SOCIAL SECURITY AND THE INTERACTIONS BETWEEN AGGREGATE & IDIOSYNCRATIC RISK

Daniel Harenberg^a Alexander Ludwig^b

^aETH Zurich

^bCMR and FiFo, University of Cologne; MEA and Netspar

QSPS Summer Workshop Logan, May 25th, 2013

- Question: Welfare effects of expanding PAYG system?
- Trade-off: Insurance vs. crowding out
- Social security as insurance against
 - Idiosyncratic risk (e. g., Imrohoroglu, et al. (1999))
 AND
 - Aggregate risk (e. g., Krueger & Kubler (2006))

Life-cycle interaction (LCI)

- Idiosyncratic wage and aggregate return shocks increase variance of savings
- Variance of retirement consumption increases
- Interaction term: LCI
- LCI large, because long time horizon until retirement
- Ounter-cyclical variance of income risk (CCV)
 - Idiosyncratic risk higher in downturn than in boom
 - Mankiw(1986), Storesletten, et al. (2004)

- Two-generations model: Main mechanisms
- Quantitative overlapping generations model
- Calibration to the U.S.
- Experiment: Increase social security contributions from 0% to 2%
- Decomposition analysis: Quantify insurance against various sources and interactions
- Robustness and replication of previous literature

- Analytically: life-cycle interaction LCI
- Positive welfare gains across all calibrations
- Interaction terms (LCI + CCV) account for 50-60%
- E. g. baseline calibration (most conservative):
 - Welfare gains in GE: +1.4%
 - Benefits from insurance: +3.8%
 - Losses from crowding out: -2.4%
 - Interactions account for 1/2 of benefits

Two-Generations Model: Households

- Households live 2 periods, consume only when old
- Lifetime utility:

$$U_{i,t} = \beta \frac{1}{1-\theta} c_{i,2,t+1}^{1-\theta}$$

Budget constraint:

$$c_{i,2,t+1} = a'_{i,1,t}(1 + r_{t+1}) + b_{t+1}$$
$$a'_{i,1,t} = (1 - \tau)\eta_{i,1,t} w_t$$

• Partial equilibrium factor prices:

$$1 + r_t = \varrho_t \bar{R}$$

$$w_t = \zeta_t \bar{w}_t = \zeta_t \bar{w}_{t-1}(1+g)$$

• PAYG social security:

$$b_t = \tau W_t$$

• Distribution: jointly log-normal, mean one, independent

Two-Generations Model: Main Result

Proposition

A marginal introduction of social security increases $E_{t-1}U_t$ if

$$(1+g)\cdot(1+V)^{\theta}>\bar{R},$$

where

$$V \equiv var(\eta_{i,1,t}\zeta_t \varrho_{t+1})$$

= $\underbrace{\sigma_{\eta}^2}_{IR} + \underbrace{\sigma_{\zeta}^2 + \sigma_{\varrho}^2 + \sigma_{\zeta}^2 \sigma_{\varrho}^2}_{AR} + \underbrace{\sigma_{\eta}^2 \left(\sigma_{\zeta}^2 + \sigma_{\varrho}^2 + \sigma_{\zeta}^2 \sigma_{\varrho}^2\right)}_{LCI=IR\cdot AR}.$

Two-Generations Model: Welfare Decomposition

Definition

• Consumption equivalent variation, $g_c(\cdot)$:

$$g_c(IR) = g_c(0) + dg_c(IR)$$

$$g_c(AR) = g_c(0) + dg_c(AR)$$

$$g_c(AR, IR) = g_c(0) + dg_c(AR) + dg_c(IR) + dg_c(LCI)$$

• First-order Taylor series approximation of $g_c(AR, IR)$ gives:

$$g_{c}(AR, IR) \approx \underbrace{\frac{1+g}{\bar{R}} - 1}_{g_{c}(0)} + \underbrace{\theta \frac{1+g}{\bar{R}}AR}_{dg_{c}(AR)} + \underbrace{\theta \frac{1+g}{\bar{R}}IR}_{dg_{c}(IR)} + \underbrace{\theta \frac{1+g}{\bar{R}}LCI}_{dg_{c}(LCI)}$$

Quantitative Model: Summary

Scale-up and extend simple model:

- (a) 70 generations, 1-year periods
- (b) Population growth
- (c) Wage shocks \Rightarrow TFP shocks
- (d) Return shocks \Rightarrow depreciation shocks
- (e) (Auto-)correlation (TFP, depreciation) unrestricted
- (f) Idiosyncratic risk: autocorrelated, CCV
- (g) Deterministic age-income profile
- (h) Epstein-Zin preferences
- Additional elements:
 - (a) Two assets: risk-free bond in addition to risky stock
 - (b) Representative firm with capital structure
- General equilibrium

