Optimal Design of Welfare-to-Work Programs

Nicola Pavoni

Università Bocconi, CEPR, and IFS

Gianluca Violante

New York University, CEPR, NBER, and IFS

QSPS 2013 Summer Workshop Utah State University – May 25, 2013

Pavoni-Violante, "Optimal Design of WTW Programs"

- Government programs targeting poor/out-of-work: \sim 2% of GDP
- Offer income support & promote economic self-sufficiency

- Government programs targeting poor/out-of-work: \sim 2% of GDP
- Offer income support & promote economic self-sufficiency
- Programs include a variety of policy instruments:
 - Unemployment Insurance
 - Social Assistance

- Government programs targeting poor/out-of-work: \sim 2% of GDP
- Offer income support & promote economic self-sufficiency
- Programs include a variety of policy instruments:
 - Unemployment Insurance
 - Social Assistance
 - Job-search Assistance

- Government programs targeting poor/out-of-work: \sim 2% of GDP
- Offer income support & promote economic self-sufficiency
- Programs include a variety of policy instruments:
 - Unemployment Insurance
 - Social Assistance
 - Job-search Assistance
 - Mandatory Work: "work in exchange for benefits"
 - Transitional Work: "stepping stone" to private sector job

- Government programs targeting poor/out-of-work: \sim 2% of GDP
- Offer income support & promote economic self-sufficiency
- Programs include a variety of policy instruments:
 - Unemployment Insurance
 - Social Assistance
 - Job-search Assistance
 - Mandatory Work: "work in exchange for benefits"
 - Transitional Work: "stepping stone" to private sector job
 - Training

- Government programs targeting poor/out-of-work: \sim 2% of GDP
- Offer income support & promote economic self-sufficiency
- Programs include a variety of policy instruments:
 - Unemployment Insurance
 - Social Assistance
 - Job-search Assistance
 - Mandatory Work: "work in exchange for benefits"
 - Transitional Work: "stepping stone" to private sector job
 - Training
 - Earnings subsidies/employment bonuses

Language and question

- A *policy* is a prescription of an activity (search, work, train, or rest) to the participant, with an associated conditional transfer
- A WTW program is a government expenditure program that combines different policies
- An optimal WTW program minimizes government expenditures s.t. delivering a given level of ex-ante utility to the participant

Language and question

- A *policy* is a prescription of an activity (search, work, train, or rest) to the participant, with an associated conditional transfer
- A WTW program is a government expenditure program that combines different policies
- An optimal WTW program minimizes government expenditures s.t. delivering a given level of ex-ante utility to the participant

Question: how to optimally design a welfare-to-work (WTW) program

- Point of departure: optimal UI literature
 - Shavell-Weiss (1979): unobservable job search effort
 - Hopenhayn-Nicolini (1997): recursive formulation

- Point of departure: optimal UI literature
 - Shavell-Weiss (1979): unobservable job search effort
 - Hopenhayn-Nicolini (1997): recursive formulation
- Critique

Excessive focus on optimal level and path of UI benefits Cahuc-Lehmann (2000), Hassler-Rodriguez Mora (2002), Kocherlakota (2004), Coles-Masters (2007), Pavoni (2007), Chetty (2008), Sanchez (2008), Shimer-Werning (2008), Hagedorn-Kaul-Mennel (2010), Landais-Michaillat-Saez (2010), Michelacci-Ruffo (2011)

- Point of departure: optimal UI literature
 - Shavell-Weiss (1979): unobservable job search effort
 - Hopenhayn-Nicolini (1997): recursive formulation
- Critique
 - Excessive focus on optimal level and path of UI benefits
 - Policy debate is on which instrument is best for whom

- Point of departure: optimal UI literature
 - Shavell-Weiss (1979): unobservable job search effort
 - Hopenhayn-Nicolini (1997): recursive formulation
- Critique
 - Excessive focus on optimal level and path of UI benefits
 - Policy debate is on which instrument is best for whom
- Generalization
 - additional technologies \leftrightarrow policies
 - human capital (agent heterogeneity)

1. ECONOMIC ENVIRONMENT

Preferences, endowments, and storage

- Agent is infinitely lived with discount factor $\beta \in (0, 1)$
- Intra-period utility: $\log(c) a$
 - Consumption $c \ge 0$ and effort $a \in \{0, e\}$

Preferences, endowments, and storage

- Agent is infinitely lived with discount factor $\beta \in (0, 1)$
- Intra-period utility: $\log(c) a$
 - Consumption $c \ge 0$ and effort $a \in \{0, e\}$
- Agent endowed with fixed human capital h

Preferences, endowments, and storage

- Agent is infinitely lived with discount factor $\beta \in (0, 1)$
- Intra-period utility: $\log(c) a$
 - Consumption $c \ge 0$ and effort $a \in \{0, e\}$
- Agent endowed with fixed human capital h
- Storage with return $R = \beta^{-1}$
- No access to credit

Rest, search, and private-sector job

- Rest
 - Low effort (a = 0)

Rest, search, and private-sector job

- Rest
 - Low effort (a = 0)
- Job search
 - ► Job-finding probability: $\pi(h) \equiv \pi(h, e) > \pi(h, 0) \equiv 0$

