \widehat{g}', \varepsilon_{i+1} = \epsilon') \\ &= \int_{\widehat{g}} \sum_{\varepsilon} \operatorname{Prob}(\mathsf{a}_{i} = \mathsf{a}' \mid \widehat{g_{i+1}} = \widehat{g}, \varepsilon_{i} = \epsilon) \\ &\cdot \operatorname{Prob}(\widehat{g_{i+2}} = \widehat{g}') \cdot \pi(\varepsilon_{i+1} = \epsilon' \mid \varepsilon_{i} = \epsilon) \cdot \operatorname{Prob}(\widehat{g_{i+1}} = \widehat{g}, \varepsilon_{i} = \epsilon) \end{aligned}$$

• For the generation i = 2:

$$\begin{aligned} \mathsf{Prob}(\mathsf{a}_i = \mathsf{a}') \\ &= \int_{\widehat{g}} \int_{\mathsf{a}} \sum_{\varepsilon} \mathsf{Prob}(\mathsf{a}_i = \mathsf{a}' \mid \mathsf{a}_{i-1} = \mathsf{a}, \widehat{g_{i+1}} = \widehat{g}, \varepsilon_i = \epsilon) \\ &\cdot \mathsf{Prob}(\mathsf{a}_{i-1} = \mathsf{a}, \widehat{g_{i+1}} = \widehat{g}, \varepsilon_i = \epsilon) \end{aligned}$$

(E)

Introduction	Environment
Model	Bellman Equation
Result	Stationary Equilibri
Conclusion	Calibration

Consistency Condition of Giving Distribution

∀i = 2,3, {g_i : g_i = g^{*}(·)} is a sequence of the optimal decision rules on giving which converges in law to ĝ_i, that is,

$$\lim \mathsf{L}(g_i(\cdot)) = \mathsf{L}(\hat{g}_i) \tag{11}$$

向下 イヨト イヨト

By the law of a random vector $(g_i^1, \ldots, g_i^n) = \ell(g_i^1, \ldots, g_i^n)$, we mean it's joint distribution $\Phi_i(g_i)$

Introduction	Environment
Model	Bellman Equation
Result	Stationary Equilibria
Conclusion	Calibration

- Capital Market Clears: $\sum_{i} \mu_i \int_{s} a_i(s) d\Theta_i = K'$
- Labor Market Clears: $\sum_{i} \mu_{i} \int_{s} \bar{h}(\varepsilon_{i}) d\Theta_{i} = L$
- Goods Market Clears: $\sum_{i} \mu_{i} \int_{s} c_{i}(s) d\Theta_{i} + K' + G = F(K, L) + (1 - \delta)K$
- The social security is self-financing
- The aggregative taxes are $T_K = \tau_k r \sum_i \mu_i \int_s a'_i(s) d\Theta_i,$ $T_g = \tau_g \sum_i \mu_i \int_s g_i(s) d\Theta_i$
- Government's budget equation is satisfied: $G = T_K + T_g$

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	
Model	Bellman Equation
Result	Stationary Equilibria
Conclusion	Calibration

Table : Summary of Parameters

Parameters	Values	References
ralameters	values	References
Discount rate	β	0.975
Production elasticity of capital	α	0.36
Coefficient of relative risk aversion for Consumption	σ	1.5
Coefficient of relative risk aversion for Giving	η	1.5
Rate of depreciation	δ	0.048
Replacement Ratio		0.45
Giving Weight	٨	21.74%
Capital tax rate	$ au_{k}$	See Text
Gift tax rate	τ_{g}	11.30% in effective
		(17% in statutory)
Efficiency Scale		Cagetti and De Nardi (2006)
The Transition matrix		Cagetti and De Nardi (2006)

