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Abstract

In this paper we develop a Negishi approach to characterize recursive equilibria in stochastic

models with overlapping generations. When competitive equilibria are Pareto-optimal, using

Negishi-weights as a co-state variable has three major computational advantages over the stan-

dard approach of using the natural state: First, the endogenous state space is a unit simplex and

thus easy to handle. Second, the number of unknown functions characterizing equilibrium dy-

namics is orders of magnitude smaller. Third, approximation errors have a compelling economic

interpretation.

Our main contribution is to show that the Negishi approach extends naturally to models

with borrowing-constraints and incomplete �nancial markets where the welfare theorems fail.

Many of the computational advantages carry over to this setting. We derive su�cient conditions

for the existence of Markov equilibria in the complete markets model as well as for models with

incomplete markets and borrowing constraints.
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EUI and in particular Piero Gottardi, Ken Judd, David Levine, Ramon Marimon and Herakles Polemarchakis for
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1 Introduction

In stochastic in�nite horizon exchange economies with overlapping generations and complete �nan-

cial markets the welfare theorems hold if one assumes that there is a Lucas tree in unit net supply.

Thus, Negishi's (1960) approach to characterize equilibrium allocations as the solution to a social

planner's problem can be employed (see Kehoe et al. (1992)). Unfortunately, Negishi's approach

is typically thought of as useful only when the number of commodities is larger than the number

of agents and in the OLG model both the number of agents and the number of commodities are

countably in�nite. Moreover, in the presence of borrowing constraints or when �nancial markets

are incomplete, competitive equilibria fail to be Pareto-e�cient and Negishi's method appears no

longer to be applicable. In this paper we show that using Negishi's method to compute equilibria in

OLG models can result in large e�ciency gains compared to conventional methods that approximate

recursive equilibria on a natural state space, e.g. agents' portfolios. We also show that Negishi's

method can still be applied in the presence of borrowing constraints and incomplete markets.

We consider an OLG exchange economy with L perishable commodities and Markovian fun-

damentals. Each period H agents enter the economy, they live for A periods and maximize time-

separable expected utility. We start with a model with complete �nancial markets where equilibrium

allocations are Pareto-e�cient and can be obtained as a solution to a planner's problem that maxi-

mizes the sum of all agents' utility weighted by Pareto-weights that ensure budget-balance for each

agent. At each node of the tree we de�ne instantaneous Negishi weights as the discounted weights

associated with agents currently alive. Since utility is time- and state-separable, individuals' con-

sumption at each node is a simple function of the instantaneous Negishi-weights. As a second step

we show how the approach extends naturally to debt-constrained models with possibly incomplete

�nancial markets where the welfare theorems fail. We argue that it is still advantageous to use

instantaneous Negishi-weights as the endogenous state variable. Obviously, they can no longer be

interpreted as welfare weights for a social planner's problem, but they are still a su�cient statistic

for current consumption.

Models with overlapping generations have widespread applications in public �nance, macroeco-

nomics, and �nance (see e.g. Kotliko� and Auerbach (1983) or Storesletten et al. (2007)). In the

presence of aggregate risk the computation of equilibria in these models becomes very di�cult (see

e.g. Krueger and Kubler (2004)). One of the di�culties stems from the fact that it is common to

use individuals' cash-at-hand, i.e. the value of their beginning of period portfolio-holdings, as an

endogenous state variable and that in these models the domain of policy functions is endogenous

and possibly quite large. For models with in�nitely lived agents, there have been various papers that

use instead individuals' consumption or instantaneous Negishi-weights as a co-state to facilitate the

computation of equilibria (e.g. Cuoco and He (2001), Chien and Lustig (2011), Chien et al. (2011)

and Dumas and Lyaso� (2012)). We show that for models with overlapping generations, instanta-
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neous Negishi-weights do not only have the advantage that one can take a unit-simplex as the state

space. One also needs to approximate fewer functions to characterize the equilibrium dynamics of

the economy. For the case of complete markets, one needs only the map from the current state to

Negishi weights of the current young. These are SH functions, where S is the number of exogenous

shocks and H is the number of agents per generation. In contrast, one needs H(A− 1)S2 functions

if one wants to approximate the map from current cash-at-hand across agents to their cash-at-hand

next period for each combination of shocks in the current and the subsequent period. Furthermore,

the use of Negishi weights as states allows for a straightforward error analysis. Approximation

errors can be interpreted as transfers that are necessary to obtain the computed allocation as an

equilibrium allocation. Last but not least, using Negishi's method the computational burden barely

increases with the number of physical commodities, while it substantially increases if the natural

state space is used.

It is well known that recursive equilibrium might not exist in stochastic models with overlap-

ping generations if one uses beginning of period asset holdings as the endogenous state variable (see

Kubler and Polemarchakis (2004)). Su�cient conditions for existence are generally not applicable

to models used in applications (see e.g. Citanna and Siconol� (2010)). We examine existence of

equilibria for which the Negishi-weights follow a Markov-process. While we do not know of coun-

terexamples to existence in our framework, it seems likely that one can construct them. However,

we show for the case of 2 period lived agents that recursive equilibria always exist, even if there is

intra-generational heterogeneity and there are several goods (i.e. in the set-up of Kubler and Pole-

marchakis' counterexample). It is known that in our unconstrained model with complete markets

equilibria are unique if all agents utility functions satisfy the gross-substitute property (see Kehoe

et al. (1991)). We show that even if agents' are borrowing constrained, as long as they can trade in

a full set of Arrow-securities, the assumption still guarantees uniqueness and hence the existence of

a recursive equilibrium. In this paper we focus on pure exchange economies. The introduction of a

neo-classical production sector is straightforward � however our existence results that rely on a gross

substitute property do not carry over. Existence of recursive equilibria in production economies is

an open issue that is subject to further research.

The rest of the paper is organized as follows. In Section 2 we introduce the basic model with

complete markets, characterize recursive equilibria and explain the computational advantages of our

approach. Although this is only a special case of our general model, it is useful to examine it �rst

as it makes the computational advantages most transparent. In Section 3 we introduce borrowing

constraints and incomplete markets and derive conditions for the existence of Markov equilibria in

this general setup. In Section 4 we discuss two special cases. First we assume that markets are

incomplete but that agents are not borrowing constraint. Then we examine the case where agents

can trade in a full set of Arrow securities but are borrowing constrained. For this latter case, we
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proof existence of recursive equilibria under a gross substitutes assumption. In Section 5 we give

an interpretation of the instantaneous Negishi-weights as welfare weights in a modi�ed planner's

problem.

2 Complete markets

To �x ideas we start with an economy with complete �nancial markets and no borrowing constraints.

We assume that there is a Lucas-tree in unit net supply � this guarantees Pareto-e�ciency of

equilibrium allocations (see e.g. Demange (2002)). In the next section we generalize the model by

allowing for arbitrary �nancial securities and borrowing constraints.

2.1 The physical economy

Time is indexed by t = 0, 1, 2, . . .. Exogenous shocks st ∈ S = {1, . . . , S} follow a Markov chain. A

�nite history of shocks σ = st = (s0, s1, . . . , st) is also called date-event or node of the event-tree.

We use the symbols σ and st interchangeably. To indicate that st
′
is a successor of st (or st itself)

we write st
′ � st. The set of all possible date-events st is denoted by Σ. We consider an exchange

economy with L perishable commodities available for consumption at each date-event.

At each date-event H agents enter the economy; they live for A periods. An individual is

identi�ed by the date-event of his birth, σ = st, and his type, h ∈ H = {1, . . . ,H}. The age of an

individual is denoted by a = 1, . . . , A; he consumes and has endowments at all nodes st+a−1 � st,

a = 1, . . . , A. At a given date-event st we can uniquely identify agents who consume at that node by

their age and type, (a, h). We denote the set of all these agents by A = {(a, h) : 1 ≤ a ≤ A, h ∈ H}

and the set of all agents except for generation i by A−i = A \ {(a, h) : a = i, h ∈ H}. We will use

(a, h) and (st, h) interchangeably to refer to a speci�c agent.

We denote individual endowments by ωa,h(st) ∈ RL+ and assume that they are positive time-

invariant functions of the current shock alone. Each agent has an intertemporal time-separable

utility function,

Ust,h(x) = u1,h

(
x(st)

)
+

A−1∑
a=1

∑
st+a�st

δa,h(st+a)ua+1,h

(
x(st+a)

)
,

where x(σ) ∈ RL+ denotes consumption of agent (st, h) at date-event σ, and x denotes consumption

over the lifecycle

{x(st+a)}0≤a≤A−1,st+a�st .

The probability-discount factors δa,h(st) > 0 are assumed to be stationary in that δ1,h(st) = 1 and

δa,h(st+a) = δa−1,h(st+a−1)δa,h(st+a−1, st+a) for some δa,h(s, s′) > 0. This formulation encompasses

heterogeneous beliefs as well as heterogeneous and age-varying discounting. The Bernoulli-functions
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ua,h : RL+ → R are assumed to be C2 on RL++, strictly increasing, strictly concave and satisfy an

Inada condition: for all y � 0 the closure of the set {x ∈ RL+ : u(x) > u(y)} lies in RL++.

There is a Lucas tree in unit net supply paying dividends d(st) ∈ RL+, d(st) > 0. Dividends

are a function of the shock alone, so d(st) = d(st) for some function d : S → RL+. At time t = 0,

in addition to the H new agents (s0, h), h ∈ H, there are individuals of each age a = 2, . . . , A

and each type h = 1, . . . ,H present in the economy. We denote these individuals by (s1−a, h) for

h = 1, . . . ,H and a = 2, . . . , A. They have initial tree holdings, θs
1−a,h(s−1), summing up to one:

A∑
a=2

θs1−a,h(s−1) = 1.

These holdings determine the `initial condition' of the economy. The aggregate endowment in the

economy is ω̄(st) = ω̄(st) = d(st) +
∑

(a,h)∈A ωa,h(st).