Quantitative Model: Equilibrium and Solution

- Competitive recursive equilibrium: Show details
 competitive prices {r, r_f, w}, optimal household choices
 {c, a', κ} and firm choices {K, L}, market clearing, soc.
 sec. budget balance {τ, b}, law of motion
- Law of motion (Krusell & Smith (1997)):

(i) capital stock, (ii) equity premium

- Simulation periods > 80.000
- Endogenous grid method (Carroll (2006))
- Parallel on 16 cores, computation time 20 80 hrs

Quantitative Model: Baseline Calibration

Parameter	Target (Source)	Value
Working age, retireme	21, 65, 78	
Age productivity	earnings profiles (PSID)	$\{\epsilon_j\}_1^J$
Population growth, n	U.S. Social Sec. Adm. (SSA)	0.011
Technol. growth, g	TFP growth (NIPA)	0.018
Capital share, α	wage share (NIPA)	0.32
Leverage ratio, d	U.S. capital structure (Croce (2010))	0.66
Autocorrelation of η	(Storesletten, et al. (2004))	0.952
CCV, $\sigma_{ u,t}$	(Storesletten, et al. (2004))	$\{0.21, 0.13\}$
EIS, φ	exogenous (various)	0.5
CRRA, θ	exogenous in baseline	3.0
Discount factor, β	K/Y = 2.65 (NIPA)	0.986
Mean depreciation, $ar{\delta}$	$E(r_{ m f})=2.3\%$ (Shiller)	0.10
Std. depreciation, σ_{δ}	$\sigma(rac{C_{t+1}}{C_{t}})=0.03$ (NIPA)	0.08
Std. TFP shocks, σ_{ζ}	$\sigma(\textit{TFP}) = 0.029$ (NIPA)	0.029
$Prob(\zeta' = \zeta_i \zeta = \zeta_i)$	autoc(TFP) = 0.88 (NIPA)	0.941
$Prob(\delta' = \delta_i \zeta' = \zeta_i)$	cor(TFP, r) = 0.50 (NIPA, Shiller)	0.885

Results: General Equilibrium

- Experiment: $\tau = 0\% \rightarrow \tau = 2\%$, unanticipated
- g_c: ex-ante expected CEV of a newborn

	GE	
g_c	+1.38%	
$\Delta K/K$	-10.42%	
Δr	+0.88%	
Δr_f	+0.89%	
$\Delta w/w$	-3.47%	

- PE: "Small open economy"
- Prices same as in GE, determined by "world"
- No costs of crowding out, isolates benefits

	GE	PE	Crowd Out
g_c	+1.38%	+3.76%	-2.38%

- Same PE experiment
- Sequentially "turn off" each risk
- Look at welfare change for each economy
- Recall decomposition of CEV:

 $g_c(AR, IR, CCV) = g_c(0) + dg_c(AR) + dg_c(IR) + dg_c(LCI) + dg_c(CCV)$

 $g_c(AR, IR) = g_c(0) + dg_c(AR) + dg_c(IR) + dg_c(LCI)$

 $g_c(AR) = g_c(0) + dg_c(AR)$

 $g_c(IR) = g_c(0) + dg_c(IR)$

- Same PE experiment
- Sequentially "turn off" each risk
- Look at welfare change for each economy
- Recall decomposition of CEV:

- $g_c(AR, IR) = g_c(0) + dg_c(AR) + dg_c(IR) + dg_c(LCI)$
- $g_c(AR) = g_c(0) + dg_c(AR)$
- $g_c(IR) = g_c(0) + dg_c(IR)$

- Same PE experiment
- Sequentially "turn off" each risk
- Look at welfare change for each economy
- Recall decomposition of CEV:

- $g_c(AR, IR) = g_c(0) + dg_c(AR) + dg_c(IR) + dg_c(LCI)$
- $g_c(AR) = g_c(0) + dg_c(AR)$
- $g_c(IR) = g_c(0) + dg_c(IR)$

- Same PE experiment
- Sequentially "turn off" each risk
- Look at welfare change for each economy
- Recall decomposition of CEV:

- $g_c(AR, IR) = g_c(0) + dg_c(AR) + dg_c(IR) + dg_c(LCI)$
- $g_c(AR) = g_c(0) + dg_c(AR)$
- $g_c(IR) = g_c(0) + dg_c(IR)$

- Same PE experiment
- Sequentially "turn off" each risk
- Look at welfare change for each economy
- Recall decomposition of CEV:

