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Abstract

A large literature has documented an increase of U.S. wage inequality over the

past several decades. This paper asks how far one can go towards accounting for

the evolution of several measures of U.S. wage inequality based on a stochastic human

capital model. The model features four school levels with distinct labor types and skill

prices and Ben-Porath style human capital accumulation on the job. Four exogenous

changes generate rising wage inequality in the model economy: skill-biased technical

change, demographic change, rising schooling, and increasing shock variances.

I find that human capital theory can account for almost the entire increase of

various dispersion statistics, such as the standard deviation of log wages, the 90/50

wage ratio, and the age-specific college wage premium. The model also accounts for

the changing returns to experience over time. Counterfactual experiments identify

the proximate causes of rising wage inequality as well as their implications for lifetime

inequality.
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1 Introduction

The question: A large literature has documented an increase of U.S. wage inequality over

that last several decades.1 Figure 1 shows the evolution of several wage inequality measures

that have been highlighted in this literature.2 Various measures of wage inequality, including

the standard deviation of log wages (panel a) and of residual log wages (panel b) have been

rising since the 1970s. By contrast, the college wage premium declined during the 1970s

but rose thereafter (panel c). Finally, returns to experience declined until the 1950 birth

cohort and increased thereafter (panel d).

The literature has offered a variety of explanations for these observations. Following Katz

and Murphy (1992), a number of authors have argued that skill-biased technical change

together with changing relative labor supplies of skilled and unskilled workers accounts for

the rise in the college wage premium and potentially also for at least part of the increase

in wage dispersion.3 A dissenting view attributes much of the rise in wage inequality to

changes in labor market institutions, such as unionization or minimum wages.4 Gottschalk

and Moffitt (1994) argue that the variance of transitory and permanent wage shocks has

increased over time, which could account for the rise in residual wage variance. Kambourov

and Manovskii (2009) document declining returns to experience over time and argue that

rising occupational mobility may play a role.5

While this literature offers important insights, it falls short of presenting a unified quanti-

tative account of the wage distribution and its evolution. This paper offers a step in that

direction. Specifically, I study how far can one go towards accounting for the evolution of

U.S. wage inequality in a standard human capital model. Working with a structural model

1For recent surveys see Katz and Autor (1999), Acemoglu (2002b), Eckstein and Nagypal (2004), and

Lemieux (2007).
2All statistics are shown for men, aged 25−55, and based on CPS data. Section 3 explains in detail how

these measures are constructed. Similar statistics are presented, for example, in Autor, Katz, and Kearney

(2008) and Heathcote, Perri, and Violante (2010).
3For additional evidence in favor of skill-biased technical change see Berman, Bound, and Griliches

(1994), Berman, Bound, and Machin (1998), and Autor, Katz, and Kearney (2008). Card and Lemieux

(2001) suggest that young and old workers are imperfect substitutes in the labor market in order to account

for the diverging behavior of the college wage premiums earned by both groups first documented by Katz

and Murphy (1992) and Murphy and Welch (1992).
4See Lemieux (2007) for a summary and references.
5Bound and Johnson (1992) and Katz and Murphy (1992) document increasing cross-sectional returns

to experience.
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(a) Standard deviation of log wages
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(b) Standard deviation of residual log wages
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Figure 1: Selected wage inequality statistics

Notes: Residual log wages are the residuals of a standard cross-sectional Mincerian wage

regression. Returns to experience are measured by the change in mean log wages between

the ages 25− 40. See Section 3 for details on the data and estimation.
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allows me to trace out the indirect effects of shocks. For example, changing skill prices

affect human capital accumulation, which in turn affects both between group and within

group inequality. I use counterfactual experiments to quantify these indirect effects.

The approach: I develop a stochastic Ben-Porath model with school choice. The model

features overlapping generations of heterogeneous workers who maximize expected lifetime

earnings. As young adults, workers draw random human capital endowments and learning

abilities. Next, each worker chooses from 4 discrete schooling levels (high school dropout,

high school graduate, college dropout, college graduate). After schooling, the worker enters

the labor market, where he accumulates additional human capital using a Ben-Porath

technology. Wages are subject to persistent idiosyncratic shocks. Workers of different

school groups are imperfect substitutes in production and earn different skill prices.

Four exogenous forces drive changes in the wage distribution:

1. Demographics: The age composition of the labor force changes over time.

2. Skill-biased technical change: The relative labor productivity of skilled labor grows

over time. Following Katz and Murphy (1992), I assume a constant rate of skill-biased

technical change.

3. School costs: The non-pecuniary costs of schooling change over time so as to account

for the educational attainment of each cohort.

4. Shock variances: Following Gottschalk and Moffitt (1994), the variance of idiosyn-

cratic productivity shocks is allowed to vary over time.

The model is parameterized to match the the following data moments:

1. the age profiles of means and standard deviations of log wages for 12 birth cohorts

observed in the Current Population Survey (CPS);

2. several aggregate wage distribution statistics, estimated from CPS data;

3. the covariance structure of wages, estimated from Panel Study of Income Dynamics

(PSID) data.
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Results: The model successfully accounts for most of the changes in the wage distribution

highlighted in the literature:

1. the increase in overall wage dispersion and its onset around 1970;

2. the differential changes in wage dispersion by schooling;

3. the rise in the college wage premium and its onset around 1970;

4. the differential increase in the college wage premium experienced by young versus old

workers (Card and Lemieux, 2001);

5. the fanning out of the wage distribution (higher wage percentiles experienced faster

wage growth; e.g., Autor, Katz, and Kearney 2008);

6. the U-shaped changes in the returns to experience shown in Figure 1;

7. the rising variance of residual log wages, although this is mostly a mechanical impli-

cation of rising shock variances.

The model fails to account for the fact that inequality first increases in the lower half of the

wage distribution (the 50/10 ratio) and only later in the upper half (the 90/50 ratio). The

literature has attributed this observation to changes in unionization and minimum wage

laws, which the model abstracts from (see DiNardo, Fortin, and Lemieux 1996 and Card

and DiNardo 2002).

I use counterfactual experiments to identify the proximate causes of rising wage inequality.

The main findings are:

1. The rise in the college wage premium is largely due to the direct effect of changing skill

prices, which are in turn caused by changes in labor supply and skill biased technical

change as suggested by Katz and Murphy (1992).

2. The rise in the standard deviation of log wages is due in roughly equal parts to

diverging skill prices and to rising shock variances.

3. Within school group and within school/age group inequality rises mostly due to in-

creasing shock variances.
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4. Changes in returns to experience are due to changing skill prices and to the variation

in human capital investment they generate.

5. Aside from its effect on skill prices, the expansion of education makes no important

contribution to changing wage inequality.

A separate contribution of the paper is to develop a stochastic Ben-Porath model that

can be solved in closed form. This greatly reduces the computational burden relative to

previous approaches that rely on value function approximations (e.g. Huggett, Ventura,

and Yaron 2011).

1.1 Related Literature

This paper is closely related to work by Heckman, Lochner, and Taber (1998) and Guvenen

and Kuruscu (2009) who also study the evolution of the U.S. wage distribution through the

lens of human capital theory. Guvenen and Kuruscu’s model seeks to replace the prevailing

view that the evolution of the college wage premium is due to constant skill-biased technical

change combined with changing relative labor supplies. In their environment, skilled and

raw labor are perfect substitutes, so that labor supplies do not affect wages. Rising wage

inequality results from an acceleration of skill-biased technical change starting in the 1970s.