2.1.1 Complete �nancial markets

At each node there are complete spot markets for the L commodities. Prices are π(st) ∈ RL++ with

the normalisation that π1(st) = 1 for all st. Agents can trade the Lucas tree after dividends are

payed out. Let θst,h(st) ≥ 0 denote the Lucas tree holding of individual (st, h) at date-event st and

let q(st) denote the price of the tree at that node. In addition there are S Arrow securities available

for trade at each node. Arrow security s ∈ S pays one unit of the numéraire commodity (l = 1)

exactly if the subsequent shock is s and it is traded at a price ps. An agent's portfolio of Arrow

securities is denoted by φ(st) ∈ RS , and the vector of Arrow security prices is denote by p ∈ RS++.

While we rule out short-sales in the Lucas tree, we impose no restrictions on trades in the �nancial

assets. Since in this setting the payo�s of the tree are spanned by the other assets, the constraints

on short-sales are irrelevant. However, they become important in the next section.

A sequential competitive equilibrium is a collection of prices and choices of individuals(
π(st), p(st), q(st),

(
φa,h(st), θa,h(st), xa,h(st)

)
(a,h)∈A

)
st∈Σ

such that markets clear and agents optimize, i.e. (1) and (2) hold.

(1) Market clearing equations:∑
(a,h)∈A−A

θa,h(st) = 1,
∑

(a,h)∈A−A

φa,h(st) = 0,
∑

(a,h)∈A

xa,h(st) = ω̄(st), for all st ∈ Σ.

(2) For each st and h = 1, . . . ,H, individual (st, h) maximizes utility:

(xst,h, θst,h, φst,h) ∈ arg max
x≥0,θ≥0,φ

Ust,h(x) s.t. the constraints (i)-(ii).

(i) Budget constraint for a = 1:
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π(st) · (x(st)− ω1,h(st)) + p(st) · φ(st) + q(st)θ(st) ≤ 0.

(ii) Budget constraints for all a = 2, . . . , A and st+a−1 � st:

π(st+a−1) · (x(st+a−1)− ωa,h(st+a−1))−(
φst+a−1(st+a−2) + θ(st+a−2)(q(st+a−1) + π(st+a−1) · d(st+a−1))

)
+(

p(st+a−1) · φ(st+a−1) + q(st+a−1)θ(st+a−1)
)
≤ 0,

φ(st+A−1) = θ(st+A−1) = 0.

The utility maximization problems for the agents (s1−a, h), a = 2, . . . , A, h = 1, . . . ,H, who are

initially alive at t = 0 are analogous to the optimization problems for agents (st, h).

2.2 Negishi's approach to analyze equilibrium

As Kehoe et al. (1992) point out, the presence of a Lucas tree ensures that competitive equilibria in

this economy are Pareto e�cient and that there must exist summable Pareto weights {ηst,h}st∈Σ,h∈H

such that competitive equilibrium allocations satisfy

(xst,h)st∈Σ,h∈H = arg max
x≥0

∑
st∈Σ,h∈H

ηst,hUst,h(xst,h) s.t.
∑

st∈Σ,h∈H

xst,h(σ) ≤ ω̄(σ) for all σ ∈ Σ. (1)

Since we assume time-separable expected utility, we can characterize equilibrium also by using

instantaneous Negishi weights, λ(st) = (λa,h(st))(a,h)∈A, de�ned by

λa,h(st) = ηst−a+1,hδa,h(st).

Individuals' consumption is then given as a function X : S × RAH+ → RAHL+ of the shock and the

instantaneous weights with

X(s, λ) = arg max
x∈RAHL

+

∑
(a,h)∈A

λa,hua,h(xa,h) s.t.
∑

(a,h)∈A

xa,h ≤ ω̄(s). (2)

For λa,h = 0 we take Xa,h = 0 to be the optimal solution (although utility might be minus in�nity

at that consumption bundle). Given a process of instantaneous Negishi weights (λ(σ))σ∈Σ, λ(st) ∈

RAH++ for all st, we de�ne for each node st, xa,h(st) := Xa,h(st, λ(st)).

Then a sequence of Negishi weights

(
(λa,h(st))(a,h)∈A

)
st∈Σ

characterizes a �nancial markets equilibrium if the following two conditions (E1)-(E2) hold.

(E1) Intertemporal Euler equations.

For all h ∈ H and all a = 2, ..., A it holds that λa,h(st) = δa,h(st, st−1)λa−1,h(st−1).
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(E2) Budget constraints.

De�ning the budget of agent (a, h) at node st for all h ∈ H recursively by

wA,h(st) := DxuA,h(xA,h(st)) ·
(
xA,h(st)− ωA,h(st)

)
, and for a = 1, ..., A− 1 by

wa,h(st) := Dxua,h(xa,h(st)) ·
(
xa,h(st)− ωa,h(st)

)
+

∑
st+1�st

δa+1,h(st, st+1)wa+1,h(st+1),

it holds for all h ∈ H that: w1,h(st) = 0.

It is easy to verify that for a sequence of Negishi weights that satis�es conditions (E1)-(E2), there

exist initial conditions and a sequential equilibrium,(
π̄(st), p̄(st), q̄(st),

(
φ̄a,h(st), θ̄a,h(st), x̄a,h(st)

)
(a,h)∈A

)
st∈Σ

,

with x̄a,h(st) = Xa,h(st, λ(st)), π̄(st) = 1
∂1,1(st)Dxu1,1(x1,1(st)) and p̄st+1(st) =

δ2,1(st,st+1)∂2,1(st+1)
∂1,1(st)

for all st+1 � st, where ∂a,h(st) := ∂a,h(st, λ(st)) :=
∂ua,h(Xa,h(s,λ))

∂x1
. The budget constraints imply

that q̄(st) = −d(st) +
∑

(a,h)∈A
wa,h(st)
∂a,h(st) .

It is somewhat misleading to refer to (E1) as an 'intertemporal Euler equation'. The evolution

of the instantaneous weight λa,h(σ) simply follows from the de�nition of the planner's problem.

However, once we introduce incomplete markets we can no longer work with a social planner and

the evolution of instantaneous Negishi weights is then determined by an actual Euler equation.

2.3 Recursive equilibria

Using Negishi's approach to compute equilibria is useful only if the Negishi weights follow a Markov

process. We refer to such equilibria as 'recursive equilibria', although it should be clear that they

might or might not be recursive when one uses beginning-of-period portfolios as the state, which

we call the natural state in what follows. A recursive equilibrium is described by a policy function

mapping the state into all agents' consumption, X(s, λ), and a state transition

Λ : S × S × RAH++ → RAH++ .

We take as given a sequential equilibrium described by (λ(st))st∈σ. Clearly this sequential equilib-

rium might fail to be a recursive equilibrium which is the case if the state transition can only be

described by a correspondence and not a function. However, if there is a transition function, we can

describe w(st) recursively using the functions X(s, λ) and Λ(s, s, λ) as follows. De�ne for all types

h ∈ H the value of their excess consumption (i.e. their budget) to be

WA,h(s, λ) := Dxua,h(XA,h(s, λ)) · (XA,h(s, λ)− ωA,h(s)), (3)

Wa,h(s, λ) := Dxua,h(Xa,h(s, λ)) · (Xa,h(s, λ)− ωa,h(s)) + (4)∑
s′

δa+1,h(s, s′)Wa+1,h(s′,Λ(s, s′, λ))

for all a = 1, ..., A− 1.
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Definition 1 A recursive equilibrium is a function Λ : S × S × RAH++ → RAH++ that is homogeneous of

degree one and satis�es for all s, s′ ∈ S and all λ ∈ RAH++ ,

W1,h(s′,Λ(s, s′, λ)) = 0 for all h ∈ H and

Λa,h(s, s′, λ) = δa,h(s, s′)λa−1,h for all (a, h) ∈ A−1.

We demand that transition functions are homogeneous of degree one, as allocations depend on

relative Negishi weights only. Alternatively, one could normalize the sum of the Negishi weights

to equal one, which would make the state space a unit simplex. For computations this is very

convenient, however, the exposition is clearer if we do not make this normalization.

It is obvious, that a transition function Λ that satis�es the above de�nition does indeed characterize

a �nancial markets equilibrium. However, there is in general no guarantee that such a transition

functions exists, i.e. that equilibria exist for which Negishi weights are Markov. As Kubler and

Polemarchakis (2004) point out, in economies with overlapping generations recursive equilibria for

the natural state space might fail to exist. Although we have no counter-example to existence of

equilibria that are recursive using Negishi weights, there is no good reason to believe that these

equilibria always exist. However, as we will show below they always exist for the case of two-

period lived agents, A = 2. Moreover, we also show that they always exist if utility satis�es a gross

substitute property. Citanna and Siconol� (2010) have the clever insight that with su�ciently many

agents per generation recursive equilibrium must exist generically. They prove their result using the

natural state space, but it is clear that a similar approach can be used to prove generic existence of

equilibria with Markovian Negishi weights. However, we want to use the fact that Negishi weights

are Markov to approximate equilibria using Negishi's method in models where agents live for many

periods. In this case, the number of agents needed for Citanna and Siconol�'s result to apply

becomes astronomical very fast. It is subject to further research to use their approach to tackle

models with a continuum of ex ante identical agents within each generation, for all other models it

seems of little practical relevance.

When it comes to computing recursive equilibrium below, we consider only minimal recursive

equilibrium, which we de�ne as a recursive equilibrium for which the current (λ1,h)h∈H is a function

of (λa,h)(a,h)∈A−1
. Thus, a recursive equilibrium is said to be minimal if there exists a function

`(s, (λa,h)(a,h)∈A−1) so that Λ1,h(s, s′, λ) = `h
(
s′, (Λa,h(s, s′, λ))(a,h)∈A−1

)
for all h ∈ H. While

our concept of recursive equilibrium is consistent with the idea of Markov-equilibria where the

state is required to follow a Markov chain, the concept of minimal recursive equilibrium is actually

more easily comparable to recursive equilibria using the natural state space. In that concept, the

endogenous state at a node st consists only of variables that were determined at st−1. Clearly for

each h, λ1,h(st) is typically not 'predetermined' and hence it is not obvious whether it should be

included in the state space. In the computational approach below we search for a minimal recursive
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equilibrium. Obviously conditions that ensure existence of a minimal recursive equilibrium must

be stronger than conditions for the existence of a recursive equilibrium. We revisit the existence of

recursive equilibrium and of minimal recursive equilibrium in the next two sections where we prove

general results that apply to models with and without borrowing constraints.