- $g_c(AR, IR) = g_c(0) + dg_c(AR) + dg_c(IR) + dg_c(LCI)$
- $g_c(AR) = g_c(0) + dg_c(AR)$
- $g_c(IR) = g_c(0) + dg_c(IR)$

- Same PE experiment
- Sequentially "turn off" each risk
- Look at welfare change for each economy
- Recall decomposition of CEV:

- $g_c(AR, IR) = g_c(0) + dg_c(AR) + dg_c(IR) + dg_c(LCI)$
- $g_c(AR) = g_c(0) + dg_c(AR)$
- $g_c(IR) = g_c(0) + dg_c(IR)$

- Same PE experiment
- Sequentially "turn off" each risk
- Look at welfare change for each economy
- Recall decomposition of CEV:

- $g_c(AR, IR) = g_c(0) + dg_c(AR) + dg_c(IR) + dg_c(LCI)$
- $g_c(AR) = g_c(0) + dg_c(AR)$
- $g_c(IR) = g_c(0) + dg_c(IR)$

- Same PE experiment
- Sequentially "turn off" each risk
- Look at welfare change for each economy
- Recall decomposition of CEV:

- $g_c(AR, IR) = g_c(0) + dg_c(AR) + dg_c(IR) + dg_c(LCI)$
- $g_c(AR) = g_c(0) + \frac{dg_c(AR)}{dg_c(AR)}$
- $g_c(IR) = g_c(0) + dg_c(IR)$

- Same PE experiment
- Sequentially "turn off" each risk
- Look at welfare change for each economy
- Recall decomposition of CEV:

- $g_c(AR, IR) = g_c(0) + \frac{dg_c(AR)}{dg_c(IR)} + \frac{dg_c(IR)}{dg_c(LCI)}$
- $g_c(AR) = g_c(0) + \frac{dg_c(AR)}{dg_c(AR)}$
- $g_c(IR) = g_c(0) + dg_c(IR)$

- Same PE experiment
- Sequentially "turn off" each risk
- Look at welfare change for each economy
- Recall decomposition of CEV:

- $g_c(AR, IR) = g_c(0) + dg_c(AR) + dg_c(IR) + dg_c(LCI)$
- $g_c(AR) = g_c(0) + \frac{dg_c(AR)}{dg_c(AR)}$
- $g_c(IR) = g_c(0) + dg_c(IR)$

Results: Decomposition of Welfare Effects

Welfare effects in PE

g_c	$g_c(0)$	$dg_c(AR)$	$dg_c(IR)$	$dg_c(LCI)$	$dg_c(CCV)$
3.76% =	-0.62%	+1.86%	+0.66%	+1.06%	+0.80%

- Gains from "pure" AR + IR: $dg_c(AR) + dg_c(IR) = 2.52\%$
- Gains from interactions: $dg_c(LCI) + dg_c(CCV) = 1.86\%$

•
$$\frac{dg_c(LCI)+dg_c(CCV)}{g_c} = 0.50$$

• $\frac{dg_c(LCI)}{dg_c(AR)} = 0.57$

Results: Overview of Calibration Strategies

1) IES=0.5

- i) Conservative baseline
- ii) Sharpe ratio
- iii) Equity premium

2) IES=1.5

- i) Conservative baseline
- ii) Sharpe ratio
- iii) Equity premium
- 3) Alternative calibrations
 - i) Contribution rate $\tau = 0.12$
 - ii) Mortality risk
 - iii) Previous literature

Consumption equivalent variation, g_c

	GE	PE	Crowd Out
<i>IES</i> = 0.5			
Baseline	+1.38%	+3.76%	-2.38%
Sharpe ratio	+1.54%	+4.56%	-3.02%
Equity premium	+1.46%	+4.19%	-2.73%
<i>IES</i> = 1.5			
Baseline	+1.78%	+2.53%	-0.75%
Sharpe ratio	+2.05%	+4.28%	-2.23%
Equity premium	+2.19%	+4.44%	-2.25%

Results: Decomposition of Welfare Effects

Welfare effects in PE

	$g_c(0)$	$dg_c(AR)$	$dg_c(IR)$	$dg_c(LCI)$	$dg_c(CCV)$
<i>IES</i> = 0.5					
Baseline	-0.62%	+1.86%	+0.66%	+1.06%	+0.80%
Sharpe ratio	-0.62%	+1.52%	+1.13%	+1.23%	+1.30%
Equity prem.	-0.62%	+1.43%	+0.98%	+0.99%	+1.41%
<i>IES</i> = 1.5					
Baseline	-0.62%	+1.28%	+0.60%	+0.81%	+0.45%
Sharpe ratio	-0.62%	+1.39%	+1.15%	+1.16%	+1.20%
Equity prem.	-0.62%	+1.44%	+0.95%	+1.15%	+1.52%