Rather than replacing the prevailing view, my approach complements it and fleshes out

its implications for various dimensions of wage inequality. My modeling choices therefore

deviate from Guvenen and Kuruscu’s:

1. I study a model with discrete school choice where workers of each education level

earn a different skill price. This permits a clearer mapping between model and data

because education levels are unambiguously defined.6 It is also closer to the prevailing

interpretation that the rising college wage premium reflects a change in the price of

college educated labor rather than a change in the price of human capital versus raw

labor. While Guvenen and Kuruscu (2009) argue that a standard Ben-Porath model

cannot account for the changes observed in the data, I find that such a model can go

a long way towards that objective.

6In Guvenen and Kuruscu’s model schooling is the corner solution of the Ben-Porath human capital

investment problem. A worker is college educated if he spends at least 2 years in full-time training.
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2. While Guvenen and Kuruscu (2009) solve a deterministic version of their model, my

model includes wage shocks. This allows me to compare the model implications to a

richer set of wage dispersion statistics. Notably, my model has implications for how

wage dispersion changes over the life-cycle for each model cohort.

The first paper to study the evolution of wage inequality through the lens of human capital

theory is Heckman, Lochner, and Taber (1998). They interpret changes in wage inequality

as the response to a one time increase in the demand for college educated labor. Both

abilities and skill prices are treated as observable. Equating unobserved abilities with

cognitive test score quartiles limits the importance of ability heterogeneity (see Guvenen

and Kuruscu 2009). The model also abstracts from wage shocks and therefore cannot

generate realistic wage variances.

Laitner (2000) offers a theoretical analysis of how the expansion of education affects the

college wage premium and wage inequality. Hendricks and Schoellman (2011) study the

same question quantitatively and argue that a large part of the rising college wage premium

may be due to the changing composition of college educated versus high school educated

workers. Huggett, Ventura, and Yaron (2011) develop a model of human capital accu-

mulation that accounts for wage inequality over the life-cycle. I extend their model to a

non-stationary economy with discrete schooling levels that command different skill prices.

Heathcote, Storesletten, and Violante (2010) study the implications of rising wage inequal-

ity.

The paper also relates to a large literature that documents rising U.S. wage inequality

and proposes explanations. This literature is too vast to even attempt a summary. The

interested reader may consult the surveys cited in Footnote 1. While this literature largely

relies on reduced form or accounting decompositions, this paper develops a structural model

of the wage distribution. One benefit is that the indirect effects of shocks can be calculated.

For example, the model reveals that variation in returns to experience may be due to the

response of human capital investment to changing skill prices.
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2 The Model

2.1 The Environment

I study a general equilibrium overlapping generations model. The model abstracts from

physical capital. Agents can borrow and lend at an exogenous interest rate (as in a small

open economy).

Demographics: In each period τ , Nτ households are born. Each lives for T periods.

Denote the year in which a person of cohort c is aged t by τ(c, t) = c + t− 1. Denote the

cohort aged t in year τ by c(t, τ).

Endowments: Agents enter the model as young adults and draw three random endow-

ments: a, h1, and ps. Learning ability a determines how efficiently the agent produces

human capital in school or on the job. h1 denotes the age 1 endowment of human capital,

which I think of as produced during childhood prior to age 1. a and ln(h1) are drawn from

a joint Normal distribution

[

a

ln(h1)

]

∼ N

([

0

h̄c,1

]

,

[

1 ρa,h1

ρa,h1 σ2
h1

])

(1)

I normalize E(a) = 0 and V ar(a) = 1. The mean of ln(h1) grows at a constant rate:

h̄c,1 = gh1(c− 1). h̄1,1 is normalized to 0 by choosing units of h.

ps is a vector of “psychic costs” that determines how much the individual enjoys schooling

level s. ps is drawn from a Gumbel distribution, which simplifies the school choice problem.

In each period, a person works ℓs,c,t market hours. They can be used for work or study.

Preferences: Upon entering the labor market, individuals maximize the expected dis-

counted present value of lifetime earnings. Equivalently, individuals maximize the present

value of utility derived from consumption subject to a lifetime budget constraint with per-

fect credit markets. There is no need to specify the utility function. School choice is also

affected by the psychic costs ps (details below).
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Human capital production: Human capital is produced in school and on the job.

Agents choose from S discrete school levels. Level s lasts Ts years and results in hTs+1 =

F (h1, a, s) units of type s human capital at the start of work (at age 1 + Ts). On the job,

human capital is produced from human capital and study time lt according to

ht+1 = (1− δs)ht + A(a, s)(htlt)
αs (2)

where learning ability affects productivity according to A(a, s) = eAs+θa.

Shocks: Each worker’s effective labor supply is given by

ei,s,c,t = qi,s,c,tζi,s,c,thi,s,c,t(ℓs,c,t − li,s,c,t) (3)

q denotes an autoregressive productivity shock that evolves according to

ln qi,s,c,t+1 = ρs ln qi,s,c,t + ln ξi,s,c,t+1 (4)

with ln ξi,s,c,t ∼ N(0, σ2
ξ,s,τ(c,t)) with initial condition ln qi,s,c,Ts+1 ∼ N(0, σq,s). ln ζi,s,c,t ∼

N(0, σ2
ζ,s,τ(c,t)) denotes a transitory shock. Its variance is allowed to vary over time to

capture cyclical variation in wage dispersion and measurement error.

Aggregate output and skill prices: Output is produced from human capital aug-

mented labor according to

Yτ = [GρCG
τ + (ωCG,τLCG,τ )

ρCG ]1/ρCG (5)

where

Gτ =

[

CD
∑

s=HSD

(ωs,τLs,τ )
ρHS

]1/ρHS

(6)

Skill prices equal marginal products: ws,τ = ∂Yτ/∂Ls,τ . Ls,τ denotes aggregate labor supply

in efficiency units (es,c,t) of school group s in year τ . Slightly abusing notation, this is given

by

Ls,τ =
T
∑

t=Ts+1

Nc(t,τ)
∑

i=1

pi,s,cei,s,c,t (7)

where pi,s,c is the (endogenous) probability that agent i chooses schooling level s.
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2.2 Household Problem

I solve the household problem by backward induction, starting with the work phase.

Work phase: At the start of work, the agent is endowed with hTs+1 units of type s human

capital and with a productivity parameter A(a, s). He maximizes the expected discounted

present value of lifetime earnings

V (hTs+1, a, s, c) = E

T
∑

t=Ts+1

R−tY (lt, ht, s, c, t) (8)

subject to the law of motion for h (2) and the time constraint 0 ≤ lt ≤ l̄ℓs,c,t. R denotes

the exogenous gross interest rate. l̄ denotes the maximum fraction of time that may be

devoted to human capital accumulation. Period earnings are given by

Y (lt, ht, s, c, t) = ws,τ(c,t)es,c,t (9)

Wages are given by y(lt, ht, s, c, t) = Y (lt, ht, s, c, t)/ℓs,c,t. Human capital investment is

chosen before the current transitory shock, ζt, is realized.

