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Abstract

We study the welfare effects of social security in an overlapping
generations general equilibrium model with aggregate and idiosyn-
cratic risk. Prior research on social security has only considered ei-
ther risk in isolation. We show analytically that both risks interact
due to the life-cycle structure of the economy. This interaction in-
creases the welfare gains of a marginal introduction of an unfunded
social security system. Adding a second interaction by making the
variance of idiosyncratic risk countercyclical further increases the wel-
fare gains. In our quantitative experiment, raising the contribution
rate from zero to two percent leads to long-run welfare gains of 3.5%
of life-time consumption on average, even though the economy experi-
ences substantial crowding out of capital. Approximately one third of
these gains can be attributed to the interactions between idiosyncratic
and aggregate risk.
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1 Introduction

Many countries operate large social security systems. One reason is that
social security can provide insurance against risks for which there are no pri-
vate markets. However, these systems also impose costs by distorting prices
and decisions. The question arises whether the benefits of social security
outweigh the costs.

We address this question in a model which features both aggregate and id-
iosyncratic risk. We follow the literature and assume that insurance markets
for both forms of risk are incomplete. In such a setting social security can in-
crease economic efficiency by partially substituting for missing markets. The
analysis is embedded in a general equilibrium framework to account for the
costs of crowding out. The difference to the previous literature is that, so far,
only models with one kind of risk were examined. One strand of the literature
has looked at social security when only aggregate risk is present (e.g. Krueger
and Kubler (2006)). There, social security can improve the intergenerational
sharing of aggregate risks. The other strand included only idiosyncratic risk
(e.g. Imrohoroğlu, Imrohoroğlu, and Joines (1995, 1998)). There, social secu-
rity is valuable because of intragenerational insurance. However, households
face both kinds of risk over their lifetime. To get a more complete picture
of how much insurance social security can provide, the different risks need
to be included in one model. By doing that, we can assess the contribution
of each risk to total insurance. More importantly, we can analyze the role
played by interactions between the two types of risk.

The first interaction is an interaction over the life-cycle and accordingly
we call it the life-cycle interaction (LCI). To better understand this new
effect, consider a standard model in which idiosyncratic wage risk is statisti-
cally independent of aggregate risk. Due to the nature of a life-cycle economy,
aggregate and idiosyncratic risks directly interact despite their statistical in-
dependence. The reason is that when retired, consumption is mainly financed
out of private savings. The level of private savings depends on the realiza-
tions of idiosyncratic wage risk and aggregate return risk during working
life. As a consequence, the variance of private savings contains an interac-
tion term between idiosyncratic and aggregate risk. Because households face
these risks for many years before they go into retirement, this interaction
term becomes large.

The second interaction operates via the so-called counter-cyclical cross-
sectional variance of idiosyncratic productivity shocks (CCV). This means
that the variance of idiosyncratic shocks is higher in a downturn than in a
boom. The CCV has been documented in the data (Storesletten, Telmer,
and Yaron (2004b)), and has been analyzed with respect to asset pricing
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(Mankiw (1986), Constantinides and Duffie (1996), Storesletten, Telmer, and
Yaron (2007)). We want to understand whether social security can provide
insurance against this interaction.

In order to evaluate how much these interactions matter quantitatively,
we build a large-scale overlapping generations (OLG) model in the tradi-
tion of Auerbach and Kotlikoff (1987), extended by various forms of risk.
Aggregate wage risk is introduced through a standard shock to total factor
productivity (TFP). Aggregate return risk is introduced through a depreci-
ation shock. The two shocks enable us to calibrate the model in such a way
that it produces realistic fluctuations of wages and returns, both of which
are central to the welfare implications of social security.

The social security system is a pure pay-as-you-go (PAYG) system. Every
period, all the contributions are paid out as a lump-sum to all the retirees.
Households can also save privately by investing in a risk-free bond and risky
stock. Having this portfolio choice in the quantitative model is important,
because social security can be seen as an asset with a low risk and a low
return. Therefore, the risk-return structure of the bond and the stock di-
rectly affect the value of social security. In order to match a high expected
risky return and a low risk-free rate at the same time we need Epstein-Zin-
preferences. Finally, households also face survival risk. Therefore, they value
social security because it partially substitutes for missing annuity markets.

Our experiment consists of a marginal introduction of social security. We
use a two-period model to expose the new life-cycle interaction LCI. We
show analytically that social security provides insurance against both LCI
and against the countercyclical variance CCV. We also show analytically that
the benefit of the insurance against CCV becomes larger when aggregate risk
in the economy increases.

When we calibrate the model to the U.S. economy, we find that the in-
troduction of social security leads to a strong welfare gain. This stands in
contrast to the previous literature, because social security in our model pro-
vides insurance against both idiosyncratic and aggregate risk, as well as their
interactions. To be precise, increasing the contribution rate from zero to two
percent leads to welfare gains of 3.17% in terms of consumption equivalent
variation. This welfare improvement is obtained even though we observe
substantial crowding out of capital. About one third of the welfare gains is
attributed to the two interactions LCI and CCV.

The welfare gains are not caused by reducing an inefficient overaccumu-
lation of capital. To control for that, we ensure in our calibration that the
economy is dynamically efficient.

The idea that social security can insure against aggregate risks goes back
to Diamond (1977) and Merton (1983). They show how it can partially
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complete financial markets and thereby increase economic efficiency. Building
on these insights, Shiller (1999) and Bohn (2001, 2009) show that social
security can reduce consumption risk of all generations by pooling labor
income and capital income risks across generations if labor income and capital
returns are imperfectly correlated.

Gordon and Varian (1988), Ball and Mankiw (2007), Matsen and Thoger-
sen (2004) and Krueger and Kubler (2006) use a two-period partial equilib-
rium model where households consume only in the second period of life, i.e.
during retirement. For our analytical results, we extend this model by adding
idiosyncratic risk.

Quantitative papers with aggregate uncertainty and social security are
scarce. Krueger and Kubler (2006) is the closest to us.1 They also look at a
marginal introduction of a PAYG system and find that it does not constitute
a Pareto-improvement. The concept of a Pareto-improvement requires that
they take an ex-interim welfare perspective, whereas we calculate welfare
from an ex-ante perspective. Our paper differs in that it adds idiosyncratic
risks and analyzes the interactions.

Quantitative papers with idiosyncratic uncertainty and social security, on
the other hand, are plenty (e.g. Conesa and Krueger (1999), Imrohoroğlu, Im-
rohoroğlu, and Joines (1995, 1998), Huggett and Ventura (1999) and Stores-
letten, Telmer, and Yaron (1999)). On a general level, a conclusion from this
literature is that welfare in a stationary economy without social security is
higher than in one with a PAYG system. That is, the losses from crowding
out dominate the gains from completing insurance markets. The more recent
work by Nishiyama and Smetters (2007) and Fehr and Habermann (2008) are
examples of papers which focus on modeling institutional features of existing
social security systems in detail. Our approach is less policy oriented than
theirs and we abstract from such details. Our results show the benefits of a
flat pension scheme without additionally optimizing over the exact design of
the pension benefit formula.

Huggett and Parra (2010) argue that it is important to look at a simulta-
neous reform of both the social security system and of the general tax system.
They report strong welfare gains from joint reforms of both systems. We in-
stead follow the more standard approach and take the general income tax
system as given. Consequently, we calibrate our model to income processes
after taxation. Finally, Gomes, Michaelides, and Polkovnichenko (2008) use
a very similar model to study how changes in fiscal policy and government

1Ludwig and Reiter (2010) ask how pension systems should optimally adjust to de-
mographic shocks. Olovsson (2010) claims that pension payments should be very risky
because this increases precautionary savings and thereby welfare improving capital forma-
tion.
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debt affect asset prices and capital accumulation.
The remainder of this paper is structured as follows. We derive our an-

alytical results in section 2. Section 3 develops the quantitative model and
section 4 presents the calibration. The main results of our quantitative anal-
ysis are presented in section 5, where we make much use of our analytical
results. We conclude in section 6. Proofs, computational details, and robust-
ness checks are relegated to separate appendices.

2 A Two-Generations Model

We first develop an analytical model that provides useful insights for our
quantitative analysis. We adopt the partial equilibrium framework of Gor-
don and Varian (1988), Ball and Mankiw (2007), Matsen and Thogersen
(2004), Krueger and Kubler (2006) and others who assume that members
of each generation consume only in the second period of life. We show that
the aforementioned literature—which focuses on aggregate risk only—misses
important interaction mechanisms between idiosyncratic and aggregate risk.

As shown in Harenberg, Ludwig, and Maus (2013) such a two period
model misses an important aspect of the inter-temporal nature of the savings
problem which biases results against social security if wages and returns are
positively correlated.2 To avoid this discussion here—which would in any
case lead us on a sidetrack—, we simply shut down the correlation between
wages and returns.