Welfare	ratios
---------	--------

	$\frac{dg_c(LCI)}{dg_c(AR)}$	$rac{dg_c(LCI)+dg_c(CCV)}{dg_c(AR)+dg_c(IR)}$	$rac{dg_c(LCI)+dg_c(CCV)}{g_c}$
<i>IES</i> = 0.5			
Baseline	0.57	0.74	0.50
Sharpe ratio	0.81	0.95	0.55
Equity premium	0.69	1.00	0.57
<i>IES</i> = 1.5			
Baseline	0.63	0.67	0.50
Sharpe ratio	0.84	0.93	0.55
Equity premium	0.80	1.12	0.60

Results: Contribution Rate and Mortality Risk

- Contribution rate, $\tau = 0.12$
 - GE welfare: +1.1%
 - Similar pattern, but smaller numbers

•
$$\frac{dg_c(LCI)+dg_c(CCV)}{g_c}=0.28$$

- Mortality risk (preliminary)
 - Survival rates from HMD, same expected lifetime
 - Accidental bequests to newborn
 - Need CRRA < 1</p>
 - GE welfare: +7.3%

- Calibration strategy
- Only idiosyncratic risk
 - GE welfare: -1.35%
- Only aggregate risk
 - Not yet computed

- Introduction of social security leads to robust welfare gains in GE
- Interaction terms account for at least 1/2 of the benefits
- Social security provides more insurance against aggregate risk than against idiosyncratic income risk
- The larger the social security system, the smaller the welfare gains
- Life-cycle interaction *LCI* exposed in theoretical model

Outlook: Directions for Future Research

• Companion paper: analytical GE extension

- Endogenous labor
- Optimal size and/or structure of social security
- Government debt / buffer in pension system

Appendix overview I

- Related Literature
- Two-Generations Model: GE extension
- Quantitative Model: Market Structure
- Quantitative Model: Demographics
- Quantitative Model: Preferences
- Quantitative Model: Endowments
- Quantitative Model: Firms
- Quantitative Model: Government and social security
- Quantitative Model: Transformations and definitions
- Stationary recursive competitive equilibrium
- Quantitative Model: Household Problem

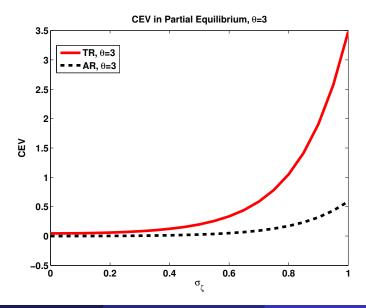
Appendix overview II

- Quantitative Model: Laws of Motion
- Quantitative Model: Mean Shock Equilibrium
- Quantitative Model: Transition Matrix
- Quantitative Model: Correlation of TFP and Returns
- Results: Endogenous Moments
- Results: Variance-Covariance Matrix
- Results: Life-Cycle Profiles, baseline
- Results: Distribution
- Provide the second s
- 2 Results: NC Calibration
- Results: PC vs NC welfare

Related Literature

- Quantitative OLG (e.g. Auerbach and Kotlikoff (1987))
- Idiosyncratic risk (e. g. Conesa and Krueger (1999), Imrohoroğlu, Imrohoroğlu, and Joines (1995),Fehr, Habermann, and Kindermann (2008))
- Aggregate risk (e. g. Krueger and Kubler (2006), Bohn (1998))
- Portfolio choice, reasonable equity premium (e.g. Gomes and Michaelides (2008))
- Counter-cyclical variance of income risk / CCV (e.g. Storesletten, Telmer, and Yaron (2007), Constantinides and Duffie (1996), Mankiw (1986)

Two-Generations Model: Welfare Illustration



Daniel Harenberg (ETH Zurich)

Social Security and Risk Interactions

Two-Generations Model: GE Extension

- General equilibrium (work in progress)
 - Production economy (Cobb-Douglas)
 - Savings in first period
 - Additional assumptions: log utility, 100% depreciation
- Two additional channels:
 - Precautionary savings
 - Crowding out
- Impact of (interaction of) risks on these two channels

Two-Generations Model: GE Extension

• General equilibrium extension:

- Savings in first period
- Idiosyncratic risk in second period (subperiod structure)
- Two additional effects:

Mechanism	Welfare Effect	Interaction
Precautionary savings	positive	positive
Crowding-out	negative	negative