Rest, search, and private-sector job

- Rest
 - Low effort (a = 0)
- Job search
 - ► Job-finding probability: $\pi(h) \equiv \pi(h, e) > \pi(h, 0) \equiv 0$

- Private-sector job (absorbing state)
 - ▶ Requires high effort (a = e) to produce $\omega(h) \ge 0$

Remark: search effort can be lower than work effort Krueger-Muller (2010); Aguiar-Hurst-Karabarbounis (2012)

Additional technologies

- Search Assistance
 - At cost κ^A , agency takes over search on behalf of participant
 - Participant saves her search effort
 - Agency's search equally efficient as private search

Additional technologies

- Search Assistance
 - At cost κ^A , agency takes over search on behalf of participant
 - Participant saves her search effort
 - Agency's search equally efficient as private search
- Public-sector production
 - At cost κ^P , public job readily available (no search friction)
 - Requires high effort (a = e) to produce $\underline{\omega} \ge 0$

Information structure

- Observable and contractible:
 - ► Agent type *h*
 - Work effort on public & private jobs (e.g., supervised)
 - Saving (= 0)

Information structure

- Observable and contractible:
 - ► Agent type *h*
 - Work effort on public & private jobs (e.g., supervised)
 - Saving (= 0)
- Private information of the agent and under her control:
 - Job-search effort (IC-Search)
 - Job offer upon contact (IC-Retention)

2. CONTRACT

• Risk neutral principal who discounts at rate $R^{-1} = \beta$

- Risk neutral principal who discounts at rate $R^{-1} = \beta$
- Recursive formulation with states: (U, h) and employment status

- Risk neutral principal who discounts at rate $R^{-1} = \beta$
- Recursive formulation with states: (U, h) and employment status
- At every pair (U, h), the contract specifies:
 - Effort level: $a \in \{0, e\}$
 - Activity: assignment to technology
 - Payments: welfare benefits/wage tax or subsidy
 - Continuation utility: (U^s, U^f) conditional on outcome of activity

- Risk neutral principal who discounts at rate $R^{-1} = \beta$
- Recursive formulation with states: (U, h) and employment status
- At every pair (U, h), the long-term contract specifies:
 - Effort level: $a \in \{0, e\}$
 - Activity: assignment to technology
 - Payments: welfare benefits/wage tax or subsidy
 - Continuation utility: (U^s, U^f) conditional on outcome of activity

- Risk neutral principal who discounts at rate $R^{-1} = \beta$
- Recursive formulation with states: (U, h) and employment status
- At every pair (U, h), the Markovian contract specifies:
 - Effort level: $a \in \{0, e\}$
 - Activity: assignment to technology
 - Payments: welfare benefits/wage tax or subsidy
 - Continuation utility: only conditional on employment status

Options of contract as policies of WTW program

- Combination of prescriptions on effort a and use of technologies leads to five policy instruments (i):
 - **SA** : Social Assistance (rest, a = 0)
 - UI : Unemployment Insurance (private search, a = e)
 - **JA** : Job-search Assistance (assisted search, a = 0)
 - MW: Mandatory Work (public-sector work, a = e)
 - **TW** : Transitional Work (public work + assisted search, a = e)

Options of contract as policies of WTW program

- Combination of prescriptions on effort a and use of technologies leads to five policy instruments (i):
 - **SA** : Social Assistance (rest, a = 0)
 - UI : Unemployment Insurance (private search, a = e)
 - **JA** : Job-search Assistance (assisted search, a = 0)
 - MW : Mandatory Work (public-sector work, a = e)
 - **TW** : Transitional Work (public work + assisted search, a = e)

$$V(U,h) = \max_{i \in \{SA,UI,JA,MW,TW\}} V^{i}(U,h)$$

3. VALUE FUNCTIONS

SA and MW

• Social Assistance (SA)

$$V^{SA}(U) = \max_{c} -c + \beta V^{SA}(U)$$

s.t. :
$$U = \log(c) + \beta U \quad (PK)$$

SA and MW

• Social Assistance (SA)

$$V^{SA}(U) = \max_{c} -c + \beta V^{SA}(U)$$

s.t. :
$$U = \log(c) + \beta U \quad (PK)$$

• Mandatory Work (MW)

$$V^{MW}(U) = \max_{c} \underline{\omega} - \kappa^{P} - c + \beta V^{MW}(U)$$

s.t. :
$$U = \log(c) - e + \beta U \qquad (PK)$$

Unemployment Insurance (UI)

$$V^{UI}(U,h) = \max_{c,U^s} -c + \beta \left[\pi(h)W(U^s,h) + (1-\pi(h))V^{UI}(U,h) \right]$$

s.t. :

$$U = \log(c) - e + \beta \left[\pi(h)U^s + (1-\pi(h))U \right] \qquad (PK)$$

$$U^s \geq U + \frac{e}{\beta\pi(h)} \qquad (IC-S)$$

$$U^s \geq U \qquad (IC-R)$$

Unemployment Insurance (UI)

$$V^{UI}(U,h) = \max_{c,U^s} -c + \beta \left[\pi(h)W(U^s,h) + (1-\pi(h))V^{UI}(U,h) \right]$$

s.t. :

$$U = \log(c) - e + \beta \left[\pi(h)U^s + (1-\pi(h))U \right] \qquad (PK)$$

$$U^s \ge U + \frac{e}{\beta\pi(h)} \qquad (IC-S)$$

$$U^s \ge U \qquad (IC-R)$$

Remark:

Job-search Monitoring: at a cost, eliminate IC-S and IC-R
 Aiyagari-Alvarez (1995); Pavoni-Violante (2006); Setty (2011)
 Meyer (1995); van den Berg-van der Klaauw (2006)

Job-search Assistance (JA)

$$V^{JA}(U,h) = \max_{c,U^s} -c - \kappa^A + \beta \left[\pi(h)W(U^s,h) + (1 - \pi(h))V^{JA}(U,h) \right]$$

s.t. :
$$U = \log(c) + \beta \left[\pi(h)U^s + (1 - \pi(h))U \right] \qquad (PK)$$
$$U^s \geq U \qquad (IC - R)$$

Job-search Assistance (JA)

$$V^{JA}(U,h) = \max_{c,U^s} -c - \kappa^A + \beta \left[\pi(h)W(U^s,h) + (1 - \pi(h)) V^{JA}(U,h) \right]$$

s.t. :
$$U = \log(c) + \beta \left[\pi(h)U^s + (1 - \pi(h))U \right] \qquad (PK)$$
$$U^s \geq U \qquad (IC - R)$$

No search effort \rightarrow no IC-S

Transitional Work (TW)

• Policy combining public-sector work and search assistance

$$V^{TW}(U,h) = \max_{c,U^s} \underline{\omega} - \kappa^P - \kappa^A - c + \beta \left[\pi(h)W(U^s,h) + (1 - \pi(h))V^{TW}(U,h) \right]$$

s.t. :

$$U = \log(c) - e + \beta \left[\pi(h)U^s + (1 - \pi(h))U \right] \qquad (PK)$$

$$U^s \geq U \qquad (IC - R)$$

Transitional Work (TW)

Policy combining public-sector work and search assistance

$$V^{TW}(U,h) = \max_{c,U^{s}} \underline{\omega} - \kappa^{P} - \kappa^{A} - c + \beta \left[\pi(h)W(U^{s},h) + (1 - \pi(h))V^{TW}(U,h) \right]$$

s.t. :
$$U = \log(c) - e + \beta \left[\pi(h)U^{s} + (1 - \pi(h))U \right] \qquad (PK)$$

IC-R not binding: both TW and private employment require effort

Closed-form of value functions

$$V^{i}(U,h) = \frac{1}{1-\beta} \cdot \left[A^{i}(h) - B^{i}(h) \cdot \exp((1-\beta)U)\right]$$

Closed-form of value functions

$$V^{i}(U,h) = \frac{1}{1-\beta} \cdot \left[A^{i}(h) - B^{i}(h) \cdot \exp((1-\beta)U)\right]$$

- $A^{i}(h)$: output net of administrative cost (κ^{A}, κ^{P})
- $B^{i}(h)$: cost of promising a unit of U in c terms (relative to SA)

Returns and costs of each policy

$$V^{i}(U,h) = \frac{1}{1-\beta} \cdot \left[A^{i}(h) - B^{i}(h) \cdot \exp((1-\beta)U)\right]$$

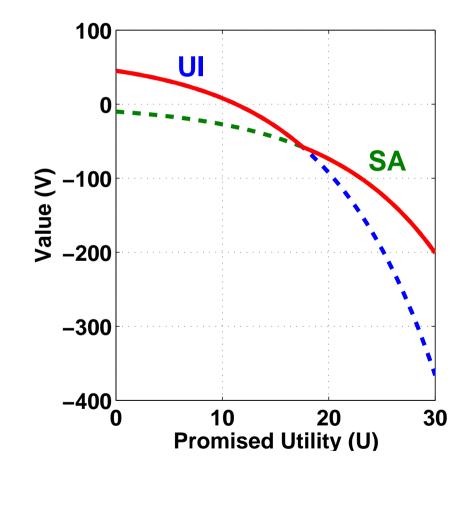
	$A^{i}(h)$: Net Return	$B^{i}(h)$: Cost of Promising U
SA:	0	
MW:	$\underline{\omega} - \kappa^P$	
UI:	$rac{eta\pi(h)}{1-eta+eta\pi(h)}\omega\left(h ight)$	
JA:	$rac{eta \pi(h)}{1-eta+eta \pi(h)} \omega\left(h ight) - rac{1-eta}{eta \pi(h)} \kappa^A$	
TW:	$\frac{\beta \pi(h)}{1-\beta+\beta \pi(h)}\omega\left(h\right) + \frac{1-\beta}{\beta \pi(h)}\left(\underline{\omega} - \kappa^{P} - \kappa^{A}\right)$	

Pavoni-Violante, "Optimal Design of WTW Programs"