2.1 Households

Each period t, a continuum of households is born. Households live for two
periods only. A household has preferences over consumption in the second
period. In the first period of life, the household experiences an idiosyncratic
productivity shock which we denote by η. This shock induces heterogeneity
by household type which we denote by i. In addition, we index age by j =

2The intuition is simple. The conventional view is a “hedge view” according to which
social security is a better instrument when wages and returns are negatively correlated.
The non-conventional view highlighted in Harenberg, Ludwig, and Maus (2013) is a “vari-
ance view”. A positive correlation between wages and returns increases the variance of
total income during the working period when households build up assets. Via taxing wages
social security reduce income and thereby also its variance today and shifts this variance
to the future by conditioning future social security payments on wage income of future
workers. If discounting is sufficiently strong households prefer to hold that risk in the
future rather than today. Social security can thereby be welfare improving even when
wages and returns are perfectly positively correlated.
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1, 2. Consequently, all variables at the individual level carry indices i, j, t.
The expected utility function of a household born in period t is given by

Et [u(ci,2,t+1)] ,

where the per period Bernoulli utility function is (weakly) increasing and
concave, i.e., u′ > 0, u′′ < 0. Specifically, we assume a CCRA utility function
with coefficient of relative risk aversion θ,

u(ci,2,t+1) =
c1−θ
i,2,t+1 − 1

1− θ
.

As households only value second period consumption, consumption and
savings decisions are given by

si,1,t = (1− τ)ηi,1,twt (1a)

ci,2,t+1 = si,1,t(1 + rt+1) + bt+1 (1b)

where ηi,1,t is the idiosyncratic shock to wages in the first period of life. We
assume that Eηi,1,t = 1 for all i, t. bt+1 are social security benefits to be
specified next and τ is the contribution rate to social security.

2.2 Government

The government organizes a PAYG financed social security system. Pension
benefits are lump-sum. Then the social security budget constraint writes as

btN2,t = τwt+1N1,t

where Nj,t is the population in period t of age j, i.e., Nj,t =
∫
Ni,j,tdi. We

ignore population growth, hence

bt = τwt.

We can therefore rewrite consumption in the second period as

ci,2,t+1 = si,1,t(1 + rt+1) + wt+1τ.

2.3 Welfare

We take an ex-ante Rawlsian perspective and hence specify the social welfare
function (SWF) of a cohort born in period t as the expected utility of a
generation from the perspective of period t− 1:

SWFt ≡ Et−1 [u(ci,2,t+1)] .

6



2.4 Stochastic Processes

Wages and interest rates are stochastic. We denote by ζt the shock on wages
and by ϱ̃t the shock on returns. We further assume that wages grow deter-
ministically at rate g. We therefore have:

wt = w̄tζt = w̄t−1(1 + g)ζt

Rt = R̄ϱ̃t

To simplify the analysis we assume that both ζt and ϱ̃t are not serially
correlated. Despite the observed positive serial correlation of wages and asset
returns in annual data, this assumption can be justified on the grounds of the
long factual periodicity of each period in a two-period OLG model which is
about 30 to 40 years. As discussed previously, we also assume that ζt and ϱ̃t
are statistically independent. The idiosyncratic shock ηi,1,t is not correlated
with either of the two aggregate shocks. We relax this assumption once
we introduce the CCV mechanism below. All shocks are assumed to have
bounded support. We now summarize these assumptions:

Assumption 1. a) Bounded support: ζt > 0, ϱ̃t > 0 for all t, ηi,1,t > 0 for
all i, t.

b) Means: Eζt = Eϱ̃t = Eηi,1,t = 1, for all i, t.

c) Statistical independence of (ζt+1, ζt) and (ϱ̃t+1, ϱ̃t). Therefore: E(ζt+1ζt) =
Eζt+1Eζt for all t and, correspondingly, E(ϱ̃t+1ϱ̃t) = Eϱ̃t+1Eϱ̃t for all t.

d) Statistical independence of (ζt, ϱ̃t). Therefore: E(ζtϱ̃t) = EζtEϱ̃t for all t.

e) Statistical independence of (ζt, ηi,1,t). Therefore: E(ηi,1,tζt) = Eηi,1,tEζt
for all i, t.

f) Statistical independence of (ϱ̃t, ηi,1,t). Therefore: E(ηi,1,tϱt) = Eηi,1,tEϱt
for all i, t.

2.5 Analysis

Life-Cycle Interaction

Given that ci,1,t = 0, consumption in the second period can be rewritten as

ci,2,t+1 = w̄
(
ηi,1,tζtR̄ϱ̃t+1 + τ

(
(1 + g)ζt+1 − ηi,1,tζtR̄ϱ̃t+1

))
. (3)

We then have:

7



Proposition 1. A marginal introduction of social security increases ex-ante
expected utility if

(1 + g)
Et−1

[
ζt+1

ϱ̃θt+1

]
Et−1

[
1
ζθt

]
Et−1

[
1

ηθi,1,t

]
Et−1

[
ϱ̃1−θ
t+1

]
Et−1

[
ζ1−θ
t

]
Et−1

[
η1−θ
i,1,t

] > R̄. (4)

The RHS of equation (4) reflects the costs of introducing social security
represented here by the ex-risk return on savings. We speak of the LHS
of equation (4) as the risk-adjusted implicit return of social security which
reflects the value (or benefit) of introducing social security. Obviously, the
implicit return increases if g increases. This is the standard Aaron condition.

To interpret the risk adjustment, we next assume that all stochastic vari-
ables are jointly distributed as log-normal.

Assumption 2. Joint log-normality: ηi,1,t, ζt, ζt+1, ϱ̃t+1 are jointly distributed
as log-normal with parameters µln η, µln ζ, µln ϱ̃, σ

2
ln(η), σ

2
ln(ζ), σ

2
ln(ϱ̃) for means

and variances, respectively.

We then have:

Proposition 2. Under assumption 2, a marginal introduction of social se-
curity increases ex-ante expected utility if

(1 + g) · (1 + TR)θ > R̄, (5)

where

TR ≡ var(ηi,1,tζtϱ̃t+1) = σ2
η︸︷︷︸

IR

+σ2
ζ + σ2

ϱ̃ + σ2
ζσ

2
ϱ̃︸ ︷︷ ︸

AR

+σ2
η

(
σ2
ζ + σ2

ϱ̃ + σ2
ζσ

2
ϱ̃

)︸ ︷︷ ︸
LCI=IR·AR

. (6)

To interpret this condition, observe that, according to equation (6), term
TR—standing in for ”total risk”—consists of three components, reflecting the
effect of idiosyncratic risk in term IR, total aggregate risk in term AR and a
mechanical interaction between idiosyncratic and aggregate risk in term LCI.
To understand the nature of these terms notice that, in absence of social
security, savings cum interest in our simple model is given by si,1,tRt+1 =
w̄tR̄ηi,1,tζtϱ̃t+1. Hence, from the ex-ante perspective, the product of three
sources of risk are relevant, idiosyncratic wage risk, ηi,1,t, aggregate wage
risk, ζt, and aggregate return risk, ϱ̃t+1. Term TR is the variance of the
product of these stochastic elements. It can be derived by applying the
product formula of variances presented in Goodman (1960).

For standard random variables, an interaction term involving products
of variances—such as LCI in our context—would be small. However, we
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here deal with long horizons so that the single variance terms might be quite
large. Illustration 1 in the appendix gives a simple numerical example which
uses parameters of our calibrated income processes. Based on this example
we conclude that LCI adds about 40 percent times AR. Whatever the exact
size of AR is, this interaction is clearly a non-negligible increase in overall
income risk.

We next address how the utility consequences of a marginal introduc-
tion of social security—by a percentage point increase of dτ—translate into
utility. To measure this we compute the consumption equivalent variation
(CEV). That is, we express utility gains from introducing social security at
rate dτ > 0 as the compensation in a policy regime without social secu-
rity (τ = 0) in units of a percent increase of consumption gc. We denote
by gc(AR, IR) the CEV required if both risks, idiosyncratic and aggregate,
are present. We decompose this total CEV into various components. We ac-
cordingly denote the CEV in a deterministic setting by gc(0, 0), with only ag-
gregate risk by gc(AR, 0) and with only idiosyncratic risk by gc(0, IR), respec-
tively. Observe from these definitions that gc(AR, 0) = gc(0, 0) + dgc(AR),
where dgc(AR) denotes the additional CEV due to aggregate risk. Corre-
spondingly, we have gc(0, IR) = gc(0, 0) + dgc(IR). With these definitions,
it is also straightforward to define the additional effects, in terms of CEV, of
the interaction between idiosyncratic and aggregate risks. It is given as the
residual, namely, dgc(LCI) = gc(AR, IR)− (g(0, 0)+dgc(AR)+dgc(IR)). In
the appendix, we show that gc(AR, IR) can be expressed—in a logarithmic
approximation—as

gc =

(
1 + g

R̄
(1 + V )θ − 1

)
dτ (7)

Taking a first-order Taylor series expansion of the above around V = 0 gives

gc(AR, IR) ≈

1 + g

R̄
− 1︸ ︷︷ ︸

gc(0,0)/dτ

+ θ
1 + g

R̄
AR︸ ︷︷ ︸

dgc(AR)/dτ

+ θ
1 + g

R̄
IR︸ ︷︷ ︸

dgc(IR)/dτ

+ θ
1 + g

R̄
LCI︸ ︷︷ ︸

dgc(LCI)/dτ

 dτ (8)

These equations have a straightforward interpretation. First, utility losses
in a dynamically efficient economy—where R̄ > 1 + g—are approximately
linear in the size of the social security system, dτ . Additional gains due
to insurance against risk—the risk components being AR, IR and LCI,
respectively—increase in the size of risk whereby this increase is exponen-
tially in risk aversion, cf. equation (7). Finally, the proportional increase of
risk via the interaction translates—in a first-order approximation given by
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equation (8)—into corresponding utility consequences as measured by CEV
because dgc(LCI) = IR · dgc(AR).