Go back

Otility:

$$E_t U_t = u(c_{i,1,t}) + \beta E_t \left[u(c_{i,2,t+1}) \right]$$

• Budget constraints:

$$\begin{aligned} \mathbf{c}_{i,1,t} + \mathbf{s}_{i,1,t} &= (1 - \tau) \mathbf{w}_t \\ \mathbf{c}_{i,2,t+1} &= \mathbf{s}_{i,1,t} (1 + \mathbf{r}_{t+1}) + \lambda \eta_{i,2,t+1} \mathbf{w}_{t+1} (1 - \tau) + \\ &+ (1 - \lambda) \mathbf{b}_{t+1} \end{aligned}$$

Daniel Harenberg (ETH Zurich)

Logan, May 25, 2013 31 / 24

Budget constraint:

$$b_t(1 - \lambda)N_{2,t} = \tau w_t(1 + \lambda)N_{1,t}$$
, because $N_{2,t} = N_{1,t}$,

• Therefore:

$$b_t = \tau w_t \frac{1+\lambda}{1-\lambda}.$$

Two-Generations Model in GE: Firms

Profits:

$$\Pi = \zeta_t F(K_t, \Upsilon_t L_t) - (\overline{\delta} + r_t) \varrho_t^{-1} K_t - w_t L_t$$

• Production function:

$$F(K_t, \Upsilon_t L_t) = K_t^{\alpha} \left(\Upsilon_t L_t\right)^{1-\alpha},$$

• First-order conditions:

$$1 + r_t = \alpha k_t^{\alpha - 1} \zeta_t \varrho_t = \bar{R}_t \zeta_t \varrho_t$$
$$w_t = (1 - \alpha) \Upsilon_t k_t^{\alpha} \zeta_t = \bar{w}_t \zeta_t.$$

- Log utility: $u(c) = \ln(c)$
- 2 100% depreciation: $\bar{\delta} = 1$

34/24

Two-Generations Model in GE: Equilibrium

Proposition

Equilibrium dynamics in the economy are given by

$$\begin{aligned} k_{t+1} &= \frac{1}{(1+g)(1+\lambda)} \chi(1-\tau)(1-\alpha) \zeta_t k_t^{\alpha} \\ \text{where the savings rate } \chi \text{ is given by} \\ \chi &\equiv \frac{\beta \bar{E}}{1+\beta \bar{E}} = \frac{1}{1+(\beta \bar{E})^{-1}} \\ \text{and} \\ \bar{E} &\equiv E_t \left[\frac{1}{1+\frac{1-\alpha}{\alpha(1+\lambda)\varrho_{t+1}} \left(\lambda \eta_{i,2,t+1} + \tau \left(1+\lambda(1-\eta_{i,2,t+1})\right)\right)} \right] \end{aligned}$$

Two-Generations Model in GE: MSE

Definition

Mean shock equilibrium (MSE): $\zeta_t = E\zeta_t = 1$, $\varrho_t = E\varrho_t = 1 \quad \forall t$. Equilibrium dynamics:

$$k_{t+1,ms} = \frac{1}{(1+g)(1+\lambda)}\chi(1-\tau)(1-\alpha)k_{t,ms}^{\alpha}$$

Definition

Stationary MSE (=stochastic steady state): all variables grow at constant rates: $k_{t,ms} = k_{ms}$ for all *t*.

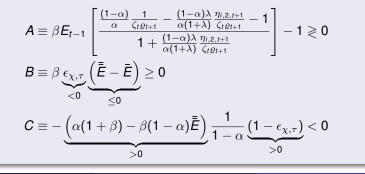
$$k_{ms} = \left(\frac{1}{(1+g)(1+\lambda)}\chi(1-\tau)(1-\alpha)\right)^{\frac{1}{1-\alpha}}$$

Two-Generations Model in GE: Welfare

Proposition

Marginal introduction of social security increases ex-ante expected utility in the long-run MSE iff

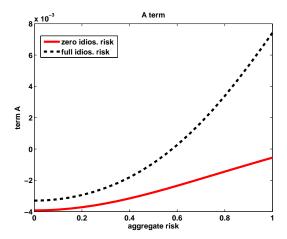
$$A+B+C>0$$



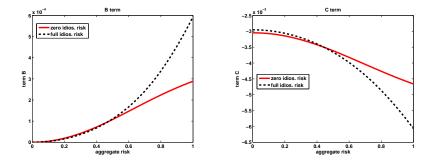
Daniel Harenberg (ETH Zurich)