Backward induction leads to the following condition characterizing optimal human capital

investment:

(hi,s,c,tli,s,c,t)
1−αs =

αA(a, s)

(1− δs)

T−t
∑

j=1

Xs,c,t,j
E(qi,s,c,t+j|t)

qi,s,c,t
(10)

where

Xi,s,c,t,j =

(

1− δs
R

)j ws,τ(c,t+j)

ws,τ(c,t)

ℓs,c,t+j (11)

Since q is governed by (4), the expected value of future shocks is given by

E(qi,s,c,t+j|t) = (qi,s,c,t)
ρj ×

j
∏

i=1

E{(ξi,s,c,τ(c,t+i))
ρj−i

} (12)

where E{(ξi,s,c,τ(c,t+i))
ρj−i

} = exp
(

[σξ,s,τ(c,t+i)ρ
j−i]2

2

)

.

The model can now be solved recursively as follows. Given worker endowments, (10) solves

for lTs+1 at the start of the worker’s career. In case of a corner solution, lTs+1 is set to

l̄ℓs,c,Ts+1. The human capital technology yields hTs+2. Each worker then draws qTs+2 and

updates his beliefs about future shocks. Iterating forward until the age of retirement unfolds

the worker’s life-cycle wage profile.
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School phase: At the start of life, the agent chooses schooling to maximize

Ws(ps, h1, a, s, c) = lnV (F [h1, a, s], a, s, c) + µs,c + πps + πa(Ts − T1)a (13)

In addition to expected lifetime earnings V the agent enjoys an idiosyncratic “psychic”

utility, πps + πa(Ts − T1)a, and a common, school specific utility µs,c. The common utility

µs,c allows the model to match the fraction of persons choosing each school level in each

cohort. The psychic utility plays its usual role as a stand-in friction that generates imperfect

school sorting by ability and h1 (see Heckman, Lochner, and Todd 2006 for a discussion).

π > 0 is a scale factor that defines the units of the psychic cost. The term πa(Ts − T1)a

permits the model to generate a positive correlation between schooling and ability.7 Since

ps is drawn from a Gumbel distribution, the probability of choosing school level s is given

by Xs/
∑

j Xj where

Xs = exp

(

V (F [h1, a, s], a, s, c) + µs,c + πa(Ts − T1)a

πc

)

(14)

(e.g., Greene 2012, ch. 18.2).

2.3 Cognitive Test Scores

To help with the identification of model parameters that relate to the dispersion of abilities

(θ) and to the strength of the association between ability and schooling (π, πa) it is helpful

to employ an observable proxy for ability. Following Hendricks and Schoellman (2011), I

treat cognitive test scores (IQs, for short) as noisy measures of a:

IQ = a + σIQεIQ (15)

where εIQ ∼ N(0, 1) reflects measurement error. Note that IQ does not have units, so

that its standard deviation is meaningless. Since ability is drawn from a standard Normal

distribution, 1/σIQ is the signal-to-noise ratio.

2.4 Discussion of Model Assumptions

The model is computationally very efficient. Since agents maximize expected lifetime earn-

ings, the job-training part of the model can be solved in closed form. Only the expectation

7Alternatively, one could allow psychic costs and abilities to be correlated. However, this would be less

tractable.
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in (8) needs to be evaluated numerically. This is done by regressing realized lifetime earn-

ings on individual endowments for a large number of simulated model households.8 The

presence of Gumbel distributed preference shocks allows the school choice problem to be

solved in closed form, even if the role of the preference shocks (π) is small. It also guarantees

continuity of the simulated model data with respect to the model parameters.

The optimality condition (10) reveals that workers invest more in human capital on the job

when skill prices grow faster. The level of skill prices is irrelevant. Worker ability affects

the level of investment, but not its sensitivity to skill prices. These features contrast with

Guvenen and Kuruscu (2009)’s model where on-the-job investment depends on relative skill

prices and where the sensitivity of investment to skill prices increases with ability. This

interaction drives Guvenen and Kuruscu’s main results. Skill-biased technical change raises

the relative price of human capital, which increases investment among highly able young

workers. This leads initially to a compression of the wage distribution and to a decline in

the skill premium, especially among the young (Caselli, 2009). Even though both models

account for a similar set of observations, the underlying mechanism is very different.

2.5 Computational Issues

Aggregation: Aggregate wage statistics for each year are computed from simulated wage

histories for 1, 000 model agents in each school group. When computing statistics that aggre-

gate ages, such as the mean log wage of college graduates in year τ , individual observations

are weighted to remove compositional effects. Specifically, each person’s weight is given by

his probability of choosing school level s times a factor that equates the fraction of persons

in each age-school cell to the corresponding cross-year average fraction in the CPS sample.

The model does not have a direct counterpart for each birth cohort in the data. The reason

is that the oldest model cohort is born in 1935, which ensures that most of its wage history

is observed, but it also implies that there are no old model agents in the first data years.

In computing aggregates, I assume that cohorts without model counterparts are identical

to the closest model cohort.

For the same reason, I compute Ls,τ as the ratio of total earnings in cell (s, τ) in the CPS to

ws,τ as implied by the model. This ensures that the model exactly matches observed wage

8The accuracy of this approach is verified by simulating a large number of households with identical

endowments and comparing their mean lifetime earnings with the predicted value from the regression.
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bills. Computing aggregate labor inputs from simulated individual work histories yields

similar results.

Skill prices: The model can be solved in two ways.

1. Relative skill weights (ωs,τ/ωHSG,τ) can be restricted grow at constant rates. The

model then quantifies the implications of constant skill-biased technical change and

demographic change, as proposed by Katz and Murphy (1992). The baseline model

follows this approach.

2. Skill weights can be left unrestricted. Skill prices are then chosen to best fit all

calibration targets, including mean log experience wage profiles for all cohorts. This

imposes strong discipline on the model. In particular, it does not permit the model

to generate wage inequality by generating counterfactual mean wage profiles or by

choosing model parameters that are not consistent with observed experience wage

profiles.

Both approaches turn out to yield very similar results, supporting Katz and Murphy’s

(1992) claim that a combination of constant skill-biased technical change and demographic

change can account for much of the rise in U.S. wage inequality.

3 Data

The data for wages, hours worked, and schooling are taken from the March Current Popu-

lation Survey (CPS) for the years 1964−2011 (King, Ruggles, Alexander, Flood, Genadek,

Schroeder, Trampe, and Vick, 2010).9 The sample contains men born between 1935 and

1968. To increase sample sizes, I divide the population into 12 equally spaced birth cohorts.

Each cohort pools 3 adjacent birth years. For example, the cohort labeled 1950 contains

persons born between 1949 and 1951.

For each cohort and school group, I construct age profiles of mean hours worked, mean

log wages, and the standard deviation of log wages. The age hours profiles measure time

9Relative to the Panel Study of Income Dynamics, the main advantage of CPS data is the much larger

sample size. The drawback is that individuals cannot be followed over time.
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endowments. Specifically, I set ℓs,c,t to mean annual hours in each (s, c, t) cell divided by

2,000, which yields time endowments for middle aged men that are close to 1. The age-wage

profiles form the calibration targets, as described in Section 4.

The measurement of wages closely follows Bowlus and Robinson (2012) and is described in

Appendix (A). Each cohort’s log wage profile is smoothed using an HP filter with parameter

5. Figure 2 displays selected cohort age-wage profiles, deflated by the consumer price index

with base year 2000.10 It is apparent that some of the profiles are not consistent with

human capital theory and constant skill prices (Bowlus and Robinson 2012 make a similar

observation). Some of the profiles are essentially flat past age 25. Many are not concave.