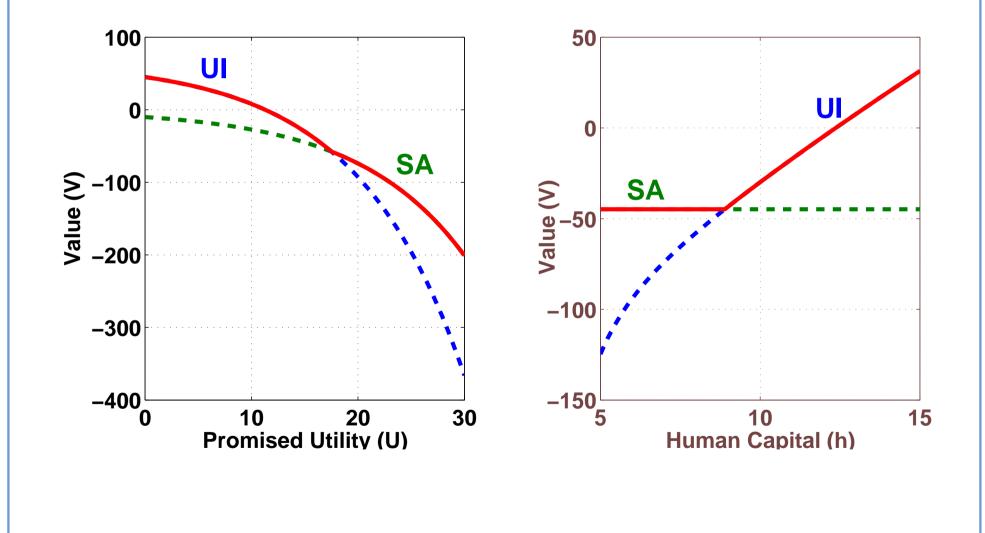
Returns and costs of each policy

$$V^{i}(U,h) = \frac{1}{1-\beta} \cdot \left[A^{i}(h) - B^{i}(h) \cdot \exp((1-\beta)U)\right]$$

	$A^{i}(h)$: Net Return	$B^{i}(h)$: Cost of Promising U
SA:	0	1
MW:	$\underline{\omega} - \kappa^P$	$\exp(e)$
UI:	$rac{eta\pi(h)}{1-eta+eta\pi(h)}\omega\left(h ight)$	$\frac{1 - \beta + \beta \pi(h) \exp\left\{e + \frac{1 - \beta}{\beta \pi(h)}e\right\}}{1 - \beta + \beta \pi(h)}$
JA:	$rac{eta \pi(h)}{1 - eta + eta \pi(h)} \omega\left(h ight) - rac{1 - eta}{eta \pi(h)} \kappa^A$	$rac{1-eta+eta\pi(h)\exp(e)}{1-eta+eta\pi(h)}$
TW:	$\frac{\beta \pi(h)}{1-\beta+\beta \pi(h)}\omega(h) + \frac{1-\beta}{\beta \pi(h)}\left(\underline{\omega} - \kappa^P - \kappa^A\right)$	$\exp(e)$

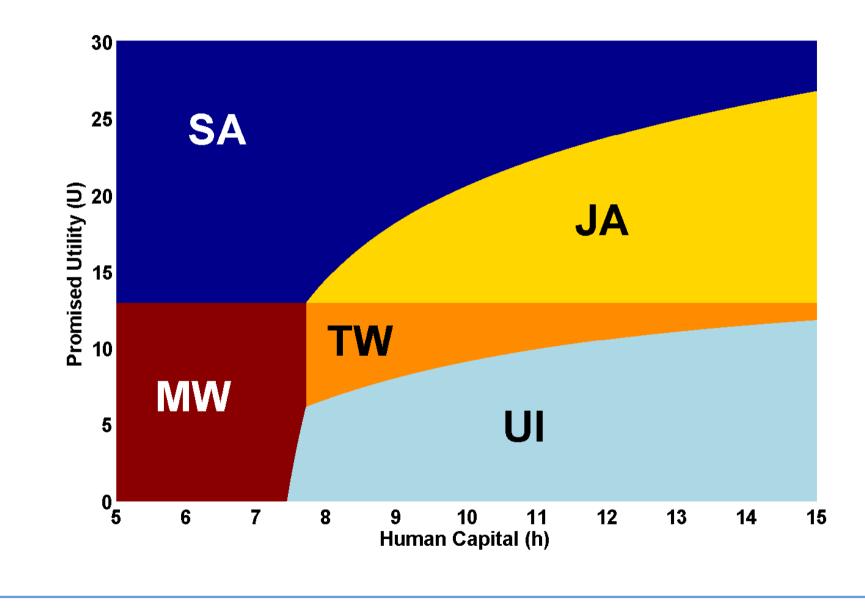

Pavoni-Violante, "Optimal Design of WTW Programs"