2.4 Computation

We describe and discuss a simple time iteration collocation method to numerically approximate

minimal recursive equilibria. Time iteration is one of several standard approaches to solve dynamic

non-optimal models (see e.g. Section 7.2. of Judd et al. (2003) or Krueger and Kubler (2004)).

There are several other approaches which have advantages and disadvantages compared to time

iteration. However, we chose to discuss this algorithm as it makes it easy to compare our approach

to the conventional approach of doing time-iteration using the natural state-space. It also serves as

a basis for computing large-scale models in practice.

We take as given that the functions X(s, λ) can be approximated with high accuracy and neg-

ligible computational cost. For standard calibrations that assume identical homothetic utility this

function is linear after a change of variable. For the case of one commodity there are several other

classes of preferences for which closed-form solutions are known.

As we solve for a minimal recursive equilibrium, the endogenous state consist of

λ−1 := (λa,h)(a,h)∈A−1

while (λ1,h) is described by the function `. Note that we could normalize λ−1 to lie on the unit

simplex, yet it is more straightforward to describe the algorithm without this normalization. Given

`(s, λ), we are only interested in W (s, λ) for values of λ that satisfy (λ1h)h∈H = `(s, λ−1). We

therefore de�ne W̃ (s, λ−1) := W (s, (`(s, λ−1), λ−1))).

We assume that the unknown functions W̃ (s, λ−1) and `(s, λ−1) can be well approximated by

some Ŵ (s, λ−1) and ˆ̀(s, λ−1) that are uniquely determined by the requirement that Ŵa,h(s, λi−1) =

Wa,h(s, λi−1) and ˆ̀
h(s, λi−1) = `(s, λi−1) for some �nite number G of so-called 'collocation points'

λi−1 ∈ G ⊂ R(A−1)H
++ , i = 1, ..., G. Examples of functions commonly used for collocation methods

include Smolyak-polynomials as in Krueger and Kubler (2004) or splines as in Judd et al. (2003).

Recall that for expositional reasons, we do not normalize the state variable to lie in the unit simplex.

Thus, all functions are homogeneous of degree zero in λ−1, thus we can easily rede�ne them over

compact domains. The main steps of the algorithm are as follows.

1. Set n = 0 and start with an initial guess Ŵ 0 : S × R(A−1)H
+ → R(A−1)H .

2. Given Ŵn, for each s ∈ S and each λi−1 ∈ G, compute ˆ̀n+1(s, λi−1) as a solution to the system

9



of equations

Dxu1,h(X1,h(s, λi(s)))·(X1,h(s, λi(s))−ω1,h)+
∑
s′

δ2,h(s, s′)Ŵn
2,h(s′, λi−1(s′)) = 0, h ∈ H, (5)

where λi(s) = (ˆ̀n+1(s, λi−1), λi−1) and λi−1(s′) = (δa,h(s, s′)λia−1,h(s))(a,h)∈A−1
.

3. For each s ∈ S and each λi−1 ∈ G, let λi(s) and λi−1(s′) be given as before and compute for

all (a, h) ∈ A−1

Ŵn+1
a,h (s, λi−1) = Dxua,h(Xa,h(s, λi(s)))·(Xa,h(s, λi(s))−ωa,h)+

∑
s′

δa+1,h(s, s′)Ŵn
a+1,h(s′, λi−1(s′)),

where Ŵn+1
A+1,h(s, λi−1) := 0.

4. For each s ∈ S, interpolate {Ŵn+1(s, λi−1), i = 1, ..., G} to obtain approximating functions

Ŵn+1(s, .).

5. Check some error criterion. If the criterion is not met, increase n by 1 and go to 2. If the

criterion is met, then go to 6.

6. Set Ŵ ∗ = Ŵn+1 and interpolate ˆ̀n(s, λi−1) to obtain ˆ̀∗(s, .).

In Section 4 below, we give conditions under which the algorithm converges, assuming an ide-

alized situation without error in the function-approximation. In general, the system of equations

(5) might have no solutions, or it might have several solutions. Furthermore, there is no guarantee

that Ŵn converges as n tends to in�nity. This is obvious as there is generally no guarantee that

a (minimal recursive) equilibrium exists. Feng et al. (2013) develop a method which can be used

to compute generalized Markov equilibria in this setting. However, for reasonable values of A the

method is not applicable as it su�ers from a severe curse of dimensionality.

In this simple framework with complete markets, it is clear that using Negishi weights as state

variables has important advantages over the 'standard' approach that uses beginning-of-period cash-

at-hand. Most importantly, the computational complexity barely increases with the number of

goods, L. Only the computation of X(s, λ) and of Dxua,h(X(s, λ)) depends on L. This is in stark

contrast to the case of cash-at-hand as endogenous state variable where one needs to solve for spot-

prices and allocations simultaneously with portfolios and asset-prices. We will return to this issue

in Section 4 below.

Even for the case of a single commodity the Negishi-approach has three important advantages

over conventional methods: First, as policies are homogeneous of degree zero in Negishi weights,

policy functions may be de�ned over the (A − 1)H − 1 dimensional unit simplex (for given states

today and tomorrow). Thus the admissible set is simple and can easily be worked with, while it can

be arbitrarily complicated in the case of the natural state space. Since agents do not face borrowing

constraints, young agents typically borrow substantial amounts and one thus has to determine the
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'natural' borrowing limits as one step of the computations. For models with large H and/or A this

can result in substantial di�culties. Second, along the time iteration the only costly computation

consists of solving for ˆ̀(s, λi−1) in Step 2 above. For each s and λi−1, this is a non-linear system of

H equations in as many unknowns. In contrast, for the case of cash-at-hand, one needs to solve

all agents' �rst order conditions plus market clearing conditions simultaneously to obtain optimal

choices and prices. This results in (A − 1)HS equations for each s and λi−1 (if market clearing

conditions are used to express one agent's portfolio in terms of all others'). Even for moderate A

and S this can be an order of magnitude larger, thus an enormous e�ciency gain can be realized if

Negishi-weights are used. Note also, that the dynamics of the economy is fully captured by the HS

functions (`h(s, .))s∈S,h∈H. If cash-at-hand is used instead, one needs to keep track of (A− 1)HS2

functions, for each current shock s mapping cash-at-hand of all generations but the oldest into

their cash-at-hand at all successor nodes. Thus, the Negishi approach reduces both the number

of equations that have to be solved simultaneously as well as the number of functions that are

needed to characterize equilibrium dynamics by a factor of (A − 1)S. Third, and perhaps most

importantly, error analysis is trivial to conduct if we use Negishi-weights. As mentioned above, the

error in computing X(s, λ) can typically be taken to be negligible. Given a transition ˆ̀, the errors

in the computation of Ŵ are pure function-approximation errors and there are reliable methods

to bound them above. As explained for example in Kubler and Schmedders (2005) it is generally

impossible to �nd bounds on how close a computed approximation is to an exact equilibrium. In the

current context, it is impossible to determine how close the computed evolution of λ is to the exact

equilibrium evolution. Given approximations Ŵ and ˆ̀ for the unknown policy functions, the only

relevant error is MAXERR = suph∈H,s∈S,λ−1∈R(A−1)H ‖Ŵ1,h(s′,ˆ̀(s,λ−1))
∂1,h(s,λ−1) ‖. This can be interpreted

as the maximal transfer necessary to turn the computed allocation into an equilibrium allocation.

That is, while we cannot guarantee in general that the computed allocation is close to an exact

equilibrium allocation, it is always close to an equilibrium allocation of an economy with transfers.

The size of the transfers is bounded by MAXERR. Kubler and Schmedders (2005) suggest a

similar interpretation for the case of the natural state. However, in their method one needs to

transform the error in the computation into an error that has an economic interpretation. Using

Negishi-weights as state variable has the advantage that the error in the computation translates

directly to an interpretable approximation error.

3 The general model

We now generalize the above model by introducing borrowing constraints and the possibility of

incomplete �nancial markets. We assume that there are J ≤ S �nancial securities with stationary

payo�s, i.e. security j pays bj(s) units of the numéraire commodity in shock s. Budget constraints

and borrowing constraints for agent (st, h) read as follows
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(i) Budget constraint for a = 1:

π(st) · (x(st)− ω1,h(st)) + p(st) · φ(st) + q(st)θ(st) ≤ 0.

(ii) Budget constraints for all a = 2, . . . , A and st+a−1 � st:

π(st+a−1) · (x(st+a−1)− ωa,h(st+a−1))−(
φ(st+a−2) · b(st+a−1) + θ(st+a−2)(q(st+a−1) + π(st+a−1) · d(st+a−1))

)
+

p(st+a−1) · φ(st+a−1) + q(st+a−1)θ(st+a−1) ≤ 0,

φ(st+A−1) = θ(st+A−1) = 0.

(iii) Borrowing constraint for all a = 1, ..., A− 1 and st+a � st:

φ(st+a−1) · b(st+a−1) + θ(st+a−1)(q(st+a) + π(st+1) · d(st+a)) ≥ −D(st+a).

This borrowing constraint demands that the value in st+a of the portfolio bought in st+a−1 has

to exceed −D(st+a), i.e. the net repayment obligation in st+a may not exceed D(st+a). On the left

hand side of the borrowing constraint, short positions in �nancial assets might be o�set by long

positions in other �nancial assets or the Lucas tree. This means that these long positions may be

used as collateral for borrowing. The additional amount that agents are able to borrow, which is

represented by D(st+a), is determined by the assumption that agents may borrow against part of

their future endowments. We denote this part of their endowments by fa,h(st) ≥ 0. These are

tangible resources that can be pledged to �nance consumption and asset purchases at a time before

they are received (see Gottardi and Kubler (2012)). The remaining part of an agents endowments

is non-pledgeable and assumed to be positive for all st. It is denoted by ea,h(st). Total endowments

of agent (a, h) are thus given by

ωa,h(σ) = ea,h(σ) + fa,h(σ) for all σ.