Social Security and Risk Interactions

Two-Generations Model in GE: Term A



Two-Generations Model in GE: Terms B&C



Logan, May 25, 2013 39 / 24

Quantitative Model: Market Structure

- Discrete time $t = 0, \ldots, \infty$
- Aggregate shock z_t : Markov chain with $\pi(z_{t+1} | z_t)$
- Event tree $z^t = (z_0, z_1, ..., z_t)$
- Incomplete markets
 - Bond: one-period risk-free at known interest rate r^f_{t+1}
 - Stock: risky return r_{t+1}
- Natural borrowing limit

- *J* overlapping generations, indexed by j = 1, ..., J
- Retirement age jr
- Survival probabilities s_{j+1}
- Accidental bequests are burned
- Population grows at rate n
- Continuum of agents in each generation
- Intragenerational heterogeneity denoted by *i*

• Epstein-Zin preferences:

$$\boldsymbol{U}_{i,j,t} = \left[\boldsymbol{c}_{i,j,t}^{\frac{1-\theta}{\gamma}} + \beta \boldsymbol{s}_{j+1} \left(\mathbb{E}\left[\boldsymbol{U}_{i,j+1,t+1}^{1-\theta}\right] \right)^{\frac{1}{\gamma}} \right]^{\frac{\gamma}{1-\theta}}$$

- θ : Coefficient of relative risk-aversion
- φ : Elasticity of intertemporal substitution

•
$$\gamma = \frac{1-\theta}{1-\frac{1}{\varphi}}$$

Quantitative Model: Endowments

• Dynamic budget constraint:

$$a'_{i,j,t} + c_{i,j,t} = a_{i,j,t}(1 + r_t^f + \kappa_{i,j-1,t-1}(r_t - r_t^f)) + y_{i,j,t}$$

with $a'_{i,j,t} \ge 0$

Income:

$$y_{i,j,t} = \begin{cases} (1 - \tau) \ \eta_{i,j,t} \ w_t \ \epsilon_j & \text{for } j < j_{ret} \\ b_t & \text{for } j \ge j_{ret} \end{cases}$$

Idiosyncratic stochastic component:

$$\ln \eta_{i,j,t} = \rho \ln \eta_{i,j-1,t-1} + \nu_{i,t}, \qquad \sigma_{\nu}^{2}(contr) > \sigma_{\nu}^{2}(expans)$$

Quantitative Model: Firms

Neoclassical production:

$$Y_t = F(\zeta_t, K_t, L_t) = \zeta_t K_t^{\alpha} (\Upsilon_t L_t)^{1-\alpha}$$

• Wage rate:

$$w_t = \zeta_t (1 - \alpha) k_t^{\alpha} (1 + g) \Upsilon_{t-1}$$

• Net return on capital:

$$\mathbf{r}_t^{\mathbf{k}} = \zeta_t \alpha \mathbf{k}_t^{\alpha - 1} - \delta_t$$

Leveraged stock return:

$$r_t = r_t^k (1 + d) - dr_t^f$$

Quantitative Model: Government and social security

- Government collects accidental bequests and burns them
- PAYG budget constraint:

$$\tau_t w_t L_t = \textit{Ret}_t \int \textit{P}_{i,j,t} \textit{d}\Phi$$

• For today:

- fixed contribution rate: $\tau_t = \tau$
- lump-sum benefits: $P_{i,j,t} = P_t$
- Experiment: single, unanticipated increase in τ

• Rewrite in terms of cash at hand, x

$$x = a(1 + r^f + \kappa(r - r^f)) + y$$

- Denote measure over agents by $\Phi_t(j, x, \eta)$
- State space for each agent: $S = (j, x, \eta, z, \Phi)$

Stationary recursive competitive equilibrium

- Price functions $\{r(\Phi, z), r^{f}(\Phi, z), w(\Phi, z)\}$
- Policy functions c(S), a'(S), κ(S) that maximize the household's utility for given {r, r^f, w, τ, b}
- Firm choice k that maximizes profits for given $\{r, r^{f}, w\}$
- Govt policies $\tau(\Phi, z), b(\Phi, z)$ implying budget balance
- Market clearing, in particular:

$$egin{aligned} & k'(\Phi',z') = \int a'(\mathcal{S}) \ d\Phi(j,x,\eta) \ & B'(\Phi',z') = \int (1-\kappa(\mathcal{S})) \ a'(\mathcal{S}) \ d\Phi(j,x,\eta) \end{aligned}$$