Returns and costs of each policy

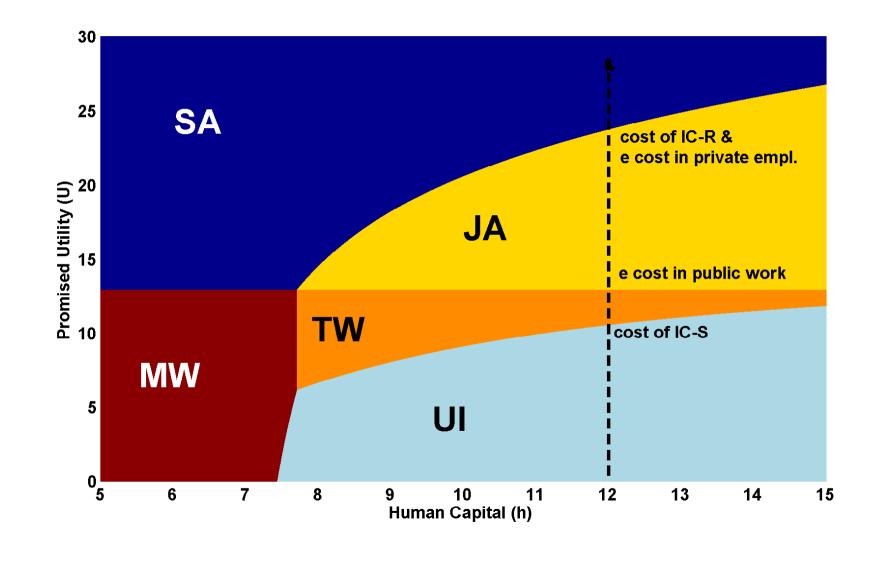

$$V^{i}(U,h) = \frac{1}{1-\beta} \cdot \left[A^{i}(h) - B^{i}(h) \cdot \exp((1-\beta)U)\right]$$

	$A^{i}(h)$: Net Return	$B^{i}(h)$: Cost of Promising U
SA:	0	1
MW:	$\underline{\omega} - \kappa^P$	$\exp(e)$
UI:	$rac{eta\pi(h)}{1-eta+eta\pi(h)}\omega\left(h ight)$	$\exp(e) imes \operatorname{cost} \operatorname{of} (\operatorname{IC-S})$
JA:	$rac{eta \pi(h)}{1 - eta + eta \pi(h)} \omega\left(h ight) - rac{1 - eta}{eta \pi(h)} \kappa^A$	$\frac{\beta \pi(h)}{1-\beta+\beta \pi(h)} \exp(e) \times \text{cost of (IC-R)}$
TW:	$\frac{\beta \pi(h)}{1-\beta+\beta \pi(h)}\omega(h) + \frac{1-\beta}{\beta \pi(h)}\left(\underline{\omega} - \kappa^{P} - \kappa^{A}\right)$	$\exp(e)$