We assume that both components depend only on the current shock: ea,h(st) = ea,h(st), fa,h(st) =

fa,h(st). To understand how the debt limit D(st+a) is determined it is helpful to �rst consider the

case where agents can trade in a complete set of assets. In this case agents can borrow against the

current value of their future f -endowments. Thus, for all a = 1, ..., A and st+a � st:

D(st+a) =
∑

st+i�st+a

ρ(st+i)

ρ(st+a)
π(st+i) · fi,h(st+i),

were ρ(st) denotes the Arrow-Debreu price of consumption of the numeraire good at node st.

If the set of available assets is not complete, then the debt limit cannot be derived in closed-

form. Instead, we provide a recursive de�nition of the debt limit starting with the �nal period of

an agent's life. In that period, an agent has to repay all his debt. Thus, the repayment obligations

that he enters that period with may not exceed the f-endowments that he earns in that period:

D(st+A−1) = π(st+A−1) · fA,h(st+A−1).
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Given debt limits at all st+a � st+a−1, the debt limit for st+a−1 is given by

D(st+a−1) = π(st+a−1) · fa,h(st+a−1)− max
φ∈RS ,θ≥0

(p(st+a−1) · φ+ q(st+a−1)θ)

s.t. φ · b(st+a) + θ(q(st+a+1) + π(st+a+1) · d(st+1)) +D(st+a) ≥ 0 for all st+a � st+a−1.

This is saying that the repayment obligations that an agent faces at date-event st+a−1 may not

exceed the sum of his f-endowments plus the maximum amount that he may borrow subject to the

constraint that he does not violate his debt limit in any of the subsequent periods. In other words,

debt must be repayable by a trading strategy that �nances itself entirely through f -endowments.

Note that despite the fact that we throughout impose the restrictions θ(st) ≥ 0, it is important

to allow trading in the tree in the de�nition of D(st+a−1). If an agent has high f -endowments in

one state, but the price of the tree is high in another state, the agent might want to buy the tree

to be able to short a risk-free asset that allows him to borrow against both states.

Competitive equilibrium (with borrowing constraints and possibly incomplete markets) is de�ned

as before - agents maximize utility subject to constraints (i) - (iii) and markets clear. Our general

description of borrowing constraints has three well known special cases. First, full spanning in

which case the borrowing constraints simpli�es considerably as we have seen above. Second, if

e-endowments are all zero, then our borrowing constraint is nothing but a natural borrowing limit.

Third, if f -endowments are all zero, then agents can borrow only against the value of their long

positions in the Lucas tree or �nancial securities, i.e. agents face a collateral constraint. With

incomplete markets, the constraint needs to take into account that the future endowments can only

be sold through the existing assets. In this case, the assumption that default is not possible is

crucial as default might result in payo�s that are not possible through trade in the incomplete set of

�nancial securities. If one wants to allow for default, one needs to model asset-speci�c margins (see

Gottardi and Kubler (2012)) � many of the results below will also hold for such a model, however,

in order to make the analysis consistent we choose to rule out default both in the case of complete

markets and incomplete markets.

3.1 Equilibrium characterization via Negishi weights

As in the complete market case, we can characterize competitive equilibria by a sequence of in-

stantaneous Negishi weights. Without the interpretation of Negishi weights as welfare weights in a

social planner's problem, there are in�nitely many sequences of weights that give rise to the same

allocation. We can therefore choose a normalization each period and it is useful to choose one that

simpli�es to our earlier de�nition in the case of complete markets.

Somewhat similarly to the 'Cass-trick' (see Cass (2006)) we take the evolution of one agent's

Negishi weight λ to be the same as in complete markets. Without loss of generality, we take this to

be agent (1, 1).
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It is easy to see that competitive equilibrium is characterized by budget equations and �rst order

conditions (see e.g. Kubler and Polemarchakis (2004)). A sequence of Negishi weights

(
(λa,h(st))(a,h)∈A

)
st∈Σ

characterizes a �nancial markets equilibrium if there exist portfolios and multipliers

(
(φa,h(σ), θa,h(σ), ζa,h(σ), χa,h(σ))(a,h)∈A

)
σ∈Σ

,

such that conditions (E1)-(E4) below hold for all st given the following de�nitions. As before, we use

xa,h(st) := Xa,h(st, λ(st)), ∂a,h(st) :=
∂ua,h(Xa,h(s,λ))

∂x1
, and we de�ne the budget of agents recursively

by

wA,h(st) := DxuA,h(xA,h(st)) · (xA,h(st)− ωA,h(st)) for all h = 1, . . . ,H

and for all (a, h) ∈ A−A,

wa,h(st) := Dxua,h(xa,h(st)) · (xa,h(st)− ωa,h(st)) +∑
st+1�st

δa+1,h(st, st+1)

(
1 +

ζa+1,h(st+1)

∂a+1,h(st)

)
wa+1,h(st+1).

Prices are de�ned by:

π(st) :=
1

∂1,1(st)
Dxu1,1(x(st))

q(st) :=
∑

(a,h)∈A

wa,h(st)

∂a,h(st)
− d(st)

p(st) :=
∑

st+1�st
δ2,1(st, st+1)

∂2,1(st+1) + ζ2,1(st+1)

∂1,1(st)
b(st+1)

The value of f-endowments is de�ned recursively by

vA,h(st) := Dxua,h(xa,h(st)) · (xA,h(st)− eA,h(st)) for all h = 1, . . . ,H

and for all (a, h) ∈ A−A,

va,h(st) := max
φ∈RS ,θ≥0

Dxua,h(xa,h(st)) · (xa,h(st)− ea,h(st))− ∂a,h(st)(p(st) · φ+ q(st)θ) s.t.

φ · b(st+1) + θ · (p(st+1) + π(st+1) · d(st+1)) +
va+1,h(st+1)

∂a+1,h(st+1)
≥ 0 for all st+1 � st.

With these de�nitions the equilibrium conditions read as follows.

(E1) Intertemporal Euler equations.

For agent (1,1) we have

λ2,1(st+1) = δ2,1(st, st+1)λ1,1(st) + η2,1(st+1) for all st+1 � st,
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where η2,1(st+1) := ζ2,1(st+1)
λ1,1(st)δ2,1(st,st+1)

∂2,1(st+1)
.

For all (a, h) ∈ A−A with (a, h) 6= (1, 1) we have

q(st) = χa,h(st) +
∑

st+1�st

δa+1,h(st, st+1)λa,h(st) + ηa+1,h(st+1)

λa+1,h(st+1)

δ2,1(st, st+1)
∂2,1(st+1) + ζ2,1(st+1)

∂1,1(st)
(q(st+1) + π(st+1) · d(st+1))

p(st) =
∑

st+1�st

δa+1,h(st, st+1)λa,h(st) + ηa+1,h(st+1)

λa+1,h(st+1)
δ2,1(st, st+1)

∂2,1(st+1) + ζ2,1(st+1)

∂1,1(st)
b(st+1),

where ηa+1,h(st+1) := ζa+1,h(st+1)
∂1,1(st)

∂2,1(st+1)+ζ2,1(st+1)

λa+1,h(st+1)δa+1,h(st+1)
∂a,h(st)δ2,1(st,st+1) .

(E2) Budget constraints.

For all h ∈ H it holds that:

w1,h(st) = 0 for all h ∈ H and all st.

(E3) Short sale constraints and spanning conditions.

For all st and all (a, h) ∈ A−A:

θa,h(st) ≥ 0, θa,h(st)χa,h(st) = 0,

and for all st+1 � st,
wa+1,h(st+1)

∂a+1,h
= θa,h(st)

(
q(st+1) + π(st+1) · d(st+1)

)
+ φa,h(st) · b(st+1).

(E4) Debt constraints.

For all (a, h) ∈ A and all st it holds that:

va,h(st) ≥ 0, ζa,h(st)va,h(st) = 0.

Clearly, the equilibrium de�nition via Negishi weights is more complicated in the general setup

than in the complete markets case. Two parts of the de�nition require an explanation.

First, the evolution of the Negishi weights is the same as in complete markets only for agent

(1, 1). For all other agents, the evolution is implicitly given by the intertemporal Euler equations

p(st) =
∑

st+1�st

δa+1,h(st, st+1)λa,h(st) + ηa+1,h(st+1)

λa+1,h(st+1)
δ2,1(st, st+1)

∂2,1(st+1) + ζ2,1(st+1)

∂1,1(st)
b(st+1).

To rewrite this Euler equation, we use that

δa+1,h(st, st+1)λa,h(st)

λa+1,h(st+1)
δ2,1(st, st+1)

∂2,1(st+1) + ζ2,1(st+1)

∂1,1(st)

= δa+1,h(st, st+1)
λa,h(st)

λa+1,h(st+1)

(
δ2,1(st, st+1)λ1,1(st) + η2,1(st+1)

)
∂2,1(st+1)

λ1,1(st)∂1,1(st)

= δa+1,h(st, st+1)
λa,h(st)

λa+1,h(st+1)

λ2,1(st+1)∂2,1(st+1)

λ1,1(st)∂1,1(st)
= δa+1,h(st, st+1)

∂a+1,h(st+1)

∂a,h(st)
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and

ηa+1,h(st+1)

λa+1,h(st+1)
δ2,1(st, st+1)

∂2,1(st+1) + ζ2,1(st+1)

∂1,1(st)
= δa+1,h(st, st+1)

ζa+1,h(st+1)

∂a,h(st)
,

which results in the standard intertemporal Euler equation

p(st) =
∑

st+1�st
δa+1,h(st, st+1)

∂a+1,h(st+1) + ζa+1,h(st+1)

∂a,h(st)
b(st+1).