Note also that the longitudinal wage profiles look very different from cross-sectional profiles

that are sometimes used in their stead (see Thornton, Rodgers, and Brookshire 1997). They

also look very different from the age-wage profiles that sometimes estimated using panel

data and imposing that a fixed age profile, combined with either year effects or cohort

effects, characterizes all cohorts (e.g., Figure 3 in Huggett, Ventura, and Yaron 2006).

3.1 Cognitive Test Scores

The IQ related data points are constructed from NLSY79 data (see Appendix 6 for details).

Armed Forces Qualification Test (AFQT) scores are the empirical counterparts of IQ. The

percentile scores are age-adjusted using a regression of AFQT percentiles on a quadratic in

the age at which the test was taken. The scores are then transformed to have a standard

Normal distribution.

To characterize the relationship between AFQT and wages, I regress log wages on AFQT

scores, AFQT scores interacted with a cubic polynomial in experience, as well as con-

trols for school group, years of schooling, experience, marital status, race, and region of

residence. Figure 3 shows how the regression coefficient of AFQT scores varies with experi-

ence. Experience is truncated at 18 years, which is 1.5 times average experience in the data.

Consistent with Altonji and Pierret (2001), βIQ increases with experience. To estimate βIQ

in the model, I regress simulated log wages for each experience level on standard Normal

IQ scores.

10Bowlus and Robinson (2012) report log median wage profiles for a different set of cohorts. My data

imply similar profiles for their cohorts, even though I use mean log wages instead. I am grateful to Chris

Robinson for providing me with his data to perform this comparison.
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(a) High school dropouts
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(b) High school graduates
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(c) College dropouts
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Figure 2: Age profiles of mean log hourly wages for selected cohorts

Notes: In year 2000 prices. CPS data.
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Figure 3: βIQ and experience

To characterize the strength of school sorting by ability, I draw on the average cognitive

test scores for college and high school students of various cohorts. The data are taken from

Taubman and Wales (1972) and described in more detail in Hendricks and Schoellman

(2011).

4 Setting Model Parameters

Table 1 summarizes the parameter values that are fixed exogenously. Based on McGrattan

and Prescott (2000) the gross interest rate is set to R = 1.04. Agents are allowed to spend

at most l̄ = 0.9 of their time endowment on job training. In the data, I assume that agents

start working at the ages of 18 (HSD), 19 (HSG), 21 (CD), and 23 (CG) and retire at age

65, which yields the values of Ts.

For the baseline model, I also impose the following restrictions:

1. gh1 = 0: The distribution of human capital endowments is constant over time.

2. σξ,s,τ : The standard deviation of the persistent shock is assumed to follow a linear
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Table 1: Fixed parameters

Parameter Description Value

T Lifespan 65

τ Birth cohorts 1935, 1938, 1941, ..., 1962, 1965, 1968

Ts School duration 2, 3, 5, 7

gA Productivity growth rate 0.0000

gπ Growth rate of π 0.0000

ℓt,s,τ Market hours CPS data

n/a Nodes of skill price spline 1950, 1957, 1964, ..., 2010, 2021, 2032

R Gross interest rate 1.04

time trend over the data period. For years outside of the data period, σξ,s,τ is set to

the nearest value in the data period.

3. ωs,τ : All skill weights grow at the same rate (constant skill-biased technical change).

4.1 Calibrated Parameters

The schooling technology F (h1, a, s) is the same as the job-training technology with lt = 1.

The following parameters are calibrated jointly:

• endowment parameters: θ, gh1, π, πa, ρa,h1 , σIQ;

• human capital technologies: αs, δs, As;

• final output technology: ρHS, ρCG;

• school costs µs,c, where µ1,c may be normalized to 0;

• shocks: σq1,s, ρs, σξ,s,τ , σχ,s,τ ;

• skill bias parameters: ωs,τ

These parameters are jointly calibrated for all school groups using a simulated method of

moments. I search over the parameter space. For each parameter guess, I solve the model

and simulate 1, 000 individuals. The values of µs,c are chosen so that the model exactly
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matches the fraction of persons choosing each school level in each cohort. The correlation

of repeated IQ tests imply a lower bound of σIQ ≥ 0.5 (see Hendricks and Schoellman 2011

for details).

Iterating directly over the means and growth rates of skill bias parameters would be com-

putationally costly. It would also preclude any short-term deviations from constant relative

skill bias growth. I therefore search over skill prices (ws,τ) instead, which are computed from

a cubic spline with 9 nodes. After computing aggregate labor supplies from the household

problem, I derive the implied skill weights. Penalties for deviations from constant growth

paths of ωs,τ/ωHSG,τ force the model to approximate constant skill-biased technical change.

The household solution depends on skill prices outside of the period observed in CPS data. I

construct these skill prices as follows. I assume that households who are born before the first

model cohort or after the last model cohort are identical to the nearest model cohort. This

restriction allows me to compute labor supplies during all periods where model households

work. I allow the calibration algorithm to freely choose out of sample skill prices, but

penalize deviations from the average growth rate of skill weights during the sample period.

Note that the solution to the household problem does not depend on the variance of tran-

sitory shocks. To estimate this variance, I therefore proceed as follows. I solve the model

for given values of all parameters, except σ2
ζ,s,τ . I regress the model generated standard

deviation of log wages in each (age, year) cell (σs,c,t) on their data counterparts (σd
s,c,t) and

on time dummies, which capture σ2
ζ,s,τ . This is done separately for each school group. I

then draw realizations of ζt and add them to each household’s model wages and recompute

σs,c,t including the transitory shocks.

Once these restrictions are imposed, there are 72 calibrated parameters of which 36 charac-

terize the evolution of skill prices. The algorithm minimizes the sum of squared deviations

between moments computed from simulated wage histories and moments taken from the

data. The moments characterize:

• age profiles of mean log wages;

• age profiles of the standard deviation of log wages;

• aggregate wage dispersion measures for each year: the college wage premium; the vari-

ance of log wages; the 90/50, 50/10 and 90/10 log wage gaps; the standard deviation

of residual wages;
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• the covariance matrix of log wages, estimated from PSID data (see Appendix (B));

• the age profile of βIQ for the 1960 cohort, estimated from NLSY79 data;

• mean cognitive test scores for selected cohorts of high school and college students,

taken from Taubman and Wales (1972).

Table 2 shows the values of the calibrated parameters. The curvature parameters of the

human capital production functions lie near 0.45 which is far lower than recent estimates.

Heckman, Lochner, and Taber (1998) and studied following their approach (Taber 2002;

Kuruscu 2006) estimate αs above 0.9. The reasons for the discrepancy are discussed in

Hendricks (2012).

The model implies that skill types are highly substitutable. In the data, the relative supply

of college educated labor rises dramatically over time, in part due to the expansion of

education and in part due to the baby boom (Katz and Murphy, 1992). At the same time,

the college wage premium increases. Reconciling these facts requires either very rapid skill-

biased technical change or a high elasticity of substitution between college graduates and

other workers.

Figure 4 shows the calibrated skill prices and compares them with observed mean log wages.

Skill prices grow more slowly than observed wages, indicating that human capital grows

over time. Skill prices are also far smoother than observed wages. The model avoids large

predictable changes in skill prices because they would lead to fluctuations in training time

and cohort age-wage profiles.