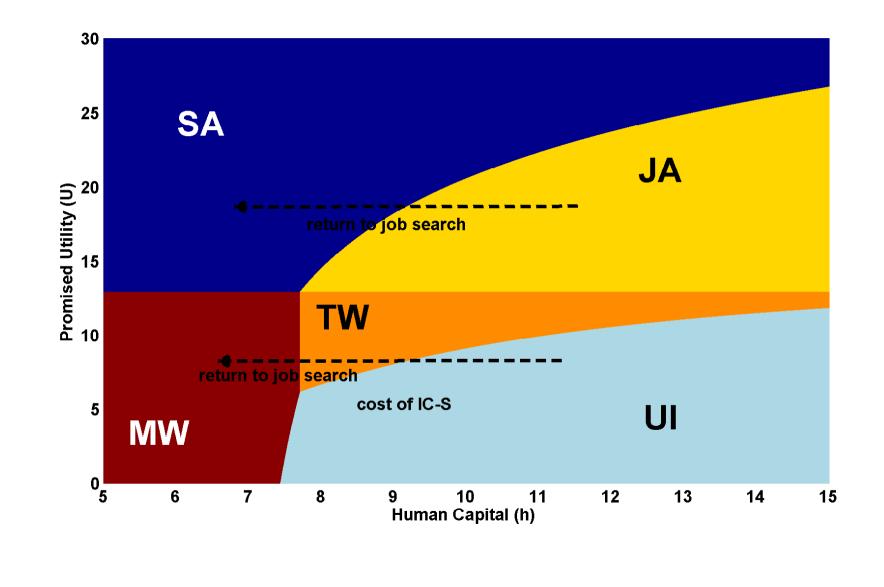
Value functions: UI - SA comparison

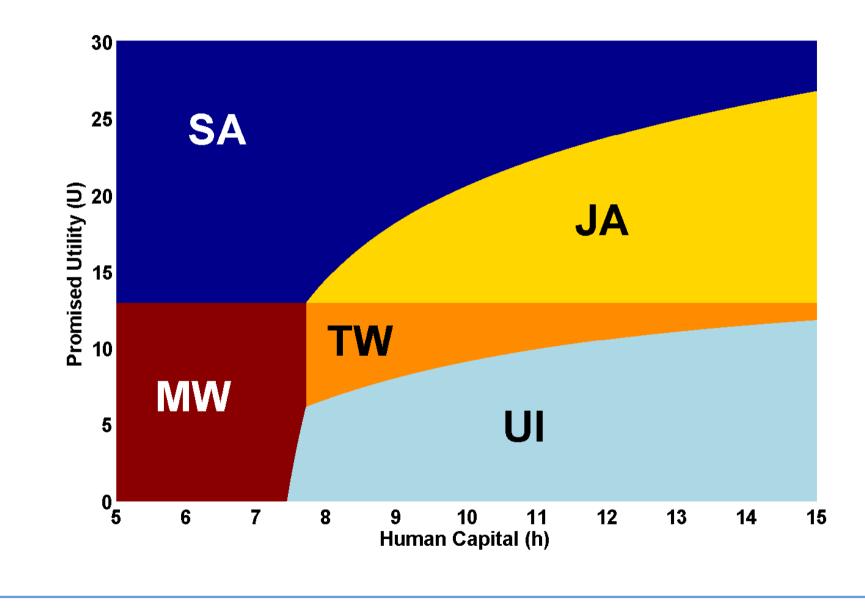


Value functions: UI - SA comparison



4. Optimal WTW Program


Optimal WTW program


Comparative statics wrt U

Comparative statics wrt h

Optimal WTW program

5. HUMAN CAPITAL DYNAMICS

Human capital depreciation

Two implications of h depreciation:

1. Skill depreciation (ω)

■ Jacobson-Lalonde-Sullivan (1993); Kletzer (1998); Couch-Placzek (2010)

Addison-Portugal (1989); Gregg (2001); Edin-Gustavsson (2008)

2. Duration dependence in unemployment (π)

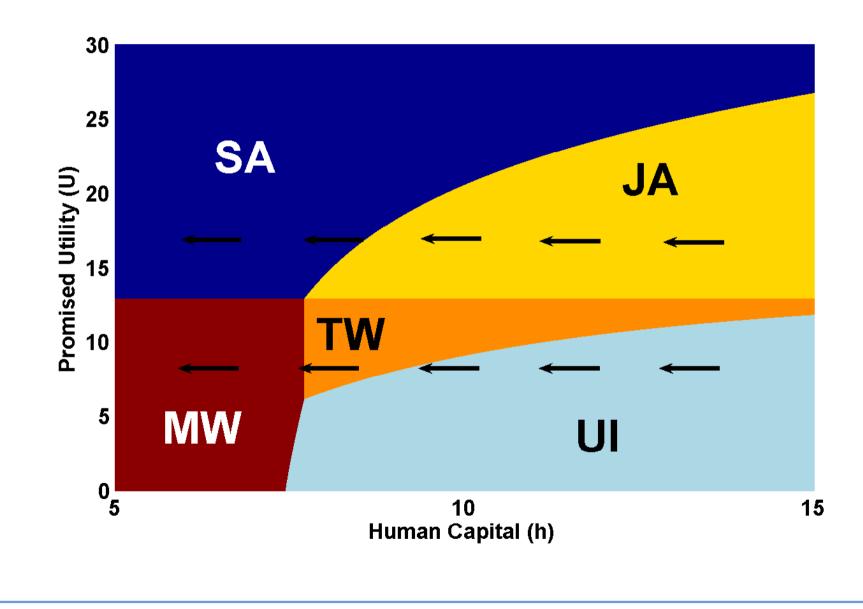
Machin-Manning (1999); Coles-Smith (1998); Kroft-Lange-Notowidigdo (2012)

Human capital depreciation

Two implications of h depreciation:

1. Skill depreciation (ω)

■ Jacobson-Lalonde-Sullivan (1993); Kletzer (1998); Couch-Placzek (2010)


Addison-Portugal (1989); Gregg (2001); Edin-Gustavsson (2008)

2. Duration dependence in unemployment (π)

Machin-Manning (1999); Coles-Smith (1998); Kroft-Lange-Notowidigdo (2012)

New feature of WTW program: transitions across policies

Optimal WTW program

Summary of optimal policy transitions

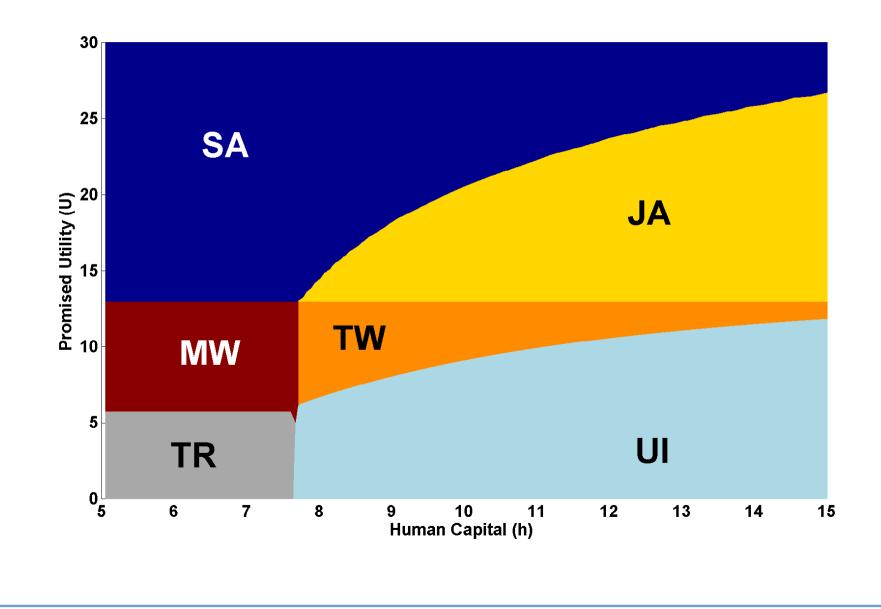
- Policy transitions induced by *h* dynamics
 - 1. High generosity: $JA \rightarrow SA$
 - 2. Low generosity: $UI \rightarrow TW \rightarrow MW$
 - ... and all sub-transitions