Second, debt constraints are now more complicated as well. To understand why va,h(st) ≥ 0

captures the borrowing constraint (iii) above, we show by induction that

va,h(st) = Da,h(st) + φ(st−1) · b(st) + θ(st−1)(q(st) + π(st) · d(st)).

We start the induction with vA,h(st+a−1) where we just need the budget constraint at that age to

show that the above equation holds. For a < A we get from the de�nition of va,h and the budget

constraint that

va,h(st) = π(st) · f(st) + φ(st−1) · b(st) + θ(st−1) · (q(st) + π(st) · d(st+1))

−(p(st) · φ(st) + q(st)θ(st))− max
φ̃∈RS ,θ̃≥0

(p(st) · φ̃+ q(st)θ̃)

s.t. φ̃ · b(st+1) + θ̃(q(st+1) + π(st+1) · d(st+1)) + va+1,h(st+1) ≥ 0 for all st+1 � st.

Using the induction hypothesis we can rewrite the side condition for the maximization as

s.t. (φ(st)+ φ̃) ·b(st+1)+(θ(st)+ θ̃)(q(st+1)+π(st+1) ·d(st+1))+Da+1,h(st+1) ≥ 0 for all st+1 � st.

De�ning φ̂ = (φ+ φ̃) and θ̂ = (φ+ θ̃), we get

va,h(st) = π(st) · f(st) + φ(st−1) · b(st) + θ(st−1) · (q(st) + π(st) · d(st+1))

− max
φ̂∈RS ,θ̂≥0

(p(st) · φ̂+ q(st)θ̂)

s.t. φ̂ · b(st+1) + θ̂(q(st+1) + π(st+1) · d(st+1)) +Da+1,h(st+1) ≥ 0 for all st+1 � st.

Comparing this representation of va,h(st) with the de�nition of Da,h(st) shows that

va,h(st) = Da,h(st) + φ(st−1) · b(st) + θ(st−1)(q(st) + π(st) · d(st)),

which implies that va,h(st) ≥ 0 is equivalent to the borrowing constraint (iii).

3.2 Recursive equilibrium

As before we aim to �nd equilibria for which (st, λ(st)) follow a Markov process. We say that the

function Λ : S × S × RAH+ → RAH+ characterizes a recursive equilibrium if for each initial condition

s0 and λ(s0) there exists a �nancial markets equilibrium with λ(st+1) = Λ(st, st+1, λ(st)) for all st

and st+1 � st. In this case we can de�ne Wa,h(st, λ(st)) := wa,h(st) and Va,h(st, λ(st)) := va,h(st).
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In the case of incomplete markets, it is not obvious that the use of instantaneous Negishi weights

as endogenous state variables provides large computational advantages. We discuss the issue in

Section 4.1 below.

As in the complete markets case general existence of a recursive equilibrium is an open issue.

However, it is easy to show that for A = 2 recursive equilibria always exist (this is in contrast to

the case of the natural state space, where Kubler and Polemarchakis (2004) show that recursive

equilibria might fail to exist even if A = 2. This follows directly from the existence of a so-called

'generalized Markov equilibrium' where additional endogenous variables enter the state.

3.2.1 Generalized Markov equilibria

Following the proof in Kubler and Polemarchakis (2004) or in Citanna and Siconol� (2011), one can

show that there exist correspondences Λ : S×S×RAH+ ⇒ RAH+ , V : S×RAH+ ⇒ RAH , and W : S×

RAH+ ⇒ RAH , such that there exists a �nancial markets equilibrium with λ(st+1) ∈ Λ(st, st+1, λ(st))

for all st and all st+1 � st, where wa,h(st) ∈Wa,h(st, λ(st)), va,h(st) ∈ Va,h(st, λ(st)). The key step

of the proof1 is to apply Proposition 1 in Kubler and Polemarchakis (2004) in our framework. To

do this, one has to rede�ne the expectations correspondence using (E1)-(E4). The only technical

di�culty then lies in showing existence of a T-horizon equilibrium for arbitrary �rst period Negishi-

weights. It is standard to show existence for an open set of initial conditions (i.e. tree-holdings

among the initially alive). The proof in Kubler and Polemarchakis (2004) can be directly applied.

In order to show existence for arbitrary initial Negishi weights, one simply alters the best-response

correspondence of the initially young. For each agent initially alive, by the intermediate value

theorem, one can �nd a continuous map from prices and �rst period consumption to life-time

consumption after the initial period and �rst period initial cash-at-hand so that with that cash-at-

hand, given prices, life-time consumption maximizes utility given the budget constraints. This map

is continuous in prices and a standard �xed point argument shows existence of an equilibrium for

arbitrary �rst period consumption.

To show that there exists a 'generalized' Markov equilibrium where the state space is enlarged

to contain not only instantaneous weights but also current values of v and w, we need to show that

there exists a function T (s, s′, λ, v, w) such that

(λ(st+1), v(st+1), w(st+1)) = T (st, st+1, λ(st), v(st), w(st))

for all st and all st+1 � st. To do so, �rst note that we must have that for all st: q(st) + d(st) =∑
(a,h)∈A

wa,h(st)
∂a,h(st) . Second, note that the requirements (E1)-(E4) all only involve values of v, w, q and

λ in the current period and at all nodes of the subsequent period. Therefore if there is an equilibrium

that is not Markov in the enlarged state space (v, w, λ) we can construct a new equilibrium that

1A full proof is available from the authors upon request.
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is. I.e. if at two nodes σ and σ̃ with the same current shock s we have that (v(σ), w(σ), λ(σ)) =

(v(σ̃), w(σ̃), λ(σ̃)) but there are direct successor σ+ of σ and σ̃+ of σ̃ with the same shock but

di�erent values for v, w, λ, i.e. (v(σ+), w(σ+), λ(σ+)) 6= (v(σ̃+), w(σ̃+), λ(σ̃+)), we can just replace

all endogenous variables at the direct successor nodes of σ̃ by the endogenous variables of the direct

successor nodes of σ. The conditions (E1)-(E4) must then be satis�ed and since they are necessary

and su�cient for equilibrium, this must be a new equilibrium that is Markov in the extended state

space. Citanna and Siconol� (2011) and Du�e et al (1994, Section 2.5)) develop a similar argument

for the case of cash-at-hand as a state variable.

Finally note that in equilibrium we must always have that W1,h(s, λ) = {0} and that there is

a function from (s, λ, (va,h, wa,h)(a,h)∈A−1
) to (v1,h)h∈H. As in the above argument, if in a given

equilibrium there occur di�erent values of v1,h for given (s, λ, (va,h, wa,h)(a,h)∈A−1
) we can construct

a new equilibrium by picking one of them.

These observation gives rise to the following simple lemma.

Lemma 1 Given a generalised Markov equilibrium with V(s, λ) and W(s, λ), there exists a recursive

equilibrium if Va,h(s, λ) and Wa,h(s, λ) are single valued for all (a, h) ∈ A−1.

It is noteworthy that in the case of no constraints, the correspondence V is irrelevant. In

this case, wa,h(st) simply denotes agent (a, h)'s cash-at-hand at node st. If a given Negishi-weight

can only be supported by a single value for cash-at-hand across agents there must be a recursive

equilibrium.

3.2.2 Two period lived agents

It is easy to see that for the case A = 2 the existence of a generalized Markov equilibrium directly

implies existence of a recursive equilibrium. This is because we obtain

V2,h(s, λ) = { 1

∂2,h(st)
Dxu2,h(X2,h(s, λ)) · (X2,h(s, λ)− e2,h)}, and

W2,h(s, λ) = { 1

∂2,h(st)
Dxu2,h(X2,h(s, λ)) · (X2,h(s, λ)− ω2,h)},

which shows that both correspondences are single valued. By Lemma 1 there must therefore exist

a function Λ(s, s, λ) that describes the equilibrium evolution of λ - a recursive equilibrium always

exists.

This simple general existence result is in contrast to the case of the natural state space. In

this case, as Kubler and Polemarchakis (2004) show, recursive equilibrium might fail to exist even

if A = 2. However, this seems to be an artefact of the assumption of two-period lived agents. In

particular, the result does not imply that there always exist minimal recursive equilibria. In fact

the strategy from Kubler and Polemarchakis (2004) can be used to �nd simple counter-examples.
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As it is well known, in the case without constraints and with complete �nancial markets, a

model with A-period lived agents can always be reduced to a two period model (see e.g. Balasko

et al. (1980)). For this two-period model, recursive equilibria always exist. However, if one recalls

how the construction works it becomes clear that existence of a recursive equilibrium in the two-

period reduction does not say more than the existence of a generalised Markov equilibrium. In the

construction all agents born within A− 1 periods are grouped together. The state then consists of

all these agents instantaneous Negishi weights � even if H = 1, we then have a A − 1 +
∑A−1

a=1 S
a

dimensional endogenous state space. This is clearly not in the spirit of recursive equilibrium.

3.2.3 Log-utility

We now assume as in Hu�man (1987) that for all a > 2 and all h, ua,h(x) =
∑L

l=1 αa,h,l log xl and

ωa,h = 0. For this very restricted case recursive equilibria always exist, independently of A, the

market structure and borrowing constraints. Since for this case Dxu(x)·x is a constant, independent

of x, it is easy to see that for a > 2, va,h and wa,h are constants, just depending on (a, h) and the

current state s. Therefore Va,h(s, λ) and Wa,h(s, λ) must be single-valued for all a > 1 and all h.

By the previous argument, a recursive equilibrium must always exist.

4 Two important special cases

It is useful to discuss in detail two important special cases of our model. First we assume that

�nancial markets are incomplete but that agents face no constraints on their trades (i.e. neither

borrowing constraints nor short-sale constraints on the stock). This case plays an important role

in �nance and macro-economics and we want to compare the computational burden of the Negishi

approach with that of the standard approach that uses cash-at-hand as a state-variable.

Secondly, we examine the case where agents can trade in a complete set of Arrow securities but

face borrowing constraints. We refer to this case as 'full-spanning'. Gottardi and Kubler (2012)

examine this case for a model with in�nitely lived agents and it turns out that competitive equilibria

are often constrained ine�cient. However, they also show that the assumption of gross substitutes

guarantees existence if agents are in�nitely lived. We show that this assumption su�ces for existence

of recursive equilibria in OLG models with borrowing constraints.