Modification: Counter-Cyclical Conditional Variance

We now return to condition (4) and modify assumption 2 slightly in order
to reflect the CCV mechanism. Observe that CCV, by definition, does away
with assumption 1e.

Assumption 3. ζt ∈ [ζl, ζh] for all t where ζh > ζl > 0. We let ζh = 1 +∆ζ

and ζl = 1−∆ζ where ∆ζ < 1. Notice that 1
2
(ζl+ ζh) = 1. ηi,1,t is distributed

as log-normal whereby

ηi,1,t =

{
ηi,1,l for ζt = ζl

ηi,1,h for ζt = ζh.

and E ln ηi,1,l = E ln ηi,j,h = E ln ηi,j,t = E ln η and

σ2
ln η =

{
σ2
ln ηh

= σ2
ln η +∆ for ζt = ζl

σ2
ln ηl

= σ2
ln η −∆ for ζt = ζh.

For simplicity, we focus only at the log-uility case, hence θ = 1. The RHS
of equation (4) then rewrites as

(1 + g)Et−1

[
ζt+1

ϱ̃t+1

]
Et−1

[
1

ζt

]
Et−1

[
1

ηi,1,t

]
Under assumption 3, the expression rewrites as

(1 + g)Et−1

[
ζt+1

ϱ̃t+1

]
1

2

(
1

ζl
Et−1

[
1

ηi,1,l

]
+

1

ζh
Et−1

[
1

ηi,1,h

])
(9)

and, without CCV, the corresponding expression is

(1 + g)Et−1

[
ζt+1

ϱ̃t+1

]
1

2

(
1

ζl
+

1

ζh

)
Et−1

[
1

ηi,j,t

]
. (10)

We can then show the following:

Proposition 3. a) the LHS of eq. (9) is larger than the LHS of eq. (10).

b) the difference between the LHS of eq. (9) and the LHS of eq. (10) increases
in the variance of aggregate shocks.

We can therefore conclude that, on top of the previously illustrated me-
chanical interaction between idiosyncratic and aggregate risk, the direct in-
teraction via the CCV mechanism will further increase the beneficial effects
of social security. Importantly, finding 3b establishes that the effect of CCV
is larger when the variance of aggregate risk is higher.
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2.6 Extension: Analysis in General Equilibrium

Our simple setup only provides a partial characterization of the total welfare
effects of social security. As we do not consider consumption in the first
period of life, it misses the effects of taxation on reallocation of consump-
tion and savings. Furthermore, we do not consider any feedback in general
equilibrium. In our companion paper, Harenberg and Ludwig (2013), we
incorporate both channels in a standard Diamond (1965) model with risk.3

Hence, relative to the simple model presented here, consumption and savings
decisions take place in the first period and wages and returns are determined
in general equilibrium. There, we conclude with two additional findings
that directly follow from the intuition provided above. First, by providing
insurance social security reduces precautionary savings so that first period
consumption increases and the consumption growth rate goes down. Interac-
tion of risks increases the welfare benefits arising from such a reallocation of
resources. Second—as a mirror image of this effect—interactions of risk drive
up the welfare losses induced by crowding out of capital. Our quantitative
model to which we turn next accounts for all these channels.

3 The Quantitative Model

[TBC]
Our quantitative model extends our simple model along several dimen-

sions. First, we take a general equilibrium perspective. Second, rather than
considering a stylized setup with two generations we take a periodicity of one
calendar year and consider J overlapping generations. Consumption and sav-
ings decisions take place every period. Third, we introduce one period ahead
risk-free bonds. The primary reason for this extension is to impose discipline
on calibration. Having a bond in the model means that our model entails
predictions about general equilibrium asset prices. Any model on the wel-
fare effects of social security should have realistic asset pricing implications.
By providing a bond, we give households an additional asset to self-insure
against idiosyncratic and aggregate risk. Ceteris paribus, this reduces the
beneficial effects of social security. However, the presence of the bond also
reduces the effect of decreasing savings on the crowding out of productive
capital because part of the reduced savings is absorbed by the bond market.

3These extensions involve extensive algebra. For reasons of space we relegate this
analysis to the companion paper.
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3.1 Risk and Time

Time is discrete and runs from t = 0, . . . ,∞. Risk is represented by an event
tree. The economy starts with some fixed event z0, and each node of the tree
is a history of exogenous shocks zt = (z0, z1, ..., zt). The shocks are assumed
to follow a Markov chain with finite support Z and strictly positive transition
matrix πz(z′ | z). Let Πz denote the invariant distribution associated with
πz. In our notation, we will make all aggregate and idiosyncratic shocks con-
tingent on zt. For notational convenience, we will suppress the dependency
of all other variables on zt but history dependence of all choice variables is
understood.

3.2 Demographics

In each period t, the economy is populated by J overlapping generations of
agents indexed by j = 1, . . . , J , with a continuum of agents in each gen-
eration. Population grows at the exogenous rate of n. Households face an
idiosyncratic (conditional) probability to survive from age j to age j + 1
which we denote by ςj+1, hence ς1 = 1 and ςJ+1 = 0. Consequently, given
an initial population distribution {N0,j}Jj=1 which is consistent with con-
stant population growth for all periods t = 0, 1, . . . and normalized such
that N0 =

∑J
j=1Nt,j = 1, the exogenous law of motion of population in our

model is given by

Nt+1,1 = (1 + n)Nt,1

Nt+1,j+1 = ςj+1 ·Nt,j for j = 1, . . . , J.

Households retire at the fixed age jr. Labor supply is exogenous in our model
and during the working period j = 1, . . . , jr − 1 each household supplies
one unit of labor. Observe that constant population growth implies that
population shares, e.g., the working age to population ratio, are constant.

3.3 Firms

Production of the final good takes place with a standard Cobb-Douglas pro-
duction function with total output at time t given by

Yt = F (ζ(zt), Kt, Lt) = ζ(zt)K
α
t (ΥtLt)

1−α (11)

where Kt is the aggregate stock of physical capital, Lt is labor, ζ(zt) is a
stochastic shock to productivity and Υt is a deterministic technology level
growing at the exogenous rate g.
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The economy is closed. The consumption good can either be consumed
in the period when it is produced or can be used as an input into a pro-
duction technology producing capital. We ignore capital adjustment costs.
Accordingly, the production technology for capital is

Kt+1 = It +Kt(1− δ(zt))

= Yt − Ct +Kt(1− δ(zt)) (12)

where δ(zt) is the stochastic depreciation rate of physical capital.
Firms maximize profits and operate in perfectly competitive markets.

Accordingly, the rate of return to capital and the wage rate are given by

wt = (1− α)Υtζ(zt)k
α
t (13a)

rt = αζ(zt)k
α−1
t − δ(zt) (13b)

where kt =
Kt

ΥtLt
is the capital stock per unit of efficient labor which we refer

to as “capital intensity”.

3.4 Endowments

Agents are endowed with one unit of labor which is supplied inelastically for
ages j = 1, . . . , jr − 1. After retirement, labor supply is zero. Households
have access to two savings storage technologies. Either they save in the risky
technology at rate of return rt or in a one-period risk-free bond at return rft
which is in zero net supply. Households are subject to idiosyncratic shocks
to their labor productivity. This shock induces heterogeneity by household
type which we denote by i. We denote total assets by Ai,j,t, and the share
invested in the risky asset by κi,j,t.

Additional elements of the dynamic budget constraint are income, Yi,j,t,
to be specified below and consumption, Ci,j,t. The dynamic budget constraint
of a household at age j then reads as

Ai,j+1,t+1 = Ai,j,t(1 + rft + κi,j−1,t−1(rt − rft )) + Yi,j,t − Ci,j,t (14)

where κi,j−1,t−1 ∈ [−κ, κ], for all i, j, t. This restricts the leverage in stocks
in our model.4

4In a model without a constraint of the form κi,j−1,t−1 ∈ [−κ, κ] we have a singularity
atXi,j,t−Ci,j,t = 0 so that, forXi,j,t−Ci,j,t → +0, κi,j,t → +∞ and forXi,j,t−Ci,j,t → −0,
κi,j,t → −∞. The presence of the singularity has consequences for aggregation because the
set for κ will not be compact. We set the constraint in order to rule out this technicality,
but we set the bounds so high that the constraint will rarely be binding in equilibrium.
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Income is given by

Yi,j,t =

{
(1− τ)ϵjwtηi,j,t for j < jr

Bi,j,t for j ≥ jr
(15)

where ϵj is age-specific productivity and ηi,j,t is an idiosyncratic stochastic
component.