Summary of optimal policy transitions

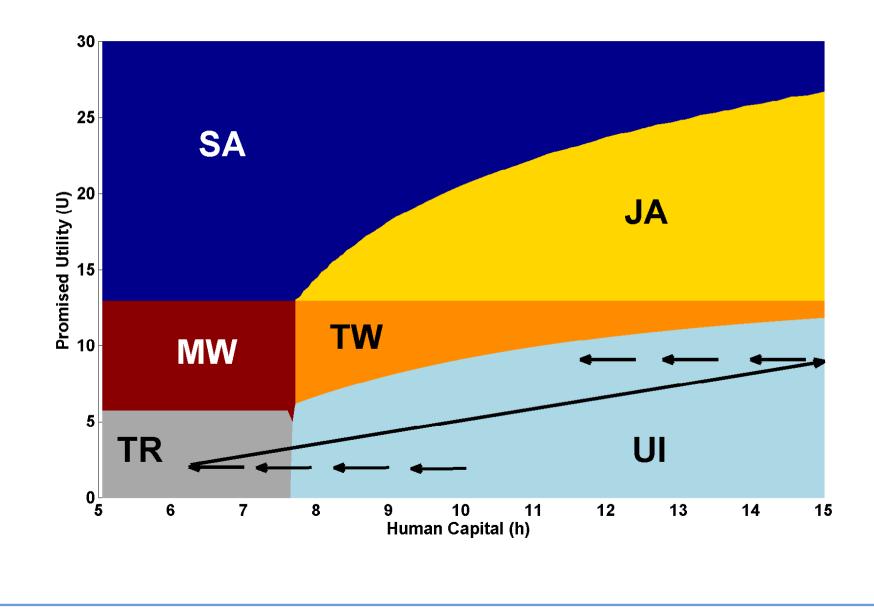
- Policy transitions induced by *h* dynamics
 - 1. High generosity: $JA \rightarrow SA$
 - 2. Low generosity: $UI \rightarrow TW \rightarrow MW$
 - ... and all sub-transitions
- However, many transitions can be ruled out as sub-optimal:
 - 1. Any transition from SA or MW
 - 2. Any transition into UI

Additional technology: human capital accumulation

Additional technology: human capital accumulation


- At cost κ^T , the agent is trained during the period
- With probability θ , training is successful and h jumps to \overline{h}
- Effort required and unobservable

Additional technology: human capital accumulation


- At cost κ^T , the agent is trained during the period
- With probability θ , training is successful and h jumps to \overline{h}
- Effort required and unobservable

$$V^{TR}(U,h) = \max_{c,U^s} -c - \kappa^T + \beta \{\theta V(U^s,\overline{h}) + (1-\theta) \mathbb{E}_h [V(U,h')]\}$$

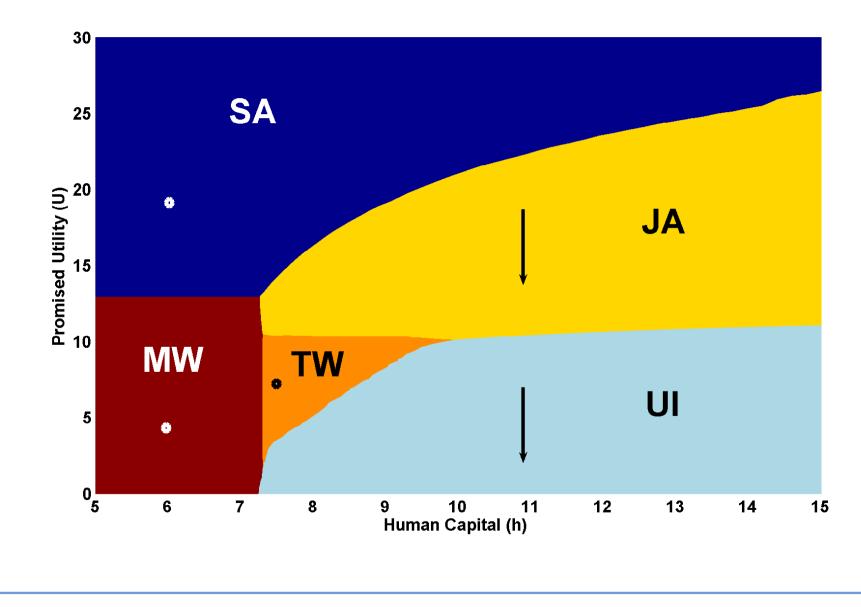
s.t. :
$$U = \log(c) - e + \beta [\theta U^s + (1-\theta)U] \qquad (PK)$$

$$U^s \geq U + \frac{e}{\beta\lambda} \qquad (IC - T)$$

Optimal WTW Program with training

Policy transitions with training

6. DYNAMIC INCENTIVES (h FIXED)


Dynamic incentives

- Full history dependence allowed in the contract: U^f chosen
- Need to convexify the upper envelope V(U, h) = max_i Vⁱ(U, h)
 Phelan-Stachetti (2001)