4.2 Model Fit

Figure 5 shows model generated and observed mean log age-wage profiles for high school

graduates of selected cohorts. Figure 6 shows the same information for college graduates.

In both cases the model replicates how the curvatures and slopes of the profiles change

over time. The main discrepancies occur at young ages where the model sometimes fails to

match the observed low wages earned by workers with little experience.

Figures 7 and 8 compare the age profiles of the standard deviation of log wages of model

and data cohorts. For college graduates the fit is quite close. For high school graduates,

the model overstates wage dispersion among the early cohorts.
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Parameter Description Value

On-the-job training

As Productivity 0.14, 0.12, 0.15, 0.23

αs Curvature 0.49, 0.40, 0.38, 0.46

δs Depreciation rate 0.050, 0.040, 0.048, 0.088

Endowments

σh1 Dispersion of h1 0.290

θ Ability scale factor 0.098

π1 Psychic cost scale factor 0.257

γap Ability weight in psychic cost 0.111

γah Governs correlation of ln h1 and a 0.328

σIQ Noise in IQ 0.610

Shocks

σ(q1) Std dev of first shock 0.03, 0.01, 0.29, 0.29

ρs Shock persistence 0.98, 0.97, 0.99, 0.98

σ(ζ), 1964 Std deviation of shocks 0.12, 0.11, 0.08, 0.08

σ(ζ), 2010 Std deviation of shocks 0.12, 0.16, 0.11, 0.14

Other

∆ws Skill price growth rate, 1964-2010 [pct] -1.27, -0.69, -0.61, -0.02

(1 + ρHS)
−1, (1 + ρCG)

−1 Substitution elasticities 6.03, 4.09

Table 2: Calibrated parameters
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Figure 4: Skill prices and mean log wages

Notes: The figure shows calibrated skill prices and observed mean log wages. Skill prices

are normalized to equal mean log wages in 1964.
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Figure 5: Mean log wages: high school graduates

Notes: The figure shows mean log wage profiles for selected cohorts. “D” followed by the

cohort’s birth year indicates the data profile. “M” indicates a model profile.
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Figure 6: Mean log wages: college graduates

Notes: See Figure 5.
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Figure 7: Model fit: high school graduates

Notes: See Figure 5.
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Figure 8: Model fit: college graduates

Notes: See Figure 5.
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Figure 9: Model fit: cognitive test scores

Cognitive test scores: Figure 9 shows that the model closely replicates the relationship

between wages and test scores as measured by βIQ as well as the average test scores of high

school and college students of selected cohorts.

Wage shocks: Table 3 assesses how well the model replicates the covariance structure

of wages estimated from PSID data. Rather than showing the entire covariance matrix for

each school group, I estimate an autoregressive process of the form

ln yi,t = αi + g(t) + νi,t (16)

νi,t = ρsνi,t−1 + ζi,t (17)

ζ ∼ N(0, σζ,s) (18)

by minimizing the sum of squared deviations between the covariance matrix of wages implied

by this process and the one generated by either the model of PSID data. Following Guvenen

(2007), workers are included in the regression if they are observed between 1967 and 1992

at ages between 20 and 60. To increase sample sizes, the empirical estimates pool high

school dropouts with high school graduates and college dropouts with college graduates.

The model parameters are roughly in line with empirical estimates found in the literature.

Notably Guvenen (2007) reports persistence parameters ρHSG = 0.972 (s.e. 0.023) and
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School / Parameter σ(α) ρ σ(η) σ(ǫ)

HSD 0.196 / 0.262 0.969 / 0.955 0.128 / 0.129 0.240 / 0.086

HSG 0.196 / 0.223 0.969 / 0.945 0.128 / 0.145 0.240 / 0.159

CD 0.241 / 0.302 0.975 / 0.966 0.131 / 0.116 0.185 / 0.032

CG 0.241 / 0.314 0.975 / 0.988 0.131 / 0.089 0.185 / 0.034

Table 3: Wage shocks

Notes: The table shows the parameters of autoregressive wage processes that are estimated

on model and PSID workers. For each parameter, the model shows the PSID estimate

followed by the model estimate.

ρCG = 0.979 (s.e. 0.055) with standard deviations of the persistent shocks of σζ,HSG = 0.105

(s.e. 0.084) and σζ,CG = 0.100 (s.e. 0.114). The main discrepancy relative to the data is

the high persistence parameter for college graduates.11

4.3 Skill-biased Technical Change

A leading explanation for the rising college wage premium relies on a combination of skill-

biased technical change and changing labor supplies (Katz and Murphy, 1992). The model

presented here is entirely consistent with this explanation.

Figure (10) shows the evolution of the skill weights relative to high school graduates,

ωs,τ/ωHSG,τ (panel b). Consistent with Katz and Murphy (1992), relative skill weights

grow at roughly constant rates over the data period. Panel (a) shows the skill weight levels,

ωs,τ , and compares them with a calculation that abstracts from human capital and mea-

sures labor inputs as total hours worked in each (s, τ) cell. Both models imply very similar

results

The reason for the similarity of the results is apparent from panel (c) which compares labor

supplies in efficiency units with hours worked in each (school, year) cell. Even though the

model implies substantial changes in the relative efficiencies of college graduates versus

high school graduates, changes in labor supply are dominated by changes in hours worked.

These are due to the expansion of education and to changes in the age-composition of the

workforce over time.
11However, some empirical estimates of shock persistence imply near permanent shocks. One example is

Storesletten, Telmer, and Yaron (2004).
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The elasticities of substitution between skill types are far larger than typical estimates sug-

gest. However, they are poorly identified. Fixing the substitution elasticity between college

graduates and other workers at 1.6, which is close to the values estimated (Katz and Mur-

phy, 1992) and more recently by Autor, Katz, and Kearney (2008), has minimal effects on

the model predictions. However, it implies larger changes in relative labor efficiencies which

are needed to offset the large increase in the hours worked by skilled relative to unskilled

workers. Notably, the relative efficiency of college graduates to high school graduates is

implied to rise 20-fold between 1950 and 2010.

5 Results

This section examines to what extent the Ben-Porath model can account for several mea-

sures of wage inequality that have been highlighted in the literature.

5.1 Overall Wage Dispersion

Figure 11 shows the evolution of cross-sectional wage inequality measures in the model and

the data. Similar statistics are presented in Figure 3 of Autor, Katz, and Kearney (2008)

and Figure 4 of Heathcote, Perri, and Violante (2010), even though both employ somewhat

different sample selection criteria.12

The model slightly overstates the standard deviation of log wages in all years (panel a).

However, it replicates the levels and changes of the 90/10 wage ratio (panel b), the 90/50

ratio (panel c) and the 50/10 ratio (panel d). The model also accounts for the fact that

wage inequality was flat before 1970.

The model does not account for the fact that the 50/10 ratio grows only between 1970

and 1990 while the 90/50 ratio rises only after about 1980. In the model, the entire wage

distribution spreads out roughly at the same time. The literature attributes the differential

timing to changes in labor market institutions during the 1980s, which mostly affected low

wage workers. The model abstracts from these changes.