æ

Introduction	Environment
Model	Bellman Equ
Result	Stationary Ed
Conclusion	Calibration

uilibria

Calibration: Giving Weight, Λ

▶ Estimation: 21.74% of an independent CU's annual income

- Cash Transfers: The average yearly amount of cash transfers to children in the independent CU, \$1,766 (SCF) (2.4% of annual income, CEX)
- Real Estate and Financial Assets Transfers: The capitalization rate of the inherited assets (Rental Value/Market Value: Housing and Other Properties) attributed by parent-CU has 2.2 times greater than that of self-obtained properties (17% of annual income, CEX)
- Educational Expenses: The CU provides \$1,098.784 for educational spending of a person outside of CU on average, every year (1% of annual income, CEX)

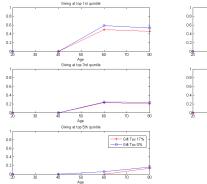
Calibration Target

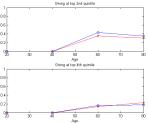
Kotlikoff and Summers(1981), Modigliani(1988b), Hurd and Mundaca(1989), Menchik and David(1983), Barlow et al.(1966); Gale and Scholz(1994): at least 20% of the aggregate wealth

イロト イポト イヨト イヨト

Introduction	Wealth Distribution
Model	Wealth Profiles
Result	Welfare
Conclusion	Sensitivity Analysis

► I. Wealth Distribution:

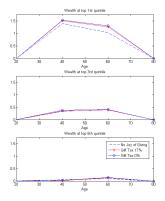

No significant change by eliminating the gift tax

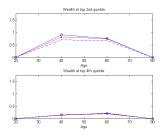

	Wealth Gini	Percentage Wealth in the top				
		1%	5%	10%	20%	50%
US data	0.78	29	54	81	94	98
Baseline model with Gift Tax 17% A model with Gift Tax 0%	0.7264 0.7262	6 6		48 48	75 75	100 99

(ロ) (同) (E) (E) (E)

Introduction Wealth Distribution Model Wealth Profiles Result Welfare Conclusion Sensitivity Analysis

II. Changes in Lifetime Giving

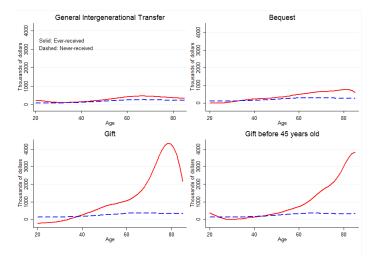




イロン イヨン イヨン イヨン

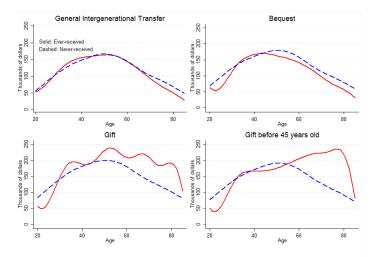
Introduction Wealth Distribution Model Wealth Profiles Result Welfare Conclusion Sensitivity Analysis

II. Changes in Lifetime Asset



イロン イヨン イヨン イヨン

Introduction	Wealth Distribution
Model	Wealth Profiles
Result	Welfare
Conclusion	Sensitivity Analysis


Empirical Results: Financial Assets Profiles

・ロト ・日本 ・モート ・モート

Introduction Wealth Distribution Model Wealth Profiles Result Welfare Conclusion Sensitivity Analysis

Empirical Results: Debt Profiles

Jane Yoo, Ajou University The Role of Inter vivos giving in General Equilibrium

・ロト ・日本 ・モート ・モート

Introduction	Wealth Distribution
Model	Wealth Profiles
Result	Welfare
Conclusion	Sensitivity Analysis

III. Changes in an Aggregate Economy

	Capital	Interest	Wealth	Agg Giving	Wage
	Output	rate	Gini	Capital	rate
	Ratio			Ratio	
US data	3	6%	0.78	0.5%	
Baseline model with Gift Tax 17%	3	6%	0.7264	44.78%	1.2928
A model with Gift Tax 0%	3.07	5.1%	0.7262	50.32%	1.3420

- 4 回 2 - 4 回 2 - 4 回 2

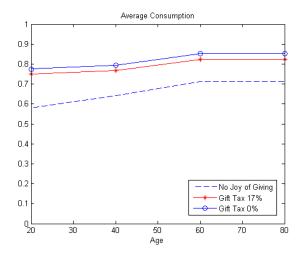
Introduction	Wealth Distribution
Model	Wealth Profiles
Result	Welfare
Conclusion	Sensitivity Analysis