Dynamic incentives

- Full history dependence allowed in the contract: U^f chosen
- Need to convexify the upper envelope V(U, h) = max_i Vⁱ(U, h)
 Phelan-Stachetti (2001)
- U may change during unemployment spell
 - Never rises
 - Falls in policies with IC binding: UI and JA
 - Some new policy transitions due to dynamic incentives

Optimal WTW program

Pavoni-Violante, "Optimal Design of WTW Programs"

Three additional insights

1. Policies with binding IC constraints (UI, JA) expand

Three additional insights

1. Policies with binding IC constraints (UI, JA) expand

- 2. Only JA is a source of transitions
- All other policies are absorbing

Three additional insights

1. Policies with binding IC constraints (UI, JA) expand

- 2. Only JA is a source of transitions
- All other policies are absorbing
- 3. Work requirement used as punishment for failed job-search:
- $\downarrow U^f$ achieved with future work effort requirements instead of $\downarrow c$
- Better consumption smoothing

7. POLICY EVALUATION

- 1. Parameterization
 - Labor market parameters: e, π , and h depreciation
 - Costs and returns of technologies: $\kappa^A, (\underline{\omega}, \kappa^P), (\kappa^T, \theta, \overline{h})$
 - Evaluation studies of randomized experiments

- 1. Parameterization
 - Labor market parameters: e, π , and h depreciation
 - Costs and returns of technologies: κ^A , $(\underline{\omega}, \kappa^P)$, $(\kappa^T, \theta, \overline{h})$
 - Evaluation studies of randomized experiments
- 2. Expected utility (U_0) and cost (K_0) implied by current programs
 - Benefits, time limits, sanctions, exemptions, policies

- 1. Parameterization
 - Labor market parameters: e, π , and h depreciation
 - Costs and returns of technologies: κ^A , $(\underline{\omega}, \kappa^P)$, $(\kappa^T, \theta, \overline{h})$
 - Evaluation studies of randomized experiments
- 2. Expected utility (U_0) and cost (K_0) implied by current programs
 - Benefits, time limits, sanctions, exemptions, policies
- 3. Expected cost (K_0^*) of optimal WTW program starting from U_0

The optimal policy-space is invariant to h depreciation

The optimal policy-space is invariant to h depreciation

Sketch of proof (for UI/SA case):

The optimal policy-space is invariant to h depreciation

Sketch of proof (for UI/SA case):

• *UI* evaluated at a point (U, h^*) on the policy-indifference curve:

$$V^{UI}(U,h^*) = - \exp((1-\beta)U) + \beta \left\{ \pi(h^*)W\left(U + \frac{e}{\beta\pi(h^*)}, h^*\right) + (1-\pi(h^*))\left[(1-\delta)V^{UI}(U,h^*) + \delta V(U,h'(h^*))\right] \right\}$$

The optimal policy-space is invariant to h depreciation

Sketch of proof (for UI/SA case):

• *UI* evaluated at a point (U, h^*) on the policy-indifference curve:

$$V^{UI}(U,h^*) = - \exp((1-\beta)U) + \beta \left\{ \pi(h^*)W\left(U + \frac{e}{\beta\pi(h^*)}, h^*\right) + (1-\pi(h^*))\left[(1-\delta)V^{UI}(U,h^*) + \delta V(U,h'(h^*))\right] \right\}$$

• Compute the max across policies at $h'(h^*) < h^*$:

$$V(U, h'(h^*)) = \max \left\{ V^{UI}(U, h'(h^*)), V^{MW}(U) \right\}$$
$$= V^{MW}(U) = V^{UI}(U, h^*)$$

8. HIDDEN STORAGE

Hidden storage

The WTW program remains IC even with hidden storage

Hidden storage

The WTW program remains IC even with hidden storage

Sketch of proof:

- With $R = \beta^{-1}$, the agent's Euler Equation commands $c_t = \mathbb{E}[c_{t+1}]$
- Payments are weakly increasing along the optimal WTW program
- Agent would like to borrow (and she can't), never save

US: variety of program type and generosity

US: variety of program type and generosity

• Participation of non-employed TANF recipients

Activity	%
None	76.6
Community Work	8.2
Job Search	6.2
Education and Training	9.0

US: variety of program type and generosity

• Participation of non-employed TANF recipients

Activity	%
None	76.6
Community Work	8.2
Job Search	6.2
Education and Training	9.0

Generosity of US states towards TANF recipients

State	Max Monthly Benefits	Time Limits
	(family of three)	(months)
New York	\$753	60
Massachussets	\$633	60
Arizona	\$278	36
Florida	\$303	48

Digression: u^{-1} convex first derivative?

- $\frac{1}{u'}$ is the marginal cost to the planner of promising an additional unit of utility U to the agent
- Definition [incentive cost]: extra cost in units of consumption of promising the agent a state-contingent utility lottery delivering U necessary to satisfy IC, relative to the cost of promising U with certainty
- If $\frac{1}{u'}$ is convex, then the incentive cost is increasing in U
- CARA or CRRA ($\gamma > 1/2$) $\Rightarrow \frac{1}{u'}$ convex