4.1 Unconstrained incomplete markets

We �rst assume that markets are incomplete but that there are no e-endowments and discuss

computational issues. We modify the model slightly in that we allow for short-sales in the stock �

while this can lead to failures of existence of a competitive equilibrium, these cases are non-robust

and the assumption of unlimited short-sales allows us to focus on the consequences of missing
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�nancial markets.

Let Wa,h(s, λ) be de�ned as in (3) and (4), and ∂a,h(s, λ) =
∂ua,h(Xa,h(s,λ))

∂x1
.

De�ne prices by:

π(s, λ) :=
1

∂1,1(s, λ)
Dxu1,1(xa,h(s, λ)), q(s, λ) :=

∑
(a,h)∈A

Wa,h(s, λ)

∂a,h(s, λ)
− d(s),

p(s, λ) :=
∑
s′�s

δ2,1(s, s′,Λ2,1(s, s′, λ))
∂2,1(s′)

∂1,1(s)
b(s′).

A transition function Λ(s, s′, λ) with Λ2,1(s, s′, λ) = δ2,1(s, s′)λ1,1 de�nes a recursive equilibrium

with incomplete markets if it satis�es, in addition to the requirement that W1h(s′,Λ(s, s′, λ)) = 0

for all h ∈ H, that for all (a, h) ∈ A−A \ {(1, 1)},

q(s, λ) =
∑
s′

δa+1,h(s, s′)λa,h
Λa+1,h(s, s′, λ)

· (6)

δ2,1(s, s′)∂2,1(s′,Λ(s, s′, λ))

(
q(s′,Λ(s, s′, λ))

∂1,1(s, λ)
+ π(s,Λ(s, s′, λ))) · d(s′)

)
p(s, λ) =

∑
s′

δa+1,h(s, s′)λa,h
Λa+1,h(s, s′, λ)

δ2,1(s, s′)
∂2,1(s′,Λ(s, s′, λ))

∂1,1(s, λ)
b(s′), (7)

and if for each (a, h) ∈ A−A \ {(1, 1)} there exists φ ∈ RJ and θ ∈ R such that

Wa+1,h(s′,Λ(s, s′, λ))

∂a+1,h(s′,Λ(s, s′, λ))
= θa,h

(
q(s′,Λ(s, s′, λ)) + π(s,Λ(s, s′, λ)) · d(s′)

)
+ φa,h · b(s′). (8)

Note that the de�nition simpli�es considerably if there exist Arrow-securities for some states

but not for others. For the shocks where agents can trade in an Arrow security the instantaneous

Negishi-weight evolves according to the same rule as for complete markets. We want to argue that

even outside of this special case, using Negishi-weights faciliates the computation of equilibria. As

Chien et al. (2011) point out the use of Negishi-weights also has large advantages in models with

limited market participation. If some agents can trade in a complete set of Arrow securities while

others only have access to a limited set of assets our de�nition of recursive equilibrium simpli�es

for those who trade in Arrow-securities.

4.1.1 Computation

The computational algorithm is as in Section 2 above with the big di�erence that in Step 2 one

needs to solve a more complicated system of non-linear equations. Instead of solving a system with

H equations and unknowns we now need to solve H+((A−1)H−1)S+((A−1)H−1)J equations.

The additional equations arise because of missing �nancial markets. Given Ŵn, for a given shock

s and a given collocation-point λi−1, one needs to solve

Dxu1,h(X1,h(s, λi(s))) · (X1,h(s, λi(s))− ω1,h) +
∑
s′

δ2,h(s, s′)Ŵn(s′, Λ̂(s, s′, λi−1(s′))) = 0, h ∈ H
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together with (6), (7) and (8), resulting in H + ((A− 1)H − 1)(J + 1) + ((A− 1)H − 1)S equations

in the unknowns

(λi1,h)h∈H, Λ̂(s, s′, λi), and (θa,h, φa,h)(a,h)∈A−A\{(1,1)},

where Λ̂(s, s′, λi) just consists of λa,h for (a, h) ∈ A−1 \ {(2, 1)}. A signi�cant e�ciency gain can be

obtained by noting that for given (λ1,h)h∈H and (θah, φa,h), Equations (8) can be solved separately

to obtain Λ̂(s, s′, λi). Along the iteration, this can typically be done e�ciently using starting-points

from previous iterations. Taken as given a map from (λ1,h)h∈H and (θah, φa,h) to Λ̂(s, s′, λi), the

computational burden reduces to solving H + ((A− 1)H − 1)J equations and unknowns.

This is comparable to the case of cash-at-hand where one needs to solve for agents' cash-at-hand

in the subsequent period � since prices depend on cash-at-hand this is also a �xed-point problem

that gives cash-at-hand at all S shocks next period given the portfolios today. However, for the

case of one good, the number of equations one needs to solve in this case might actually be slightly

smaller since one does not need to solve for (λ1,h)h∈H resulting in H fewer equations and unknowns.

Yet one does need to solve for J + 1 prices, but if J is small and H is large the resulting system

might be smaller.

However, for the case of several commodities, the number of equations to be solved in the Negishi-

approach is independent of L while each additional good results in H + 1 additional equations if

one uses cash-at-hand. It is clear that if there are several goods, the Negishi-approach results in

large e�ciency gains.

It is an open question whether the Negishi-approach has signi�cant advantages for the case of

one commodity. Dumas and Lyaso� (2011) argue that for in�nitely lived agents this is the case

� it is certainly true that the problem of bounding the endogenous state space might turn out to

be insurmountable if one uses cash-at-hand as the state. On the other hand, it is no longer true

that the number of unknown functions is much smaller for the Negishi approach than it is for the

'natural state-space' approach.

4.2 Full spanning with constraints

In this subsection, we show that in the presence of a full set of Arrow-securities the model with

borrowing constraints is tractable and in many respects quite similar to the complete markets model.

It is useful to �rst spell out how our de�nition of recursive equilibrium simpli�es in the case of full

spanning. As before it is useful to evaluate all consumptions in terms of agents' marginal utility. In

the case of complete markets, i.e. full spanning without constraints, this was straightforward. With

constraints, we have to change the setup slightly and modify the de�nition of the functions W (s, .).

Note that for all nodes st it follows from the �rst order conditions of the planner problem that

λa,h(st)Dxua,h(Xa,h(st, λ(st))) are identical across all agents alive at that node. Furthermore, we

must have that for each subsequent node there is at least one agent that is unconstrained. For
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this agent we have that λa+1,h(st+1) = δa+1,h(st, st+1)λa,h(st). Therefore we must have that for

any agent, throughout his life-time, λa,hDxua,h are collinear to market-prices even if Dxua,h are not

because of constraints. We de�ne for all types h ∈ H

WA,h(s, λ) = λa,hDxua,h(XA,h(s, λ)) · (XA,h(s, λ)− ωA,h(s)), and

Wa,h(s, λ) = λa,hDxua,h(Xa,h(s, λ)) · (Xa,h(s, λ)− ωa,h(s)) +
∑
s′

Wa+1,h(s′,Λ(s, s′, λ))

for all a = 1, ..., A− 1. Similarly, we de�ne the value of excess consumption to be

VA,h(s, λ) = λA,hDxua,h(XA,h(s, λ)) · (XA,h(s, λ)− eA,h(s)), and

Va,h(s, λ) = λa,hDxua,h(Xa,h(s, λ)) · (Xa,h(s, λ)− ea,h(s)) +
∑
s′

Va+1,h(s′,Λ(s, s′, λ))

for all a = 1, ..., A− 1. We then have the following de�nition of a recursive equilibrium.

Definition 2 A recursive equilibrium is a function Λ : S × S × RAH++ → RAH++ that satis�es for all

h ∈ H, all λ ∈ RAH++ , all s, s′ ∈ S, and some η ∈ RAH+

W1,h(s′,Λ(s, s′, λ)) = 0, Λ1,h(s, s′, λ) = η1,h, and

Λa,h(s, s′, λ) = δa,hλa−1,h + ηa,h,

Va,h(s′,Λ(s, s′, λ)) ≥ 0, Va,h(s′,Λ(s, s′, λ))ηa,h = 0 for all a = 2, ..., A.

Note that this de�nition is substantially simpler than the requirements (E1)-(E4) above. The

fact that there is a full set of Arrow-securities and that for each Arrow-security at least one of the

agents is always unconstrained simpli�es the characterization of equilibrium substantially. As in

the complete markets case, we de�ne a recursive equilibrium to be minimal if there is a function

`(s, (λa,h)(a,h)∈A−1) so that Λ1,h(s, s′, λ) = `h
(
s′, (Λa,h(s, s′, λ))(a,h)∈A−A

)
for all h ∈ H.

4.2.1 Gross substitutes

For the case of full spanning with constraints we can show that the assumption of gross substitutes

ensures that minimal recursive equilibria always exist (as in Gottardi and Kubler (2012) for the

case of in�nitely lived agents and a single commodity). The following de�nition is standard.

Definition 3 A function F : Rm+ → Rm satis�es the strict gross substitute property if for all y ∈ Rm+
and all x ∈ Rm+ with xi = 0 for some i = 1, ...,m it holds that Fi(y) > Fi(y + x). It satis�es the weak

gross substitute property if the inequality holds weakly.

The gross substitutes assumption is easy to verify if there is a single commodity per state, but

we formulate the result generally, for L commodities. In order to state a gross substitute assumption

for the case of several commodities it is useful to de�ne the set of fundamentals, F ⊂ RL++, to be the

set of all possible realization of endowments and dividends, i.e. F = {ea,h(s), fa,h(s), d(s); (a, h) ∈

A, s ∈ S}. We have the following assumption on Bernoulli functions across all agents.
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Assumption 1 For all agents (a, h) and all shocks s ∈ S, the function Dxua,h(X(s, λ)) ·X(s, λ) satis-

�es the weak gross substitute property in λ. Moreover, for each y ∈ F the function −Dxua,h(X(s, λ)) ·y

satis�es the strict gross substitute property in λ.