We assume that ηi,j,t follows a time and age-independent Markov chain
whereby the states of the Markov chain are contingent on aggregate states z.
Accordingly, let the states be denoted by Ez = {ηz1, . . . , ηzM} and the tran-
sition matrices be πη(η′ | η) > 0. Let Πη denote the invariant distribution
associated with πη.

As for pension income, we assume that pension payments are lump-sum,
hence

Bi,j,t = btΥt (16)

where bt is some normalized pension benefit level which only depends on t.
Accordingly, the pension system fully redistributes across household types.
This is an approximation to the U.S. pension system.5

3.5 Preferences

We take Epstein-Zin preferences. Let θ be the coefficient of relative risk-
aversion and φ denote the inter-temporal elasticity of substitution. Then

Ui,j,t =

[
C

1−θ
γ

i,j,t + β
(
ςj+1Ei,j,t

[
U1−θ
i,j+1,t+1

]) 1
γ

] γ
1−θ

(17)

where γ = 1−θ
1− 1

φ

, and β > 0 is the standard discount factor. For θ = 1
φ
we

have γ = 1 and are back to CRRA preferences. Ei,j,t is the expectations op-
erator and expectations, conditional on information for household i, j, t, are
taken with respect to idiosyncratic wage shocks and aggregate productivity
and depreciation shocks. We assume that UJ = CJ .

3.6 The Government

The government organizes a PAYG financed social security system. We take
the position that social security payments are not subject to political risk.

5The U.S. pension system links contributions to AIME, the average indexed monthly
earnings and has an additional distributional component by the so-called bend point for-
mula. From an ex-ante perspective, given this distributional component and provided that
income shocks are non-permanent, an approximation with lump-sum pension benefits is a
good first-order approximation.
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We assume that the budget of the social security system is balanced in all
periods. We describe various social security scenarios below. We further
assume that the government collects all accidental bequests and uses them
up for government consumption which is otherwise neutral.

3.7 Equilibrium

To define equilibrium we adopt a de-trended version of the household model.
We therefore first describe transformations of the household problem and
then proceed with the equilibrium definition.

Transformations

Following Deaton (1991), define cash-on-hand by Xi,j,t = Ai,j,t(1 + rft +

κi,j−1,t−1(rt− rft ))+Yi,j,t. The dynamic budget constraint (14) then rewrites
as

Xi,j+1,t+1 = (Xi,j,t − Ci,j,t)(1 + rft+1 + κi,j,t(rt+1 − rft+1)) + Yi,j+1,t+1 (18)

We next transform the problem to de-trend the model and work with
stationary variables throughout. That is, we de-trend with the deterministic
trend component induced by technological progress. Along this line, define
by xi,j,t =

Xi,j,t

Υt
transformed cash-on-hand and all other variables accordingly.

Using ωt =
wt

Υt
to denote wages per efficiency unit we have

yi,j,t =

{
(1− τ)ϵjωtηi,j,t for j < jr

bt for j ≥ jr.

Now divide the dynamic budget constraint (18) by Υt and rewrite to get

xi,j+1,t+1 = (xi,j,t − ci,j,t)R̃i,j+1,t+1 + yi,j+1,t+1. (19)

where R̃i,j+1,t+1 =
(1+rft+1+κi,j,t(rt+1−rft+1))

1+g
.

Transform the per period utility function accordingly and take an addi-
tional monotone transformation to get

ui,j,t =

[
c

1−θ
γ

i,j,t + β̃j+1

(
Ei,j,t

[
(ui,j+1,t+1)

1−θ
]) 1

γ

] γ
1−θ

(20)

where β̃j+1 = βς
1
γ

j+1 (1 + g)
1−θ
γ .
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Definition of Equilibrium

Individual households, at the beginning of period t are indexed by their age j,
their idiosyncratic productivity state η, their cash on hand holdings x, and a
measure Φ(j, x, η) which describes the beginning of period wealth distribution
in the economy, i.e., the share of agents at time t with characteristics (j, x, η).
We normalize such that

∫
dΦ = 1. Existence of aggregate shocks implies

that Φ evolves stochastically over time. We use H to denote the law of
motion of Φ which is given by

Φ′ = H(Φ, z, z′) (21)

Notice that z′ is a determinant of Φ′ because it determines R̃i,j+1,t+1 and
therefore the distribution over x′.

The de-trended version of the household problem writes as

u(j, x, η; z,Φ) =max
c,κ,x′

{[
c

1−θ
γ + β̃

(
E
[
(u(j + 1, x′, η′; z′,Φ′))

1−θ
]) 1

γ

] γ
1−θ

}
s.t. x′ = (x− c)R̃′ + y′

R̃′ =
(1 + rf

′
+ κ(r′ − rf

′
))

1 + g

Φ′ = H(Φ, z, z′).

We therefore have the following definition of the recursive equilibrium of
our economy:6

Definition 1. A recursive competitive equilibrium is a value function u, pol-
icy functions for the household, x′(·), a′(·), c(·), κ(·), policy functions for the
firm, K(·), L(·), pricing functions r(·), q(·), w(·), policies, τ , b, aggregate
measures Φ(·) and an aggregate law of motion, Ht such that

1. u(·), x′(·), a′(·), c(·), κ(·) are measureable, u(·) satisfies the household’s
recursive problem and x′(·), a′(·), c(·), κ(·) are the associated policy func-
tions, given r, q, ω, τ and b.

2. K,L satisfy, given r(Φ, z) and w(Φ, z),

ω(Φ, z) = (1− α)ζ(z)k(Φ, z)α (23a)

r(Φ, z) = αζ(z)k(Φ, z)α−1 − δ(z). (23b)

6We use the integration operator
∫

as a short-cut notation for all sums and integrals
involved but discreteness of the characteristics (j, z) is understood. When integrating out
with respect to all characteristics of the distribution, we simply write dΦ, hence

∫
·dΦ =∫

·Φ(dj× dx× dη). When we integrate only with respect to a subset of characteristics, we
make this explicit by, e.g., writing

∫
·Φ(j, dx× dη).
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where k(Φ, z) = K(Φ,z)
ΥL

is the capital stock per efficiency unit (or “cap-
ital intensity”) and Υ = (1 + g)Υ−1 is the technology level in period t.

3. neutral government consumption financed by bequests is given by

gc′ =

∫
(1− ςj+1)a

′ (j, x, η; z,Φ)R′(κ(·))dΦ
ℓ(1 + n)(1 + g)

(24)

where

R′(κ(·)) = (1 + rf
′
+ κ(j, x, η; z,Φ)(r′ − rf

′
)).

4. the pension system budget constraint holds, i.e.

τ(Φ, z)ω(Φ, z) = b(Φ, z)p (25)

where p is the economic dependency ratio which is stationary in our
model.7

5. For all Φ and all z

k(H(Φ, z, z′), z′)(1 + g)(1 + n) =
1

ℓ

∫
κ(j, x, η; z,Φ)a′(j, x, η; z,Φ)dΦ

(26a)

0 =

∫
(1− κ(j, x, η; z,Φ))a′(j, x, η; z,Φ)dΦ (26b)

i(Φ, z) = f(k(Φ, z))− gc− 1

ℓ

∫
c(j, x, η; z,Φ)dΦ (26c)

k(H(Φ, z, z′), z′)(1 + g)(1 + n) = k(Φ, z)(1− δ(z)) + i(Φ, z) (26d)

where ℓ is the working age to population ratio8, equation (26b) is the
bond market clearing condition and the bond price q is determined such
that it clears the bond market in each period t and i(·) = I(·)

ΥL
is invest-

ment per efficiency unit.

6. The aggregate law of motion H is generated by the exogenous population
dynamics, the exogenous stochastic processes and the endogenous asset
accumulation decisions as captured by the policy functions x′.

Definition 2. A stationary recursive competitive equilibrium is as described
above but with time constant individual policy functions x′(·), a′(·), c(·), κ(·)
and a time constant aggregate law of motion H.

7It is given by p =
∑J

j=jr
(1+n)J−j ∏j−1

i=1 ςi∑jr−1
j=1 (1+n)J−jϵj

∏j−1
i=1 ςi

.

8It is given by ℓ =
∑jr−1

j=1 (1+n)J−jϵj
∏j−1

i=1 ςi∑J
j=1(1+n)J−j

∏j−1
i=1 ςi

.
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3.8 Welfare Criteria

We compare two long-run stationary equilibria and do not take into account
transitional dynamics. Our welfare concept is the consumption-equivalent
variation for a newborn before any shocks are realized. It is an ex-ante
perspective where the agent does not know the aggregate state nor the level
of capital that he will be born into. A positive number then states the
amount an agent would be willing to give up in order to be born into the
second long-run equilibrium (i.e. into an economy with some social security).