12Autor, Katz, and Kearney (2008) focus on full-time, full-year workers. Heathcote, Perri, and Violante

(2010) include all men who work at least 260 hours per year. The papers also differ in their handling of

extreme wage observations.
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(a) Skill weights relative to HSG: ln(ωs,τ/ωHSG,τ )
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(b) Skill weights, ln(ωs,τ )
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(c) Labor supply

Figure 10: General equilibrium results
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Figure 11: Evolution of U.S. Wage Inequality
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Figure 12 shows that the standard deviation of log wages behaves very differently for dif-

ferent school groups. The most drastic increase occurs among college graduates after about

1990. The model matches this increase and also the approximate timing. Among high

school dropouts, wage dispersion is roughly flat. High school graduates and college dropouts

exhibit gradually increasing wage dispersion, which the model does not fully replicate.

Fanning out of the wage distribution. Figure 13 shows the change in log wages

experienced by each wage percentile over the period 1964−2010.13 The model replicates the

fact that higher wage percentiles experienced stronger wage growth. The main discrepancy

occurs at the very bottom of the wage distribution.

5.2 College Wage Premium

Figure 14 shows the evolution of the college wage premium. This is computed as a constant-

composition average of mean log wages of college graduates relative to high school graduates.

The model replicates the overall rise in the college premium as well as its initial decline

before 1980. It also accounts for the differential timing and magnitude for young versus

old workers. The mechanism is, of course, entirely different from the one proposed by

Card and Lemieux (2001) who propose a model where young and old workers are imperfect

substitutes.

How does the model account for the differential evolution of the young and old skill premi-

ums? Figure 15 examines the evolution of the young college premium. Until 1975, young

high school graduates increase their training time, while college graduates do not. As a

result, human capital and labor efficiency rise among high school graduates, but not among

college graduates. This overrides the increase in the relative skill prices of college graduates

over this period, so that the college wage premium declines. After 1975, training time and

human capital of high school graduates and college graduates move in parallel until about

1990. The rising college skill price then causes the college wage premium to grow.

13This is similar to Figure 1 in Autor, Katz, and Kearney (2008) with two exceptions. First, I use

composition adjusted wages, which removes the effects of rising schooling and experience. As a result, all

wages changes are about 25% higher than those reported by Autor, Katz, and Kearney (2008). Second,

my data show a smaller gap between high and low wage percentiles. In large part this is due to the fact

that Autor, Katz, and Kearney (2008) restrict their sample to full-time/full-year workers.

31



1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0.35

0.4

0.45

0.5

0.55

Year

S
td

 lo
g 

w
ag

e

 

 

Model
Data

(a) High school dropouts
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(b) High school graduates
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(c) College dropouts
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(d) College graduates

Figure 12: Evolution of U.S. Wage Inequality
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Figure 13: Evolution of U.S. Wage Inequality

Notes: The figure shows the change in log wages experienced by each wage percentile over

the period 1964− 2010.
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(a) College wage premium
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(b) College wage premium. Young workers
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(c) College wage premium. Older workers

Figure 14: College wage premium
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Among older workers (not shown), changes in human capital investment are much smaller,

owing to their shorter time horizon. As a result, the college wage premium is largely driven

by relative skill prices, which start to increase in the early 1970s.

5.3 Returns to Experience

Based on cross-sectional data, studies concluded that returns to experience increased over

time (Heathcote, Perri, and Violante, 2010; Eckstein and Nagypal, 2004). Kambourov and

Manovskii (2009) point out an alternative interpretation: the longitudinal wage profiles of

cohorts born after 1942 get flatter over time. Figure 16 follows their approach and shows

the change of mean log wages between the ages 25− 40.

For all school groups, returns to experience decline until roughly the 1950 cohort and rise

thereafter. The model replicates these patterns. The main discrepancy occurs of for college

graduates, where the model age profiles are flatter than the data profiles for the early

cohorts.

In the model, the slope of each cohort’s wage profile is largely determined by growth of work

time. Figure 17 shows that the growth rates of (ℓ− l)/ℓ over the life-cycle are u-shaped for

all school groups. The troughs occur near the troughs of the wage growth rates shown in

Figure 16. Since compositional variation across cohorts is small, variation in training time

is largely determined by future skill price growth rates (see equation 2). This mechanism is

very different from Kambourov and Manovskii (2009) who highlight changes in occupational

mobility.

5.4 Residual wage dispersion

Juhn, Murphy, and Pierce (1993) argue that roughly half of the rise in overall wage in-

equality occurs within age-school groups. Figure 18 shows the evolution of residual wage

inequality in the model and in CPS data. Residual log wages are obtained from cross-

sectional regressions of log wages on school dummies, and school dummies interacted with

cubic polynomials in experience. In the data, I also include dummies for being married,

white race, and region of residence. The regression uses constant composition weighted

least squares.
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(a) Training time
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(b) Human capital

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Year

Lo
g 

ef
fic

ie
nc

y

 

 

HSG
CG

(c) Labor efficiency, h(ℓ− l)/ℓ
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(d) Wages

Figure 15: Young workers
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(a) High school dropouts
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(b) High school graduates
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(c) College dropouts
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(d) College graduates

Figure 16: Wage growth over the life-cycle
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Figure 17: Growth of work time, (ℓ− l)/ℓ

In the data, the residual standard deviation rises from 0.5 to 0.58, starting in 1975. The

model replicates this increase as well as the approximate timing. The counterfactual results

reported in Section 5.5 show that almost the entire increase is due to the rising variance of

persistent wage shocks which was documented by Gottschalk and Moffitt (1994).

5.5 Counterfactual Experiments

In order to gain insight into the forces that give rise to increasing wage inequality over time,

I consider a number of counterfactual experiments. Each experiments fixes one variable

relative to the baseline model:

1. Fixed skill prices: ws,τ is held fixed at ws,1964. Agents decision rules are not altered.

This captures the mechanical effect of changing (relative) skill prices on the wage

distribution (what Guvenen and Kuruscu (2009) call the price effect).

2. Fixed h: Human capital investment and thus h are fixed for each agent at the values

taken for the first model cohort. This captures the effects of changing human capital

investments induced by changing skill prices and worker endowments.
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Figure 18: Residual standard deviation of log wages

3. Fixed shock variance: σξ,s,τ = σξ,s,1964.

4. Fixed schooling: Each worker’s schooling decisions are fixed at the values for the first

model cohort. This captures the effects that rising schooling has on the endowments

of workers in different school groups.

For each experiment, I recompute wage histories and aggregate wage distribution statistics

(using constant-composition weights). Table 4 summarizes the results. It shows the changes

over the sample period of several indicators. The implications are as follows:

1. The rise in overall wage inequality as measured by the standard deviation of log wages

is due in roughly equal parts to diverging skill prices (53%) and larger shocks (42%).

2. Roughly the same is true for the increase in lifetime earnings dispersion.

3. The rising college wage premium is almost entirely the mechanical implications of

diverging skill prices.