For the case of a single good, Dana (1994) uses these assumptions to show uniqueness in a model

with complete markets. It is easy to see that for this case, the assumption is satis�ed whenever all

agents' relative risk aversion is less than or equal to one. For the case of several commodities the

assumption is di�cult to verify if ua,h(.) is non-separable, but it is a well-de�ned assumption on

fundamentals.

The assumption guarantees that minimal recursive equilibria always exist. To see this, note that

existence of a minimal recursive equilibrium can only fail if given some initial shock, s0 there exist two

distinct competitive equilibria (λ(σ), λ′(σ))σ∈Σ with λa,h(s0) = λ′a,h(s0) for all (a, h) ∈ A−1. Putting

it di�erently, we need to rule out that given an initial 'state' (s0, (λa,h(s0))(a,h)∈A−1
) there can be

two di�erent 'continuation equilibria'. Suppose to the contrary, that there exist two competitive

equilibria (λ(σ), λ′(σ))σ∈Σ with λ′(s1) 6= λ(s1) for at least one node at t = 1, while λ(s0) = λ′(s0).

De�ne λa,h(st) = min[λa,h(st), λ′a,h(st)] for all (a, h) ∈ A and all st. We will show below that the

sequence of Negishi weights (λ(σ))σ∈Σ does not lead to a feasible consumption allocation, which

contradicts the assumption that there exist two equilibria (λ(σ))σ∈Σ 6= (λ′(σ))σ∈Σ as characterized

above.

Again, de�ne v(st; (λ(σ))) and w(st; (λ(σ))) as the (possibly non-Markovian) values of e- and

f -endowments, where the de�nition follows the de�nition of V and W , i.e. for example for a < A,

wa,h(st; (λ(σ))) = λa,h(st)Dxua,h(Xa,h(st, λ(st)))·(Xa,h(st, λ(st))−ωa,h(st))+
∑

st+1�st
wa+1,h(st+1; (λ(σ)))

We have the following two lemmas.

Lemma 2 For all st and for any (a, h) ∈ A and any y ∈ F , it must be true that

λa,h(st)Dxua,h(Xa,h(st, λ(st))) · y ≤

min
[
λa,h(st)Dxua,h(Xa,h(st, λ(st))) · y, λ′a,h(st)Dxua,h(Xa,h(st, λ

′(st))) · y
]
.

Proof. W.l.o.g. take λa,h(st) ≤ λ′a,h(st), thus λa,h(st) = λ′a,h(st). Since −Dxua,h(Xa,h(s, .)) · y

satis�es the gross substitute property, we have

λa,h(st)Dxua,h(Xa,h(st, λ(st))) · y ≤ λa,h(st)Dxua,h(Xa,h(st, λ(st))) · y.

Moreover, de�ne λ̂ by λ̂a′,h′ = λa′,h′(s
t) for (a′, h′) 6= (a, h) and λ̂a,h = λ′a,h(st). By the gross

substitute property we must have

λ′a,h(st)Dxua,h(Xa,h(st, λ
′(st))) · y ≥ λ̂a,h(st)Dxua,h(Xa,h(st, λ̂(st)) · y

≥ λa,h(st)Dxua,h(Xa,h(st, λ(st))) · y,
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where the second inequality follows from the fact that λ̂a,h(st)Dxua,h(Xa,h(st, λ̂(st))) is identical

across all agents, (a, h), and similarly for λ. �

Lemma 3 For all st and all (a, h),

wa,h(st; (λ(σ))) ≥ min
[
wa,h(st; (λ(σ))), wa,h(st; (λ′(σ)))

]
, (9)

with the inequality holding strict for some st and some h.

Proof. Applying Assumption 1 and Lemma 2 to

vA,h(st;λ(σ)) = λA,h(st)DxuA,h(XA,h(st, λ(st))) · (XA,h(st, λ(st))− ea,h(st)),

we �nd that the following is satis�ed for a = A:

va,h(st;λ(σ)) ≥

va,h(st;λ(σ)), if λA,h = λA,h,

va,h(st;λ′(σ)), if λA,h = λ′A,h,
for all σ and h. (10)

We now show that if (10) holds for a+ 1, then it also does for a. Suppose w.l.o.g. that λa,h(st) =

λa,h(st). For each st+1 � st there are two cases possible. In the �rst case, λa+1,h(st+1) =

δa+1,h(st+1, st)λa,h(st), then λa+1,h(st+1) = λa+1,h(st), and thus va+1,h(st+1;λ(σ)) ≥ va+1,h(st+1;λ(σ))

by the induction hypothesis. In the second case, λa+1,h(st+1) > δa+1,h(st+1, st)λa,h(st), then

va+1,h(st+1;λ(σ)) ≥ va+1,h(st+1;λ(σ)) = 0. Summing up, we �nd that (10) holds for a.

Again suppose w.l.o.g. that λa,h(st) = λa,h(st). By (10) and Lemma 2, we have for all σ and h:

wa,h(st;λ(σ)) = va,h(st;λ(σ))−
A−a−1∑
i=0

∑
st+i�st

λi,h(st+i)Dxua+i,h(Xa+i,h(st+i, λ(st+i)) · fa+i,h(st+i)

≥ va,h(st;λ(σ))−
A−a−1∑
i=0

∑
st+i�st

λi,h(st+i)Dxua+i,h(Xa+i,h(st+i, λ(st+i)) · fa+i,h(st+i)

= wa,h(st;λ(σ)).

This �nishes the proof. �

The equilibrium conditions require that

w1,h(s0; (λ(σ)) = 0,
∑

(a,h)∈A−1

wa,h(s0, λ(σ))− λa,h(s0)Dxua,h(ca,h(s0)) (q(s0; (λ(σ))) + d(s0)) = 0,

and similarly for λ′. Using Lemmas 2 and 3, this implies that∑
(a,h)∈A

wa,h(s0, λ(σ))− λa,h(s0)Dxua,h(ca,h(s0)) (q(s0; (λ(σ))) + d(s0)) > 0, (11)

where we use that

q(s0; (λ(σ))) =
∑
t′>0

∑
st′�s0

Dxu1,1(X1,1(s′t, λ(st
′
))

Dxu1,1(X1,1(s0, λ(s0)))
λ1,1(st

′
)d(st′).

As (11) is a contradiction to feasibility of (λ(σ))σ∈Σ we have proved that there cannot be two

continuation equilibria and thus there exists a minimal recursive equilibrium.
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4.2.2 Computation

As before we consider a simple time-iteration collocation method. Since there are important dif-

ferences to the unconstrained case, it is useful to describe the algorithm in some detail. The main

steps are as follows.

1. Set n = 0 and start with initial guesses Ŵ 0 : S×R(A−1)H
+ → R(A−1)H and V̂ 0 : S×R(A−1)H

+ →

R(A−1)H .

2. Given V̂ n, for each s ∈ S and each λi−1 ∈ G, compute η̂n(s, λi−1) as a solution to the non-linear

complementarity problem

V̂ n(s, λi−1 + η̂n(s, λi−1)) ≥ 0, η̂n(s, λi−1)) ≥ 0

V̂ n
a,h(s, λi−1 + η̂n(s, λi−1))η̂na,h(s, λi−1)) = 0 for all (a, h) ∈ A−1

Interpolate {η̂n(s, λi−1), i = 1, ..., G} to obtain approximating functions η̂n(s, .).

3. Given η̂n, V̂ n and Ŵn, for each s ∈ S and each λi−1 ∈ G, compute ˆ̀n+1(s, λi−1) as the solution

to

ˆ̀n+1(s, λi−1)Dxu1,h(X1,h(s, λi))·(X1,h(s, λi)−ω1,h)+
∑
s′

δ2,h(s, s′)Ŵn
2,h(s′, λ−1(s′)) = 0, h ∈ H,

where λi = (ˆ̀n+1(s, λi−1), λi−1) and λi−1(s′) =
(
δa,h(s, s′)λia−1,h + η̂n(s′, δa,h(s, s′)λia,h)

)
(a,h)∈A−1

.

With these values for λi and λi−1(s′) compute for all (a, h) ∈ A−1

Ŵn+1
a,h (s, λi−1) = λa,hDxua,h(Xa,h(s, λi))·(Xa,h(s, λi)−ωa,h)+

∑
s′

δa+1,h(s, s′)Ŵn
a+1,h(s′, λi−1(s′)),

V̂ n+1
a,h (s, λi−1) = λa,hDxua,h(Xa,h(s, λi))·(Xa,h(s, λi)−ea,h)+

∑
s′

δa+1,h(s, s′)V̂ n
a+1,h(s′, λi−1(s′)),

where Ŵn+1
A+1,h(s, λi−1) := 0, and V̂ n+1

A+1,h(s, λi−1) := 0.

4. For each s ∈ S, interpolate {Ŵn+1(s, λi−1), i = 1, ..., G} to obtain approximating functions

Ŵn+1(s, .) and interpolate {V̂ n+1(s, λi−1), i = 1, ..., G} to obtain approximating functions

V̂ n+1(s, .).

5. Check some error criterion. If error criterion not met, increase n by 1 and go to 2.

6. Set Ŵ ∗ = Ŵn+1, V̂ ∗ = V̂ n+1 and interpolate ˆ̀n(s, λi−1) to obtain ˆ̀∗(s, .).

While the algorithm appears more complicated than for the case of complete markets, it is

actually only Step 2 that is di�erent and that is computationally expensive. For many realistic

calibrations one can expect the borrowing constraint to bind rarely for older agents which can

simplify the computations in Step 2 considerably.
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Under the gross substitute assumption from above, we can prove that the algorithm converges

under the idealized scenario where the function approximation is exact. To formalize this, let

W 0
a,h(λ, s) = λa,hDxua,h(Xa,h(s, λ)) · (Xa,h(s, λ) − ωa,h) and V 0

a,h(λ, s) = λa,hDxua,h(Xa,h(s, λ)) ·

(Xa,h(s, λ)− ea,h) and de�ne ηn(s, λ) as well as V n(s, λ) and Wn(s, λ) to solve Steps 2 and 3 of the

algorithm exactly (i.e. for all λ). We prove the following theorem in the Appendix.