Note that this comparison between long-run equilibria provides a lower
bound on the expected welfare gains for newborns along the transition, be-
cause they are spared some of the negative effects of crowding out, and
because they get to save less and consume more as the level of capital moves
toward its new, lower level.

3.9 Thought Experiment

In our initial equilibrium a social security system does not exist. In the
second equilibrium, the economy features a social security system with a
contribution rate of 2 percent. One can think of this as the introduction of a
’marginal’ social security system as described in Krueger and Kubler (2006).
We use their proposition 1 to ensure that the initial economy is dynamically
efficient so as to rule out any welfare gains that would come from curing
dynamic inefficiency.

We then use the exact same economy to conduct partial equilibrium
(PE) experiments that enable us to disentangle the welfare gains due to
insurance from the welfare losses due to crowding out and its associated
price changes. In this partial equilibrium, we feed in the sequence of shocks
and prices {zt, rt, rft , wt}Tt=1 obtained from the associated general equilibrium
(GE). It is like a small open economy, where aggregate prices are determined
by the world and fluctuate over time and are not influenced by domestic
policy changes. If we do not change any other parameter, then the results
are naturally exactly the same as in the associated GE. To isolate the total
insurance effects, we let agents optimize under the new policy, i.e. τ = 0.2,
but with the ’old’ approximate laws of motion that still hold for the evolu-
tion of aggregate prices. Then we simulate by feeding in the old sequence
of shocks and prices, but with the new policy functions and the new social
security system. In a very similar fashion, we isolate the insurance against
aggregate risk, idiosyncratic risk, CCV, and survival risk.

In order to also isolate the interaction effect LCI, we proceed by relating
back to equation (8) of our 2-generations model. Recall that gc(AR, IR)—the
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total welfare gains with full aggregate and idiosyncratic risk at work, ignor-
ing CCV and survival risk—can be decomposed as gc(AR, IR) = gc(0, 0) +
dgc(AR) + dgc(IR) + dgc(LCI) where gc(0, 0) is the welfare gain—expressed
in terms of CEV—in an economy with zero aggregate risk and zero idiosyn-
cratic risk and dg(X) is the additional gain attributed to component X,
our objects of interest. Also recall that welfare gains in an economy with
zero aggregate risk and full idiosyncratic risk, gc(0, IR), can be written
as gc(0, IR) = gc(0, 0) + dgc(IR). Correspondingly we have for an econ-
omy with only aggregate risk that gc(AR, 0) = gc(0, 0) + dgc(AR). With
objects gc(0, 0), gc(0, IR), gc(AR, 0) and gc(AR, IR) at hand we can deter-
mine dg(X) for X = AR, IR, LCI with the following system of equations

gc(0, IR) = gc(0, 0) + dgc(IR) (27a)

gc(AR, 0) = gc(0, 0) + dgc(AR) (27b)

gc(AR, IR) = gc(0, 0) + dgc(AR) + dgc(IR) + dgc(LCI) (27c)

This requires solving models without idiosyncratic risk—to determine gc(AR, 0)—
and without aggregate risk—to determine gc(0, 0) and gc(0, IR). As the latter
requires solution of models without aggregate risk, there will no longer be
two differential assets with respective returns and no portfolio choice. In
these economies, we set the rate of return to 4.2% which corresponds to the
empirical estimate of Siegel (2002).

3.10 Computational Details

Following Gomes and Michaelides (2008) and Storesletten, Telmer, and Yaron
(2007) we compute an approximate equilibrium of our model by applying the
Krusell and Smith (1998) method. We approximate the solution by consid-
ering forecast functions of the average capital stock in the economy and the
ex-ante equity premium. In the general equilibrium version of our model,
we loop on the postulated laws of motion until convergence. We do so by
simulating the economy for T = 5000 periods and discard the first 500 ini-
tialization periods. In each period, we compute the market clearing bond
price. The goodness of fit of the approximate laws of motion is R2 = 0.99.

We compute solution to the household model by adopting Carroll’s en-
dogenous grid method, which reduces computational time strongly. Written
in Fortran 2003, the model takes about one hour to converge to a solution,
given a decent initial guess for the laws of motion. A more detailed descrip-
tion of our computational methods can be found in appendix B.
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4 Calibration

4.1 Overview

Part of our parameters are exogenously calibrated either by reference to other
studies or directly from the data. We refer to these parameters as first stage
parameters. A second set of parameters is calibrated by informally matching
simulated moments to respective moments in the data. Accordingly, we refer
to those parameters as second stage parameters. Table 1 summarizes the
calibration.

4.2 Production Sector

We set the value of the capital share parameter, a first stage parameter,
to α = 0.32. This is directly estimated from NIPA data (1960-2005) on total
compensation as a fraction of (adjusted) GDP. Our estimated value is in the
range of values considered as reasonable in the literature. It is close to the
preferred value of 0.3 as used by Krueger and Kubler (2006). To estimate α,
we take data on total compensation of employees (NIPA Table 1.12) and
deflate it with the GDP inflator (NIPA Table 1.1.4). In the numerator, we
adjust GDP (NIPA Table 1.1.5), again deflated by the GDP deflator, by
nonfarm proprietors’ income and other factors that should not be directly
related to wage. Without these adjustments, our estimate of α would be
considerably higher, i.e., at α = 0.43.

To determine the mean depreciation rate of capital, a first stage parameter
in our model, we proceed as follows. We first estimate the capital output
ratio in the economy. To measure capital, we take the stock of fixed assets
(NIPA Table 1.1), appropriately deflated. We relate this to total GDP. This
gives an estimate of the capital output ratio of K/Y = 2.65, in line with the
estimates by, e.g., Fernández-Villaverde and Krueger (2011), or of the ratio
of output to capital of 0.38. This implies an average marginal product of
capital E[mpk] = αE[Y/K] = 0.12. Given this estimate for the marginal
product of capital and our estimate for the average risky return on capital
of 0.079 based on data since 1950 provided by Rob Shiller, we set E[δ] =
E[mpk]− E[r] = 0.042.9

Our estimate of the deterministic trend growth rate, also a first stage pa-
rameter, is g = 0.018 which is in line with other studies. We determine it by
estimating the Solow residual from the production function, given our esti-
mate of α, our measure for capital, and a measure of labor supply determined

9The data was downloaded from Rob Shillers webpage and is available under the address
http://www.econ.yale.edu/∼shiller/data.htm.
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by multiplying all full- and part-time employees in domestic employment
(NIPA Table 6.4A) with an index for aggregate hours (NIPA Table 6.4A).10

We then fit a linear trend specification to the Solow residual. Acknowledging
the labor augmenting technological progress specification chosen, this gives
the aforementioned point estimate.

4.3 Aggregate States and Shocks

We assume that aggregate risk is driven by a four state Markov chain with
support Z = {z1, . . . , z4} and transition matrix π = (πij). Each aggregate
state maps into a combination of low or high technology shocks and low or
high physical capital depreciation. We let

ζ(z) =

{
1− ζ̄ for z ∈ z1, z2

1 + ζ̄ for z ∈ z3, z4
and δ(z) =

{
δ0 + δ̄ for z ∈ z1, z3

δ0 − δ̄ for z ∈ z2, z4.
(28)

With this setup, z1 corresponds to a low wage and a low return, while z4
corresponds to a high wage and a high return.

To calibrate the entries of the transition matrix, denote by πζ = π(ζ ′ =
1− ζ̄ | ζ = 1− ζ̄) the transition probability of remaining in the low technology
state. Assuming that the transition of technology shocks is symmetric, we
then also that π(ζ ′ = 1 + ζ̄ | ζ = 1 + ζ̄) = πζ and, accordingly 1 − πζ =
π(ζ ′ = 1− ζ̄ | ζ = 1 + ζ̄) = π(ζ ′ = 1 + ζ̄ | ζ = 1− ζ̄).

To govern the correlation between technology and depreciation shocks,
let the probability of being in the high (low) depreciation state conditional
on being in the low (high) technology state, assuming symmetry, be πδ =
π(δ′ = δ0 + δ̄ | ζ ′ = 1 − ζ̄) = π(δ′ = δ0 − δ̄ | ζ ′ = 1 + ζ̄). We then have
that the transition matrix of aggregate states follows from the corresponding
assignment of states in (28) as

πz =


πζ · πδ πζ · (1− πδ) (1− πζ) · (1− πδ) (1− πζ) · πδ

πζ · πδ πζ · (1− πδ) (1− πζ) · (1− πδ) (1− πζ) · πδ

(1− πζ) · πδ (1− πζ) · (1− πδ) πζ · (1− πδ) πζ · πδ

(1− πζ) · πδ (1− πζ) · (1− πδ) πζ · (1− πδ) πζ · πδ


In sum, the Markov chain process of aggregate shocks is characterized

by four parameters, (ζ̄ , δ̄, πζ , πδ). All of these parameters are second stage
parameters which we calibrate jointly to match the following targets: (i) an
average variance of the cyclical component of TFP, again estimated from

10Notice that we thereby ignore age-specific productivity which should augment our
measure of employment.
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NIPA data, (ii) the average fluctuation of the risky return which features
a standard deviation in the data of 0.16, (iii) the autocorrelation of the
cyclical component of TFP in the data and (iv) the estimated correlation of
the cyclical component of TFP with risky returns.