4. Within school groups and school/age groups, the rising standard deviation of log

wages is mostly due to larger shocks.
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Baseline Fixed w Fixed school Fixed H Fixed shock std

Std log wage 0.12 [ 0.00] 0.06 [ 0.48] 0.12 [-0.01] 0.11 [ 0.02] 0.06 [ 0.47]

Std log wage HSG 0.08 [ 0.00] 0.08 [ 0.04] 0.08 [-0.01] 0.09 [-0.04] -0.00 [ 1.02]

Std log wage CG 0.10 [ 0.00] 0.10 [ 0.08] 0.11 [-0.03] 0.09 [ 0.11] 0.01 [ 0.87]

Std log lifetime earnings 0.12 [ 0.00] 0.05 [ 0.53] 0.12 [-0.02] 0.12 [-0.01] 0.07 [ 0.37]

College premium 0.23 [ 0.00] 0.01 [ 0.96] 0.24 [-0.02] 0.23 [ 0.01] 0.23 [ 0.02]

Cohort wage growth HSG 0.32 [ 0.00] 0.12 [ 0.63] 0.32 [-0.00] 0.20 [ 0.38] 0.32 [ 0.00]

Cohort wage growth CG 0.44 [ 0.00] 0.25 [ 0.42] 0.44 [-0.00] 0.17 [ 0.61] 0.43 [ 0.00]

Residual std 0.06 [ 0.00] 0.06 [ 0.01] 0.06 [-0.01] 0.06 [-0.04] -0.01 [ 1.10]

Table 4: Counterfactual experiments

Notes: For each counterfactual experiment, the table shows the change in several wage

dispersion measures over the period 1964− 2010.

5. The changing returns to experience mostly stem from time-varying skill prices which

are magnified by changing human capital investments.

6. The expansion of education is not a major contributor to any of the changes (except

through its effect on skill prices).

Aside from the effect of skill prices on the returns to experience, the indirect effects of

the shocks affecting wage inequality are generally small. While the expansion of schooling

and time variation in skill prices induce variation in human capital investments, these have

little impact on within group inequality or relative wages. This finding supports the validity

of reduced form or accounting decompositions of changing wage inequality which abstract

from indirect effects (e.g., Juhn, Murphy, and Pierce 1993). The remainder of this Section

explores why the indirect effects are so small.

College wage premium: The measured college wage premium changes for two reasons:

(i) the relative skill price paid for college educated labor rises over time, and (ii) changing

skill prices induce time variation in human capital investment and labor efficiency. The

latter, indirect effect is quite small (see Table 4).

The reason can be seen in Figure 19 which shows the time paths of labor supplies per hour

worked (the mean of e) in each school group. Labor efficiencies change substantially over
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Figure 19: Labor efficiencies

time, rising by about 10 percentage points between their troughs in 1990 to their peaks

around 2005. However, the magnitudes and timing of the changes are similar across school

groups (except for high school dropouts) and therefore largely cancel in their effects on skill

premiums.

Within group inequality: The changes in within group inequality are almost entirely

due to time variation in shock variances. Changes in human capital investment make

almost no contribution, even though they are far from negligible (Figure 19). Inspecting

the optimal investment condition (10), which is repeated here for convenience, reveals one

reason for this result:

(hi,s,c,tli,s,c,t)
1−αs =

αA(a, s)

(1− δs)

T−t
∑

j=1

Xs,c,t,j
E(qi,s,c,t+j|t)

qi,s,c,t
(19)

Changing future skill prices affect the values of Xs,c,t,j. Aside from the interaction with the

expected growth of the productivity shock q, the response of human capital investment to

wage shocks is the same for all persons in a given school/age group.

Conversely, changing shock variances affect human capital investment through the expected
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growth of the productivity shock q in (19).14 Yet this does not magnify the effect on within

group inequality because the human capital investment response is the same for all agents.

These results contrasts with the model of Guvenen and Kuruscu (2009), where a key part

of the argument relies on the notion that a one time increase in the a skill price increases

the human capital investment of highly able workers more than that of less able workers.

The result is a compression of the within group wage distribution in the short run, followed

by an increase in wage inequality later on as the additional human capital begins to pay

off.

The expansion of educational attainment: An increase in cohort education affects

the means and variances of abilities and human capital endowments. Mean abilities decline

in all school groups as less able students attain more advanced degrees. The changes in mean

human capital and endowment variances are theoretically ambiguous (see the discussion in

Acemoglu 2002a and Hendricks and Schoellman 2011). However, the model implies that

these changes in endowment distributions have negligible effects on all of the inequality

measures shown in Table 4.

One reason is that the model implies essentially no correlation between school choice and

human capital endowments. Initial human capital has two opposing effects on school choice

that approximately cancel each other out. Holding ability fixed, agents with higher human

capital endowments wish to invest less in human capital and therefore leave schooling earlier.

On the other hand, human capital and abilities are positively correlated and higher abilities

induce more human capital investment and longer schooling. In the calibrated model the

net effect is that the distribution of human capital in each school group changes little over

time.

The model does imply substantial school sorting by ability. Figure 20 shows the evolution

of mean abilities by schooling. The mean ability of college graduates is about 1 standard

deviation above that of high school graduates. As expected, mean abilities decline as

schooling expands, roughly until the 1950 birth cohort. However, the mean abilities of all

school groups decline by similar amounts (0.02 to 0.03). The model also generates little

change in standard deviation of abilities given schooling. As a result, the expansion of

education has little effect on wage dispersion between or within school groups.

14Transitory shock variances do not affect household decisions at all.
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Figure 20: Mean ability by schooling and cohort

5.6 Lifetime Earnings

One benefit of working with a structural model is that the implications for lifetime inequality

can be computed. Given that households are forward looking, lifetime inequality matters

for welfare more than period inequality.

Figure 21 shows the standard deviation of log lifetime earnings for all model cohorts.15

It rises by 8 percentage points, which is of comparable magnitude with the rise in the

cross-sectional standard deviation of wages. Most of the increases occur among high school

graduates and college graduates, reflecting the fact that their shock variances rise over time

(see Table 2).

This result differs from Guvenen and Kuruscu (2009). In their model the dispersion of

lifetime earnings is essentially constant over time. One reason is that Guvenen and Kuruscu

abstract from rising shock variances. As pointed out earlier, their model accounts for rising

within group inequality through the differential human capital investment behavior of high

and low ability agents, which is not present in my model.

15As in all aggregate statistics, composition changes are removed by weighting each school group with

its average mass across years.
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Figure 21: Standard deviation of lifetime earnings

Figure 22 examines the predictability of lifetime earnings. Following Huggett, Ventura, and

Yaron (2011), this is defined as the variance of expected lifetime earnings given the agent’s

information set at the beginning of work to the ratio of realized lifetime earnings. In contrast

to the findings of Huggett, Ventura, and Yaron (2011) predictability is generally quite low at

about 0.25 for high school educated workers and 0.1 for college educated workers. Pooling

school groups, as is implicitly done by Huggett et al., yields a predictability ratio between

0.2 and 0.25. Given that my model shares many features with Huggett et al.’s, the difference

in results is intriguing and should be explored in future research.

Predictability declines over time for high school graduates and college graduates, again

reflecting the fact that shock variances rise over time (see Table 2).

6 Conclusion

To be written.
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Figure 22: Predictability of lifetime earnings
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Table 5: Summary statistics for CPS data

Year N Avg N per cell N range

1965 20106 162 24 - 372

1970 18600 150 34 - 279

1975 16702 135 40 - 264

1980 22892 185 55 - 378

1985 20703 167 48 - 371

1990 21896 177 47 - 466

1995 19770 159 42 - 318

2000 34568 279 51 - 528

2005 32528 262 39 - 439

2010 30235 244 38 - 473

Notes: N is the number of observations. Avg N per cell refers to the average number of

observations in each (age, school) cell. N range shows the minimum and maximum number of

observations in each cell. Cells cover age range 30-60.