(Comparison I) Gift Tax 17% vs. 0%: Wealth Profile

- The income effect (Short-term):
 - An instant increase in income during the young period
 - An increase in saving by the young with their high saving rates
 - An increase in saving by the middle for preparing with gifts/by receiving gifts
- The wealth effect (Long-term):
 - An increase in the capital stock improves production with lower interest rates
 - Social security for the old generation improves by an increase in wages

(4 回) (4 回) (4 回)

Introduction Wealth Distribution Model Wealth Profiles Result Welfare Conclusion Sensitivity Analysis


Consumption in exchange of Giving?

Jane Yoo, Ajou University The Role of Inter vivos giving in General Equilibrium

Introduction Model	Wealth Distribution Wealth Profiles
Result	Welfare
Conclusion	Sensitivity Analysis

IV. Average Lifetime Consumption

< 17 b

- < ≣ →

< ∃⇒

æ

Introduction	Wealth Distribution
Model	Wealth Profiles
Result	Welfare
Conclusion	Sensitivity Analysis

(Comparison II) Gift Tax 17% vs. 0%: The insurance effect: Smoother consumption over lifetime

- Improvement in consumption during the young period
- An increase in aggregate saving is shown by higher marginal propensity to save of the young generation
- An increase in the lifetime wealth reflects
 - Gifts from parents as insured income
 - Gifts for children as insured income

Table : Changes in Aggregate Values and Welfare (in percent)

	From Gift Tax rate 17% to 0%
ΔK	4.48
$\triangle Y$	1.06
riangle CV consumption, last period	3.25
riangle Welfare of Newborns	9.99

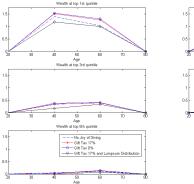
・ 同 ト ・ ヨ ト ・ ヨ ト

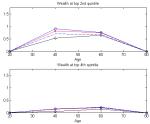
Introduction Model	Wealth Distribution Wealth Profiles
Result	Welfare Sensitivity Analysis
Conclusion	Sensitivity Analysis

Sensitivity Analysis

		$\sigma = 1.5$			$\sigma = 3$	
	$\beta = 0.5$	$\beta = 0.9$	$\beta = 1.1$	$\beta = 0.5$	$\beta = 0.9$	$\beta = 1.1$
With the Gift Tax rate 0%						
K/Y	1.1	2.8	3.13	1.95	3.67	3.73
Flow G/Y	51%	30%	28%	61%	48%	52%
Wage	0.5708	1.0708	1.0708	0.7919	1.1298	1.1403
From Gift Tax 50% to 0%						
$\$ CV consumption, last period	-6	3	4	1.3	21	28
%∆ Welfare of Newborns	-12	16	17	-10	57	67

・ロン ・回 と ・ ヨン ・ ヨン

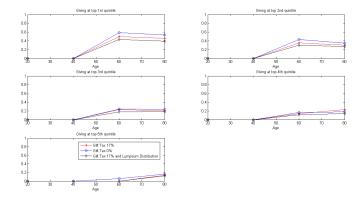

æ



- Lowering the gift tax rate does not necessarily aggravate wealth inequality
- Lowering the gift tax rate is Pareto-improving in the steady state
- Future research
 - ► A more sophisticated design of the gift/estate tax system
 - Modeling private intergenerational transfer in analyzing the Social Security
 - Modeling various types of parental support: Education, Housing (New Dynamic Public Finance)
 - Endogenous labor supply decision
 - Add stochastic survival probability
 - Comparing the model with giving distributed in a lump sum style

・ロト ・回ト ・ヨト ・ヨト

Figure : Wealth Profile by Wage Efficiency



イロン イヨン イヨン イヨン

æ

Figure : Giving Profile by Wage Efficiency

イロン イヨン イヨン イヨン