As to the latter targets, notice that linear detrending, as assumed, e.g.,
by Krueger and Kubler (2006), results in a negative correlation of TFP and
asset returns as well as wages and asset returns. Table 2 below gives the
numbers in column NC, standing in for negative correlation. We regard this
finding as unrealistic.11

Table 2: Calibration: Estimates of aggregate risk

NC PC
Corr. (TFP, returns), cor(ζt, rt) -0.08 (0.57) 0.50 (0.00)
Corr. (wages, returns), cor(wt, rt) -0.33 (0.016) 0.306 (0.025)

Notes: NC: Negative correlation between TFP shocks and returns (linear
trend estimation), PC: Positive correlation between TFP shocks and returns
(first differences estimation). p-values are reported in brackets.

Assuming, on the contrary, a unit root process for (the log of) TFP and
detrending by first differences yields a highly significant positive correlation,
cf. column PC in table 2. This finding coincides with our economic intuition
as we would expect these variables to co-move over the cycle. For sake of
consistency, we then transform the numbers to an equivalent deterministic
trend specification in the following way. We stick to the Krueger and Kubler
(2006) calibration and only adopt the new correlation structure between TFP
innovations and returns. This means that we implicitly compute the average
horizon h in the unit root model such that the unconditional variance over h
periods coincides with the KK calibration. This gives an average horizon
of h = 19.2751 years.12

11In earlier versions of this paper we also presented results of such a calibration. Those
are available upon request.

12Observe that the unit root estimates in fact imply even stronger aggregate fluctuations.
Adjusting the variance in the linear trend specification such that the average horizon equals
the average horizon of households in our model, appropriately adjusted to account for the
correlation of TFP innovations, gives an average horizon of 34.88 years. This implies a
standard deviation of 0.039. Relative to the PC calibration this means that the standard
deviation of innovations increases by roughly 76 percent. However, the overall effects of
this additional increase in risk are small. Results are available upon request.
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Overall, targeting the aforementioned four moments with the methods
described requires setting ζ̄ ∈ {1.029, 0.971}, δ̄ = 0.11, πζ = 0.941 and πδ =
0.86.

In order to check robustness of our findings, we also adopt a standard RBC
view of the data and de-trend with the Hodrick-Prescott filter. This yields a
highly significant, positive correlation which is comparable in magnitude to
our preferred PC (finite difference) calibration.13

4.4 Population Data

We assume that agents start working at the biological age of 21, which there-
fore corresponds to j = 1. We set J = 70, implying that agents die with
certainty at biological age 90, and jr = 45, corresponding to a statutory
retirement age of 65. Population grows at the rate of 1.1% which reflects the
current trend growth of the US population. The conditional survival rates
ςj are imputed from mortality data retrieved from the Human Mortality
Database (HMD).

4.5 Household Sector

The value of household’s raw time discount factor, β, and the coefficient of
relative risk aversion θ are calibrated endogenously (second stage parameters)
such that our model produces a capital output ratio of 2.65 and an average
equity premium of 0.056.

We determine the intertemporal substitution elasticity as a second-stage
parameter such that our model generates a hump-shaped consumption pro-
file. This is achieved via a relatively high value of φ = 1.5. It is consistent
with the range discussed in Bansal and Yaron (2004) and lower than their
benchmark value of 2.

The age-specific productivity profile ϵj is calibrated to match PSID data
applying the method of Huggett (2011).

Our calibration of states Ez and transition probabilities πη of the idiosyn-
cratic Markov chain income processes is based on estimates of Storesletten,
Telmer, and Yaron (2004b), henceforth STY, for individual wage income
processes. STY postulate that the permanent shocks obey an AR(1) process
given as

ln(η)i,j,t = ρ ln(η)i,j−1,t−1 + ϵi,j,t (29)

13In earlier versions of this paper we also presented results of such a calibration. Those
are available upon request.
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where
ϵi,j,t ∼ N (0, σ2

t ) (30)

Building on Constantinides and Duffie (1996), STY assume a counter-
cyclical, cross-sectional variance of the innovations (CCV). Their estimates
are ρ = 0.952 and

σ2
t =

{
σ2
c = 0.0445 for z ∈ z1, z2

σ2
e = 0.0156 for z ∈ z3, z4

(31)

where e stands for expansion and c for contraction.
We approximate the above process by discrete two-state Markov pro-

cess. Denoting state contingency of the innovations by σ2(z), observe that

σ(z)2ln η = σ2(z)
1−ρ2

. We then approximate the underlying η by the following
symmetric Markov process:

Ez = [η1(z), η2(z)] = [η−(z), η+(z)] (32)

πη =

[
π̄η 1− π̄η

1− π̄η π̄η

]
(33)

Π = [0.5, 0.5]

so that the unconditional mean of the state vector is equal to 1.
Our approximation is different from standard approximations of log in-

come processes in two respects. First, standard approximations do not condi-
tion on aggregate states. Second, standard approximations ignore a bias term
which gets large when the variance of the estimates increases. We describe
the details of our procedure in appendix B.3. Resulting estimates are

η1 = η− =

{
0.4225 for z = z1, z2

0.6196 for z = z3, z4
η2 = η+ =

{
1.5775 for z = z1, z2

1.3804 for z = z3, z4

and π̄η = 0.9741.

5 Results

[TBC]
In the discussion of the main results of our quantitative analysis we will

refer to the insights derived from the simple model of section 2. In partic-
ular, we will highlight the insurance effects against idiosyncratic risk (IR),
aggregate risk (AR), and their interaction (LCI) as defined in equation (8),
and oppose them with the costs of crowding out.
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Calibration of a large and positive correlation of technology shocks and
the interest rate, cf. table 1, results in a positive correlation of wages and
returns, cor(w, r) = 0.236. Volatility of consumption growth in the economy
is high, cf. table 3.14

Table 3: Model-generated moments (PC)

cor(w, r) std(∆C/C)
0.236 0.076

The effects of our social security experiment on welfare, capital, and prices
are documented in table 4. In the first column (labeled ’GE’ for general
equilibrium), we compare the two long-run equilibria without any transition.
We see that the increase of the contribution rate from τ = 0.0 to τ = 0.02
leads to welfare gains of +3.52%. This number represents the percent of
lifetime consumption the agent would be willing to give up to be born into
the economy with some social security. It is a very large number. There is
substantial crowding out of capital of -5.9%, which leads to the displayed
price changes, but this adverse effect is not strong enough to overturn the
benefits from insurance.

In order to isolate those insurance benefits, we conduct the partial equi-
librium (PE) experiment described in section 3.9. One can think of it as
a small open economy, where aggregate prices are determined in the world,
and social security is introduced in the small home country. As the second
column in table 4 shows, the net welfare gains attributable to the total in-
surance provided by social security amount to +9.37%. Aggregate prices in
this world do not change by construction, and that is why we can isolate the
insurance effects. Therefore, the difference between the two welfare numbers
8.88%− 3.17 = 5.71% can be attributed to the crowding out of capital. Fi-
nally, the ∆K/K = −29.39% in PE should be interpreted as “less capital
being invested abroad”: of course agents save less for retirement, and this
effect is much smaller in GE because of the mitigating price adjustments.

How much of the welfare gains in partial equilibrium of +8.88% can be
attributed to insurance against aggregate risk, how much to idiosyncratic
wage risk, how much to CCV, and to survival risk? That is answered in
table 5, where we start with an economy with only aggregate risk, then add
idiosynratic wage risk on top, then add CVV, and finally also include survival
risk. For each economy, we look at the welfare gains from the experiment in

14We currently work on a new calibration of our model which will bring this number
down. This will affect our quantitative but not our qualitative findings on the welfare
effects of social security.
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Table 4: The social security experiment (PC)

GE PE
∆Welf/Welf +3.17% +8.88%
∆K/K -5.96% -29.39%
∆E(r) +0.30% 0.00%
∆rf +0.66% 0.00%
∆w/w -3.89% 0.00%

PE, so that in the last column, we end up with the same +8.88% that we
just saw. The first column looks at an economy with only aggregate risk,
which therefore is comparable to the partial equilibrium of KK. The welfare
gains of in an economy featuring only aggregate risk are +0.97%. We will
further decompose this below into the welfare losses in a dynamically efficient
risk-free economy and the gains from insurance against aggregate risk.