A law of motion Φ' = H(Φ, z, z') consistent with policies

Go Back

Quantitative Model: Household problem

Euler equations

$$c^{\frac{1-\theta-\gamma}{\gamma}} - \tilde{\beta} \left(\mathbb{E} \left[u(j+1,\cdot)^{1-\theta} \right] \right)^{\frac{1-\gamma}{\gamma}} \dots \\ \cdot \mathbb{E} \left[u(j+1,\cdot)^{\frac{(1-\theta)(\gamma-1)}{\gamma}} (c')^{\frac{1-\theta-\gamma}{\gamma}} \tilde{R}' \right] = 0 \\ \mathbb{E} \left[u(j+1,\cdot)^{\frac{(1-\theta)(\gamma-1)}{\gamma}} (c')^{\frac{1-\theta-\gamma}{\gamma}} \left(r' - r^{f'} \right) \right] = 0$$

- Endogenous grid method (Carroll 2006) applied to portfolio choice
 - Avoid collinear problem of jointly finding $\{a', \kappa\}$
 - Reduce 2-dimensional optimization to 2 sequential steps: first solve for κ, then for c

Quantitative Model: Laws of motion

- Problem: agents need measure Φ to forecast prices
- Krusell and Smith (1998): approximate Φ' = H(Φ, z, z') by low-dimensional object
- Our approximation is

$$(\mathbf{k}',\mu)=\hat{H}(\mathbf{k},\mathbf{k}^2,\mathbf{z})$$

where $\mu = \mathbb{E}r' - r^{f'}$, the expected equity premium

• To find \hat{H} , need to simulate and update until convergence

• Fit:
$$R^2 = 0.9999$$

◆ Go Back

- Auxiliary general equilibrium
- Degenerate laws of motion: $(k', \mu') = k, \mu$
- Solve household problem for all z
- Instead of simulating, set z = z̄, with ζ(z̄) = Eζ and
 δ(z̄) = Eδ
- Find fixed point: (k', μ') is generated by a'(S, k, μ) and κ'(S, k, μ)
- Can use $k_{ms}, \mu_{ms}, \Phi_{ms}$ as initial guesses for KS method

Quantitative Model: Transition Matrix $\pi(z'|z)$

•
$$\pi^{\zeta} = \pi(\zeta' = 1 - \overline{\zeta} \mid \zeta = 1 - \overline{\zeta})$$

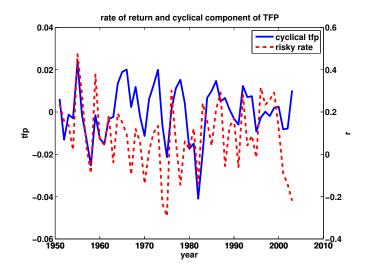
• $\pi^{\delta} = \pi(\delta' = \delta_0 + \overline{\delta} \mid \zeta' = 1 - \overline{\zeta}) = \pi(\delta' = \delta_0 - \overline{\delta} \mid \zeta' = 1 + \overline{\zeta})$

both symmetric

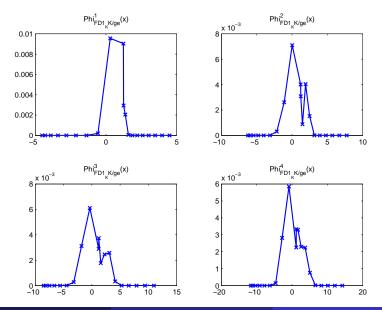
$$\pi^{Z} = \begin{bmatrix} \pi^{\zeta} \cdot \pi^{\delta} & \pi^{\zeta} \cdot (1 - \pi^{\delta}) & (1 - \pi^{\zeta}) \cdot (1 - \pi^{\delta}) & (1 - \pi^{\zeta}) \cdot \pi^{\delta} \\ \pi^{\zeta} \cdot \pi^{\delta} & \pi^{\zeta} \cdot (1 - \pi^{\delta}) & (1 - \pi^{\zeta}) \cdot (1 - \pi^{\delta}) & (1 - \pi^{\zeta}) \cdot \pi^{\delta} \\ (1 - \pi^{\zeta}) \cdot \pi^{\delta} & (1 - \pi^{\zeta}) \cdot (1 - \pi^{\delta}) & \pi^{\zeta} \cdot (1 - \pi^{\delta}) & \pi^{\zeta} \cdot \pi^{\delta} \\ (1 - \pi^{\zeta}) \cdot \pi^{\delta} & (1 - \pi^{\zeta}) \cdot (1 - \pi^{\delta}) & \pi^{\zeta} \cdot (1 - \pi^{\delta}) & \pi^{\zeta} \cdot \pi^{\delta} \end{bmatrix}$$

- STY: $\pi^{\delta} = 1$
- GM: $\pi^{\delta} = 0.5$
- Our paper: $\pi^{\delta} = 0.7$