A CPS Data

A.1 Sample

CPS data are obtained from King, Ruggles, Alexander, Flood, Genadek, Schroeder, Trampe,

and Vick (2010). Summary information is provided in Table 5. The data construction

largely follows Hendricks (2013). The sample contains men between the ages of 18 and 65

observed in the 1964 − 2011 waves of the March Current Population Survey. Persons are

dropped if at least one of the following conditions are true:

1. weeks worked per year < 20

2. hours worked per week < 20

3. labor earnings are zero or missing

4. employment is either unpaid or in the armed forces.
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A.2 Individual Variables

The construction of individual variables is based on Bowlus and Robinson (2012). As

discussed in Jaeger (1997), the coding of schooling changes in 1991. I use the coding

scheme proposed in his tables 2 and 7 to recode HIGRADE and EDUC99 into the highest

degree completed and the highest grade completed.

Hours worked per year are defined as the product of hours worked last week and weeks

worked last year. Weeks worked per year are intervalled until 1975. Each interval is

assigned the average of weeks worked in years after 1975 in the same interval. Until 1975,

hours worked per week are only available for the previous week (HRSWORK). I regress

hours worked on years of schooling and a quadratic in experience to impute hours worked.

After 1975, I use usual hours worked per week (UHRSWRK).

Income variables: Labor earnings are defined as the sum of wage and salary incomes

(INCWAGE). Wages are defined as labor earnings divided by hours worked. Outliers with

less than 5% or more than 100 times the median wage are dropped.

Income variables are top-coded. As discussed in Bowlus and Robinson (2012), the fre-

quency of top-coding and the top-coded amounts vary substantially over time. In addition,

top-coding flags contain obvious errors. In most years, fewer than 2% of labor earnings ob-

servations appear to be top-coded. Following Autor, Katz, and Kearney (2008), I multiply

top-coded amounts by 1.5 in years before 1988. From 1996 onwards, top-coded amounts are

set to the average of all values above to top code. I leave these value unchanged. Between

1988 and 1995 there is no clear way of identifying top-coded values in IPUMS data because

INCWAGE is the sum of two variables with different top codes. In these years I leave

top-coded values unchanged.

To avoid top-coding issues, I drop the top and bottom 2% of wage observations from the data

and from the simulated model data in each year when computing wage statistics (such as

mean log wages). Since Bowlus and Robinson (2012) find that allocated values have little

effect on the constructed wage series, I do not exclude them. Dollar values are deflated

using the Consumer Price Index (all items, U.S. city average, series Id: CUUR0000SA0;

see bls.gov).
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Figure 23: Educational Attainment By Birth Cohort

A.3 Cohort Variables

Schooling: The fraction of persons in cohort τ that achieves school level s is calculated

by averaging over ages 30− 40 (not all ages are observed for all cohorts). Figure 23 shows

these fractions. Each point represents one cohort. Educational attainment grows until the

1950 cohort and then levels off (see Goldin and Katz 2008 for an extensive discussion of

these trends).

Age profiles of wage statistics: For each (age, school, cohort) cell, I compute the

following statistics:

1. Mean and standard deviation of log wages among those reporting a valid wage.

2. Wages at various percentiles of the wage distribution in the cell.

3. Mass of persons in the cell.

The age profiles of the various statistics, such as mean log wages, are HP-filtered profiles

computed from these cell statistics.
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Figure 24: Age Hours Profiles

Age hours profiles: I construct the age profile of annual hours worked, ℓs,t,τ , as follows:

1. For combinations of s, t, τ that are observed, I set ℓs,t,τ to the average hours worked

of all persons in the cell divided by 2,000.

2. For each school group, I regress average hours worked in each s, t, τ cell on a quartic

in age and on cohort dummies. Call the resulting hours values ℓ̂s,t. Figure 24 shows

these profiles.

3. For combinations of s, t, τ that are not observed, I set ℓs,t,τ equal to ℓ̂s,t which is scaled

to match the level of ℓs,t,τ for the nearest observed age.

4. Finally, the hours profile of each cohort is smoothed using an HP filter with parameter

20.

Figure 25 shows the age hours profiles for selected cohorts. For all school groups, the hours

profiles get steeper over time. This implies that the incentives for investing in human capital

around middle age get stronger over time.

53



15 20 25 30 35 40 45 50 55 60 65
1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Age

H
ou

rs
 w

or
ke

d

(a) High school dropouts
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(b) High school graduates
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(c) College dropouts
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Figure 25: Age profiles of average annual hours worked for selected cohorts

Notes: CPS data.
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A.4 Aggregate Statistics

Aggregate statistics for each year are computed for a population with constant age-school

composition. First, I compute the average fraction of persons in each age-school cell across

years. Then I create a constant-composition individual weight by multiplying the CPS

person weights of all persons in a given age-school cell by a common factor such that the

total weight of all persons in the cell adds up to the average weight of that cell across years.

Aggregate statistics, such as the standard deviation of log wages, are then computed by

pooling all persons aged 25 − 55 in a given year and applying the constant-composition

weights.

B PSID Data

The data construction largely follows Hendricks (2013). The data are drawn from the

1968 − 1993 waves of the Panel Study of Income Dynamics, distributed by the Institute

for Social Research, Survey Research Center, University of Michigan (PSID). The sample

includes male members of the core sample between the ages of 18 and 65 who report positive

earnings and between 520 and 5110 work hours for at least 15 years.

Years of schooling are measured by the highest grade a person ever completed. Each

person is assigned a school group based on their completed years of schooling using the

following bounds: <12 years (HSD), 12 years (HSG), 13-15 years (CD), and 16+ years

(CG). Earnings include wages and salaries as well as the labor part of business income.

The wage is defined as earnings divided by annual work hours. Wages below 1/20 or above

100 times the median wage in a given year are dropped as likely coding errors. Potential

experience is set to age−6 −max(12, years of schooling).

The covariance matrix of log wages is constructed from the residual of a regression of

log wages on a cubic polynomial in experience. To increase sample sizes, the estimation

pools high school dropouts with high school graduates and college dropouts with college

graduates. Estimating a first-order autoregressive process by minimizing the deviation

between model and data covariances yields parameters that are close to those reported by

Guvenen (2007), Table 1.
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All HSD HSG CD CG

N 5938 1523 2268 1159 988

Avg.school 13.0 9.8 12.0 13.8 16.9

Fraction n/a 19.8 37.3 20.0 22.9

AFQT percentile 24.1 42.2 58.1 78.1

Mean experience 11.6 13.4 12.1 11.0 9.5

Max experience 39.0 30.0 29.0 26.0

Table 6: The NLSY79 sample

C NLSY79 Data

The data are drawn from the 1979-2006 waves of the National Longitudinal Survey of

Youths 1979 cohort (Bureau of Labor Statistics; US Department of Labor, 2002). The

sample contains men with positive sampling weight, known schooling and AFQT scores.

Table 6 shows summary statistics.

Individual variables are constructed as follows. Years of schooling are set to the highest

grade completed before the age of 30. School groups are coded from years of schooling

using the same cutoffs as used for the PSID data. Wages are defined as labor earnings

plus two-thirds of business income divided by hours worked per year. Wages are marked

as invalid if hours worked fall outside the range 520-5110 or if they are below 1/20 or

above 100 times the median wage in a given year. Potential experience is set to age−6 −

max(12, years of schooling).
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