The second column of table 5 looks at an economy with both aggregate
and idiosyncratic risk. Introducing social security in this economy leads to
substantially larger welfare gains of +3.38%, which—since this is still PE—
are attributable to the intergenerational insurance against aggregate risk plus
the intergenerational insurance against idiosyncratic risk. When we add CCV
risk, insurance gains go up by another 1.66% (calculated as 5.04%− 3.38%),
and looking at the last column we see that adding survival risk adds another
3.84%.

Table 5: Insurance against sources of risk

aggr. + idios. + CCV + surv.
risk wage risk risk

∆Welf/Welf +0.97% +3.38% +5.04% +8.88%

Finally, we turn to a decomposition into the insurance components against,
AR, IR and their interaction, LCI. This is down with the methods described
in section 3.9, especially the system of equations in (27). When solving the
economies without risk, we set the average rate of return to 4.2% corre-
sponding to the empirical estimates reported in Siegel (2002). Results of
this decomposition analysis are shown in table 6. Out of the total effect
of 8.88%, 2.69% (=dgc(AR) + dgc(IR)) are attributable to the “pure” com-
ponents of AR and IR. Insurance against the interaction LCI is large, at
roughly 1.6%. This makes up about dgc(LCI)/dgc(AR) · 100[%] = 85% of
the components attributable to aggregate risk. Overall, gains from insurance
against both interactions is dgc(LCI) + dgc(CCV ) = 3.26%. This makes up
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for roughly one third of the total insurance gains.

Table 6: Decomposition of insurance against AR and IR

gc(0, 0) dgc(AR) dgc(IR) dgc(LCI) dgc(CCV ) dgc(SR)
-0.91% 1.88% 0.81% 1.60% 1.66% 3.84%

6 Conclusion

[TBC]
In a life-cycle model, idiosyncratic and aggregate risk interact despite the

fact that they are statistically independent. This interaction increases the
value of social security. In our general equilibrium analysis, the introduction
of a PAYG system leads to strong welfare gains. This stands in contrast to the
related literature. The reason for this difference is that in our model, social
security provides partial insurance against both idiosyncratic and aggregate
risk, as well as their interactions. In fact, the interactions account for one
third of the total welfare gains.

In our economy, the intergenerational sharing of aggregate risks is limited
to those generations alive at the same point in time. From a social planner’s
point of view, it would be desirable to share the risk also with future, unborn
generations. This could be achieved by allowing the government to take
up debt to smooth shocks over time. That would open up an additional
insurance channel, which would increase the welfare gains of introducing
social security.

We abstract from endogenous labor supply. This biases results in favor
of social security for two reasons. First, we do not account for self insurance
against risk through endogenous labor supply adjustments. Second, a higher
contribution rate would distort labor supply decisions and thereby crowd out
aggregate labor supply. We leave an extension of our model along this and
other dimensions for future research.
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Appendix

A Proofs

Proof of proposition 1. Maximize

Et−1u(ci,2,t+1)=Et−1

(
w̄t

(
R̄ηi,1,tζtϱ̃t+1+τ

(
(1 + g)ζt+1−R̄ηi,1,tζtϱ̃t+1

)))1−θ
,

where we already removed the constant 1
1−θ

. This is equivalent to maximizing

maxEt−1R
1−θ
p,t,t+1

where Rp,t,t+1 ≡ ηi,1,tζtR̄ϱ̃t+1+τ
(
(1 + g)ζt+1 − R̄ηi,1,tζtϱ̃t+1

)
is a consumption

(or portfolio) return. Increasing ex-ante utility for a marginal introduction of
social security requires the first-order condition w.r.t. τ to exeed zero, hence:

Et−1

[
R−θ

p,t,t+1

∂Rp,t,t+1

∂τ

]
|τ=0> 0 (34)

Evaluated at τ = 0 we have

R−θ
p,t,t+1 |τ=0 =

(
ηi,1,tζtR̄ϱt+1

)−θ

∂Rp,t,t+1

∂τ
|τ=0 = (1 + g)ζt+1 − ηi,1,tζtR̄ϱt+1

Equation (34) therefore rewrites as

(1 + g)Et−1

[
(ηi,1,tζtϱ̃t+1)

−θ ζt+1

]
> R̄Et−1

[
(ηi,1,tζtϱ̃t+1)

1−θ
]
. (35)

Rewriting the above and imposing assumption 1 we get equation (4).

Proof of proposition 2. Define

Z1 ≡ (ηi,1,tζtϱ̃t+1)
−θ ζt+1

Z2 ≡ (ηi,1,tζtϱ̃t+1)
1−θ .

By log-normality we have that EZi = exp(E lnZi+
1
2
σ2
lnZi

), i = 1, 2. Observe
that

E lnZ1 = −θ (E ln ηi,1,t + E ln ϱ̃) + (1− θ)E ln ζ

σ2
lnZ1

= θ2
(
σ2
ln η + σ2

ln ϱ̃

)
+ (1 + θ2)σ2

ln ζ
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Therefore

Et−1[Z1] = exp

(
−θ

(
E ln ηi,1,t +

σ2
ln η

2

))
· exp

(
−θ

(
E ln ϱ̃+

σ2
ln ϱ̃

2

))
·

· exp
(
(1− θ)

(
E ln ζ +

σ2
ln ζ

2

))
exp

(
1

2
θ(1 + θ)

(
σ2
ln η + σ2

ln ϱ̃ + σ2
ln ζ

))
=(E[ηi,1,t])

−θ (E[ϱ̃])−θ (E[ζ])1−θ · exp
(
1

2
θ(1 + θ)

(
σ2
ln η + σ2

ln ϱ̃ + σ2
ln ζ

))
=exp

(
1

2
θ(1 + θ)

(
σ2
ln η + σ2

ln ϱ̃ + σ2
ln ζ

))
whereby the last line follows from assumption 1b.

Next, observe that log-normality implies that

σ2
η = vart−1(ηi,1,t) = exp

(
2E ln ηi,1,t + σ2

ln η

) (
exp

(
σ2
ln η

)
− 1

)
= (Eηi,1,t)

2
(
exp

(
σ2
ln η

)
− 1

)
=

(
exp

(
σ2
ln η

)
− 1

)
whereby the last line again follows from assumption 1b. Hence:

σ2
ln η = ln

(
1 + σ2

η

)
with corresponding expressions for σ2

ln ζ and σ2
ln ϱ̃. Therefore:

exp

(
1

2
θ(1 + θ)

(
σ2
ln η + σ2

ln ϱ̃ + σ2
ln ζ

))
=

(
(1 + σ2

η)(1 + σ2
ζ )(1 + σ2

ϱ̃)
) 1

2
θ(1+θ)

We consequently have

Et−1[Z1] =
(
(1 + σ2

η)(1 + σ2
ζ )(1 + σ2

ϱ̃)
) 1

2
θ(1+θ)

As to Et−1[Z2] observe that

E lnZ2 = (1− θ) (E ln ηi,1,t + E ln ζ + E ln ϱ̃)

σ2
lnZ2

= (1− θ)2
(
σ2
ln η + σ2

ln ζ + σ2
ln ϱ̃

)
Therefore

Et−1[Z2]=exp

(
(1−θ)

(
E ln ηi,1,t +

σ2
ln η

2

)(
E ln ϱ̃+

σ2
ln ϱ̃

2

)(
E ln ζ +

σ2
ln ζ

2

))
· exp

(
1

2
θ(θ − 1)

(
σ2
ln η + σ2

ln ϱ̃ + σ2
ln ζ

))
=
(
(1 + σ2

η)(1 + σ2
ζ )(1 + σ2

ϱ̃)
) 1

2
θ(θ−1)
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Hence

Et−1[Z1]

Et−1[Z2]
=
(
(1 + σ2

η)(1 + σ2
ζ )(1 + σ2

ϱ̃)
)θ

Illustration 1. Let us provide a simplified numerical illustration. Below,
we calibrate our model with an annual income processes given by ln(ηi,j,t) =
ρ ln(ηi,j−1,t−1) + ϵi,j,t where j is actual age of a working household, t is time,
ϵi,j,t ∼ N (0, σ2

t ), hence ηi,j,t is distributed as log-normal for all i, j, t and ρ is
the autocorrelation coefficient. While we consider time variation in variances
below, let us assume constant variances for now. Our calibration has an
average variance of σ2 ≈ 0.03. We also calibrate ρ = 0.952. Consider
the overall variance of income risk at retirement, that is, after a period in
the work force of about 45 years. For AR(1) processes with such a long
horizon, the approximate infinite horizon15 formula to compute the variance
of ln ηi,1,t at retirement is given by 1

1−ρ2
σ2
ϵ . Using our numbers we accordingly

have that the variance of ln ηi,1,t at retirement is given by 1
1−0.9522

· 0.03 =
10.67 · 0.03. By the formula for log-normal random variables, the variance
of ηi,1,t at retirement is therefore var(ηi,1,t) = (E[ηi,1,t])

2
(
exp

(
σ2
ln η

)
− 1

)
=

exp (10.67 · 0.03)− 1 = 0.37.16

Derivation of equation 8. We want to evaluate CEV between two scenarios,
i.e., comparing Et−1u(ci,2,t+1τ>0) with Et−1u(ci,2,t+1τ=0). To simplify, let us
use that

Et−1u(ci,2,t+1τ>0) = Et−1u(ci,2,t+1τ=0) +
∂Et−1u(ci,2,t+1τ=0)

∂τ
dτ.