Quantitative Model: Correlation of TFP and Returns



Results: Distribution over Age and Cash-at-Hand

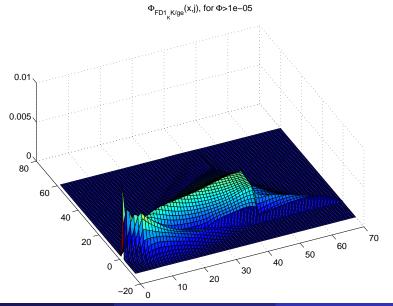


Daniel Harenberg (ETH Zurich)

Social Security and Risk Interactions

Logan, May 25, 2013 53 / 24

Results: Distribution over Age and Cash-at-Hand



Daniel Harenberg (ETH Zurich)

Social Security and Risk Interactions

Results: Economy without Aggregate Risk

- Only one asset
- Empirical average asset return (Siegel (2002)): 4.2%
- Model average asset returns

Equity premium calibration		
Median portfolio return 3.07%		
E(mpk)	4.70%	
Capital-structure weighted		
average of $E(r)$ and $E(r_f)$	5.24%	

Comparable and consistent results

Results: Different average returns

Equity premium calibration with mortality				
	Median(pfr)	E(mpk)	$mpk(E(r), E(r_f))$	
	= 3.07%	= 4.70%	= 5.24%	
g(0, IR)	1.360%	-0.099%	-0.438%	
<i>g</i> (0,0)	-0.102%	-0.912%	-1.101%	
dg(AR)	1.066%	1.876%	2.066%	
dg(IR)	1.461%	0.813%	0.664%	
dg(LCI)	0.949%	1.598%	1.747%	
dg(LCI)/dg(AR)	0.891	0.851	0.846	
dg(AR) + dg(IR)	2.528%	2.690%	2.730%	
dg(LCI) + dg(CCV)	2.608%	3.256%	3.406%	
$\frac{\rm dg(LCI) + dg(CCV)}{\rm g_c}$	0.294	0.367	0.384	

•
$$mpk(E(r), E(r_f)) = \frac{E(r) + \overline{d} \cdot E(r_f)}{1 + \overline{d}}$$

▶ Go Back

	PC	NC
Target		
Corr. TFP, R, $corr(\zeta_t, R_t)$	0.50	-0.08
Main parameter		
Cond. prob. depr. shocks, π^{δ}	0.86	0.435
Adjustments		
Discount factor, β	0.97	0.96
Relative risk aversion, θ	8	12
Small adjustments in $\overline{\delta}, \sigma_{\delta}$		
Endogenous moments		
Corr. w, R, $corr(w_t, R_t)$	0.306	-0.33

We	3	
	PC	NC
	3.52%	0.51%
$g_{c}(0,0)$	-2.00%	-2.00%
$dg_c(AR)$	3.26%	2.18%
$dg_c(IR)$	1.00%	1.04%
$dg_c(LCI)$	1.66%	0.14%
$dg_c(CCV)$	1.77%	0.47%

- AUERBACH, A. J. AND L. J. KOTLIKOFF (1987): *Dynamic Fiscal Policy*, Cambridge, MA: Cambridge University Press.
- BOHN, H. (1998): "Risk Sharing in a Stochastic Overlapping Generations Economy," *UCSB Departmental Working Papers*, 1–44.
- CONESA, J. C. AND D. KRUEGER (1999): "Social Security Reform with Heterogeneous Agents," *Review of Economic Dynamics*, 2, 757–795.

CONSTANTINIDES, G. M. AND D. DUFFIE (1996): "Asset Pricing with Heterogeneous Consumers," *Journal of Political Economy*, 104, 219–240.

FEHR, H., C. HABERMANN, AND F. KINDERMANN (2008):
"Social security with rational and hyperbolic consumers," *Review of Economic Dynamics*, 11, 884–903.

GOMES, F. J. AND A. MICHAELIDES (2008): "Asset Pricing with Limited Risk Sharing and Heterogeneous Agents," *The Review of Financial Studies*, 21, 415–448. IMROHOROĞLU, A., S. IMROHOROĞLU, AND D. H. JOINES (1995): "A Life Cycle Analysis of Social Security," *Economic Theory*, 6, 83–114.

KRUEGER, D. AND F. KUBLER (2006): "Pareto-Improving Social Security Reform when Financial Markets are Incomplete!?" *American Economic Review*, 96, 737–755.

MANKIW, N. G. (1986): "The equity premium and the concentration of aggregate shocks," *Journal of Financial Economics*, 17, 211–219.

STORESLETTEN, K., C. I. TELMER, AND A. YARON (2007): "Asset Pricing with Idiosyncratic Risk and Overlapping Generations," *Review of Economic Dynamics*, 10, 519–548.