Theorem 1 Under Assumption 1, for each n = 1, ... the functions V n and Wn are well de�ned and as

n→∞, V n → V ∗ and Wn →W ∗ for some function V ∗,W ∗ that describe a recursive equilibrium.

5 Interpretation

The planner's maximization problem (1) obviously only has a solution if Pareto-weights are summable.

While this is guaranteed in the presence of a Lucas tree, Pareto-e�ciency of equilibrium allocations

itself is not enough to ensure this. However, in the absence of a tree as long as markets are complete,

one can always, even if the equilibrium allocation is dynamically ine�cient work with the concept of

Malinvaud e�ciency (see e.g. Aliprantis et al. (1990)). An allocation is Malinvaud e�cient if there

exist no Pareto-dominating allocation that di�ers at only �nitely many nodes. For these allocations

one can construct Negishi-weights through a limit argument. The analysis in Section 2 goes through

without any changes.

More interestingly, in models with incomplete markets and in models with borrowing constraints

(see Gottardi and Kubler (2012)) competitive equilibria are typically constrained suboptimal � there

is no social planner's problem that determines the equilibrium allocation. Nevertheless, we show

in this paper that it can be useful to employ (instantaneous) Negishi weights as a state variable.

The question then arises what these weights 'represent' and how errors in the computations can

be interpreted economically (recall that for the case of complete markets and e�cient equilibria a

straightforward interpretation was possible). Although sequential equilibria are not (constrained)

Pareto-e�cient for the model where agents live for A periods, they are e�cient if we reformulate the

model and assume that agents only live for one period while dynasties live for A periods. Within a

dynasty, an agent derives utility from his consumption and the consumption of his successors in the

dynasty. But of course, Pareto-optimality means that it is impossible to improve all agents, not all

dynasties. More formally, an agent is now identi�ed by the date-event of the birth of his dynasty,

st, by the age of his dynasty, a and by the type, h. He derives utility from his own consumption

and the consumption of successors within the dynasty:

Ua,h,st(x) = δa,h(st)ua,h(x(st)) +

A∑
i=a+1

δi,h(st+i)ui,h(x(st+i)).

We say that an allocation (xa,h(st)) is D-Pareto-e�cient if there is no allocation where all agents

(a, h, st) are weakly better o� and some strictly.
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Given a summable sequence of instantaneous Negishi-weights (λ(σ))σ∈Σ the allocation (x(σ))

with xa,h(st) = Xa,h(st, λ(st)) for all (a, h) and all st must be the solution to the maximization

problem

max
x

∑
(a,h)∈A,st

λa,h(st)ua,h(xa,h(st)) s.t.
∑

(a,h)∈A

xa,h(st) = ω̄(st) for all s
t,

which can be rewritten as

max
x

∑
(a,h)∈A,st

ηa,h(st)Ua,h,st(x) s.t.
∑

(a,h)∈A

xa,h(st) = ω̄(st) for all s
t,

where

η1,h(st) = λ1,h(st), ηa,h = λa,h(st)− δa,h(st−1, st)λa−1,h(st−1), a = 2, . . . , A.

An allocation is D-Pareto-e�cient if for summable (λa,h(st)) the resulting weights satisfy ηa,h(st) ≥ 0

for all (a, h) ∈ A and all st. Since we can normalize instantaneous Negishi weights node by node,

the requirement that (λa,h(σ)) are summable in itself is vacuous � given a sequence that is not

summable, we can de�ne a new sequence that characterizes the same allocation and is summable.

However, the crucial requirement is that the resulting ηa,h(σ) are non-negative, i.e. that λa,h(st) ≥

δa,h(st, st−1)λa−1,h(st−1) for all (a, h) ∈ A−1 and all st. This alone imposes no restrictions, as any

allocation characterized by a sequence of Negishi-weights is D-Malinvaud e�cient, in the sense that

there is no other allocation that D-Pareto-dominates it and di�ers only at �nitely many nodes.

When there is a complete set of Arrow-securities our construction of λ in the de�nition of

recursive equilibrium ensures that the welfare weights for the dynasty model, (ηa,h(st)), are always

positive. Moreover, the weights must be summable because the price of the tree is �nite and we

have

λ1,1(st)∂1,1(st)q(st) ≥
∑
σ�st

λ1,1(σ)∂1,1(σ)d(σ).

When markets are incomplete the allocation might fail to be D-Pareto optimal and welfare weights

need to be interpreted as limits as in the Malinvaud case. Di�erent assumptions on �nancial markets

and borrowing constraints then simply translate into di�erent restrictions on bequest. To see that

it is useful to de�ne an agent's optimization problem recursively. Given prices (q(σ), p(σ), π(σ)),

de�ne UA+1,h(st, κ) = 0, and for a = 1, ..., A, de�ne

Ua,h(st, κ) = max
x∈RL

+,θ≥0,φ
ua,h(x) +

∑
st+1�st

δa+1,h(st, st+1)Ua+1,h(st+1, κ(st+1)) subject to

κ+ π(st) · ωa,h(st) = π(st) · x+ q(st)θ + p(st) · φ

κ(st+1) = θ(q(st+1) + π(st) · d(st+1)) + φ · b(st+1) for all st+1 � st

κ(st+1) ∈ Ka+1,h(st+1),

where K(st) is some set that can depend on current and future prices as well as on agents' en-

dowments. A competitive equilibrium for the dynasty economy consists of asset prices and agents'

27



choices, i.e. consumption choices and bequest-portfolios so that markets clear and all agents maxi-

mize their utility. It is easy to see that depending on the market structure and on the speci�cation

of the sets K(st) we can construct economies for which equilibrium allocations and prices will be

identical to the ones in the various OLG economies considered in this paper.

As in the case discussed in Section 2, approximation errors in computations can now be in-

terpreted as transfers necessary to obtain the computed D-e�cient allocation as an equilibrium

allocation.

6 Appendix A: Proof of Theorem 1

To prove the theorem we require two lemmas. Yet �rst of all, we introduce the following notation:

For α, x, y ∈ RAH we write x = (xa,h)(a,h)∈A and de�ne

z = x⊕α y ⇔ for all h = 1, . . . ,H : z1,h = y1,h and za,h = αa,hxa−1,h + ya,h, a = 2, ..., A.

Lemma 4 Suppose F : RAH+ → RAH satis�es the strict gross substitute property and is homogeneous

of degree zero. Given any x, α ∈ RAH++ suppose there exist η, η′ ∈ RAH+ \RAH++ with ηa,h > 0, η′a,h > 0 for

some (a, h) ∈ A. If F (x⊕α η) ≥ 0, F (x⊕α η′) ≥ 0 and ηa,hFa,h(x⊕α η) = 0, η′a,hFa,h(x⊕α η′) = 0,

for all (a, h) ∈ A, then η = η′.

Proof. Suppose to the contrary that η, η′ /∈ RAH++ and η 6= η′. Then there is an (a, h) and a ξ > 0

such that ηa,h > 0, (x⊕α η)a,h = ξ(x⊕α η′)a,h, and ξ(x⊕α η′) > x⊕α η. The latter inequality holds

strict because η 6= η′ and because both are not strictly positive. But since F (.) is homogeneous of

degree zero we must have that

Fa,h
(
ξ(x⊕α η′)

)
= Fa,h(x⊕α η′) ≥ 0.

On the other hand, by the strict gross substitute property and since ηa,h > 0 we must have

Fa,h
(
ξ(x⊕α η′)

)
< Fa,h(x⊕α η) = 0,

which is a contradiction. �

Lemma 5 Suppose F : RAH+ → RAH satis�es the strict gross substitute property and is homogeneous

of degree zero. For any α, x, y ∈ RAH++ with y > x suppose there exist ηx, ηy ∈ RAH+ such that

F (x ⊕α ηx) ≥ 0, F (y ⊕α ηy) ≥ 0 and ηxa,hFa,h(x ⊕α ηx) = 0 and ηya,hFa,h(y ⊕α ηy) = 0 for all

(a, h) ∈ A. If xa,h = ya,h for some a, h then it must hold that

Fa,h(x⊕α ηx) ≥ Fa,h(y ⊕α ηy).
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Proof. If ηya,h > 0 or if ηya,h = 0 and ηx = 0, then the result holds by construction.

If ηya,h = 0 and ηx > 0, then we must have x ⊕α ηx = y ⊕α ηy. If this were not the case,

there must exist an (a, h) with ηxa,h > 0 and a ξ > 0 such that (x ⊕α ηx)a,h = ξ(y ⊕α ηy)a,h and

ξ(y⊕αηy) > (x⊕αηx). As in the previous proof this leads to a contradiction since Fa,h (ξ(y ⊕α ηy)) =

Fa,h(y ⊕α ηy) ≥ 0 while Fa,h (ξ(y ⊕α ηy)) < Fa,h(x⊕α ηx) = 0. �

To prove the theorem �rst note that under Assumption 1, W 0 and V 0 satisfy the gross substi-

tute property. It is a standard argument to show that equilibrium exists for each �nitely truncated

economy and that therefore the complementarity problem that determines η0(s, λ) has a solution.

By Lemma 4 this solution must be unique. Given Wn, V n and ηn with V n,Wn satisfying the gross

substitute property, by existence there must exist `n+1(s, λ). Wn+1 and V n+1 are well de�ned and

Lemma 5 implies that they satisfy the gross substitute property. Normalizing λ to lie in a compact

set, it is easy to see that `n(s, λ) is uniformly bounded across n. Therefore there must exist some

�nite liminf and some �nite limsup as n→∞. It is easy to see that both must describe a compet-

itive equilibrium. Our argument in Section 4.2.1 implies that under Assumption 1 there must be

a unique equilibrium and hence the liminf must equal to the limsup. With `n converging one can

then verify that also Wn and V n must converge.
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