15The exact formula is 1−ρ2(jr−1)

1−ρ2 where jr is the retirement age but the term ρ2(jr−1)

is negligible.
16As we describe in our main text, our estimates are based on Storesletten, Telmer, and

Yaron (2004a) who use after tax earnings data and control for aggregate fluctuations. Ob-
serve that these numbers are a conservative estimate of the overall dispersion of earnings
inequalities at retirement because we ignore the dispersion of skills and learning abilities
at the beginning of the life-cycle. The more recent work by Huggett, Ventrua, and Yaron
(2011) attributes about 60 of the overall variation in life-time income to variations in initial
conditions. However, it is rather education policies than pension policies and social insur-
ance that should target such differences. Huggett et al. (2011)’s specification for income
shocks is a unit root process. Their estimate of the standard deviation of the innovation of
this process is 0.111. This would roughly double the relevance of the interaction term at
retirement to 0.74. However, the estimates of Huggett et al. (2011) are based on pre-tax
earnings data and the authors do not control for the business cycle. This may explain
these substantial differences.
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and evaluate this expression at τ = 0.
We have that, evaluated at τ = 0,

∂Et−1u(ci,2,t+1τ=0)

∂τ
= w̄1−θ

t Et−1

[(
R̄ηζtϱ̃t+1

)−θ ·
(
(1 + g)ζt+1 − R̄ηζtϱ̃t+1

)]
= w̄1−θ

t

(
R̄−θ(1 + g)Et−1

[
(ηζtϱ̃t+1)

−θ ζt+1

]
− R̄1−θEt−1

[
(ηζtϱ̃t+1)

1−θ
])

= w̄1−θ
t R̄1−θ

(
1 + g

R̄
Et−1Z1 − Et−1Z2

)
where Z1, Z2 are defined in our proof to proposition 2.

We also have that

Et−1u(ci,2,t+1τ=0) =
1

1− θ
w̄1−θ

t R̄1−θEt−1 (ηi,1,tζtϱ̃t+1)
1−θ

=
1

1− θ
w̄1−θ

t R̄1−θEt−1Z2.

Therefore:

Et−1u(ci,2,t+1τ>0) =
1

1− θ
w̄1−θ

t R̄1−θEt−1Z2

+ w̄1−θ
t R̄1−θ

(
1 + g

R̄
Et−1Z1 − Et−1Z2

)
dτ.

The CEV, denoted by gc, is defined by the relationship:

Et−1u(ci,2,t+1τ=0(1 + gc)) = Et−1u(ci,2,t+1τ>0),

from which, using the above formulae, we get

(1 + gc)
1−θ 1

1− θ
w̄1−θ

t R̄1−θEt−1Z2 =
1

1− θ
w̄1−θ

t R̄1−θEt−1Z2

+ w̄1−θ
t R̄1−θ

(
1 + g

R̄
Et−1Z1 − Et−1Z2

)
dτ.

Hence:

(1 + gc)
1−θ = 1 +

w̄1−θ
t R̄1−θ

(
1+g
R̄
Et−1Z1 − Et−1Z2

)
1

1−θ
w̄1−θ

t R̄1−θEt−1Z2

dτ

= 1 + (1− θ)

(
1 + g

R̄

Et−1Z1

Et−1Z2

− 1

)
dτ

= 1 + (1− θ)

(
1 + g

R̄
(1 + V )θ − 1

)
dτ
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where the last line again follows from the proof to proposition 2.
Hence,

gc =

(
1 + (1− θ)

(
1 + g

R̄
(1 + V )θ − 1

)
dτ

) 1
1−θ

− 1.

or, expressed in logs, i.e., gc ≈ ln(1 + gc), we get

gc ≈
1

1− θ
· ln

(
1 + (1− θ)

(
1 + g

R̄
(1 + V )θ − 1

)
dτ

)
≈

(
1 + g

R̄
(1 + V )θ − 1

)
dτ

Taking a first-order Taylor series expansion of the above round V = 0 we
get

gc ≈
(
1 + g

R̄
− 1 + θ

1 + g

R̄
V

)
· dτ

The first term in brackets is the deterministic part. The second term is
the additional gain due to risk which is linear in V .

Proof of proposition 3. To establish proposition 3a we have to show that

1

ζl
Et−1

1

ηi,1,l
+

1

ζh
Et−1

1

ηi,1,h
>

(
1

ζl
+

1

ζh

)
Et−1

1

ηi,1,t

⇔ 1

ζl

(
Et−1

1

ηi,1,l
− Et−1

1

ηi,1,t

)
+

1

ζh

(
Et−1

1

ηi,1,h
− Et−1

1

ηi,1,t

)
> 0. (36)

Under assumption 3 we have that

Et−1
1

ηi,1,t
= exp

(
−
(
E ln η +

1

2
σ2
ln η

))
Et−1

1

ηi,1,l
= exp

(
−
(
E ln η +

1

2

(
σ2
ln η −∆

)))
Et−1

1

ηi,1,h
= exp

(
−
(
E ln η +

1

2

(
σ2
ln η +∆

)))
.
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Therefore

Et−1
1

ηi,1,l
− Et−1

1

ηi,1,t

= exp

(
−
(
E ln η +

1

2

(
σ2
ln η −∆

)))
− exp

(
−
(
E ln η +

1

2
σ2
ln η

))
= exp

(
−
(
E ln η +

1

2
σ2
ln η

))
exp

(
1

2
∆

)
− exp

(
−
(
E ln η +

1

2
σ2
ln η

))
= exp

(
−
(
E ln η +

1

2
σ2
ln η

))(
exp

(
1

2
∆

)
− 1

)
Et−1

1

ηi,1,h
− Et−1

1

ηi,1,t

= exp

(
−
(
E ln η +

1

2

(
σ2
ln η +∆

)))
− exp

(
−
(
E ln η +

1

2
σ2
ln η

))
= exp

(
−
(
E ln η +

1

2
σ2
ln η

))
exp

(
−1

2
∆

)
− exp

(
−
(
E ln η +

1

2
σ2
ln η

))
= exp

(
−
(
E ln η +

1

2
σ2
ln η

))(
exp

(
−1

2
∆

)
− 1

)
Equation (36) therefore rewrites as

1

ζl

(
exp

(
1

2
∆

)
− 1

)
+

1

ζh

(
exp

(
−1

2
∆

)
− 1

)
> 0. (37)

Observe that exp
(
−1

2
∆
)
− 1 < 0, exp

(
1
2
∆
)
− 1 > 0 and convexity of the

exponential function implies that

| exp
(
−1

2
∆

)
− 1| < | exp

(
1

2
∆

)
− 1|.

Therefore

1

ζl

(
exp

(
1

2
∆

)
− 1

)
+

1

ζh

(
exp

(
−1

2
∆

)
− 1

)
>

1

ζl

(
exp

(
1

2
∆

)
− 1

)
− 1

ζh

(
exp

(
1

2
∆

)
− 1

)
=

(
exp

(
1

2
∆

)
− 1

)(
1

ζl
− 1

ζh

)
=

(
exp

(
1

2
∆

)
− 1

)(
1

ζl
− 1

2− ζl

)
=

(
exp

(
1

2
∆

)
− 1

)
2(1− ζl)

ζl(2− ζl)
> 0.
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To establish proposition 3b use assumption 3 to rewrite equation (37) as

f(∆ζ) ≡
1

1−∆ζ

(
exp

(
1

2
∆

)
− 1

)
+

1

1 + ∆ζ

(
exp

(
−1

2
∆

)
− 1

)
> 0.

Observe that

∂f(∆ζ)

∂∆ζ

=

(
1

1−∆ζ

)2 (
exp

(
1

2
∆

)
− 1

)
−
(

1

1 + ∆ζ

)2(
exp

(
−1

2
∆

)
− 1

)
=

(
1

1−∆ζ

)2(
exp

(
1

2
∆

)
− 1

)
︸ ︷︷ ︸

>0

+

(
1

1 + ∆ζ

)2(
1− exp

(
−1

2
∆

))
︸ ︷︷ ︸

>0

> 0

Hence, a mean preserving spread of ζ increases the effect of CCV .

B Computational Solution

B.1 Aggregate Problem

In order to compute the stationary competitive equilibrium of our model, we
apply the Krusell and Smith (1997) method. Specifically, we follow Stores-
letten, Telmer, and Yaron (2007) (STY) and approximate the aggregate law
of motion as

(k′, µ′) = Ĥ(t; k, µ, z, z′) (38)

where k is the capital stock per efficiency unit and µ = Er′ − rf
′
is the eq-

uity premium. That is, we approximate the distribution Φ by two “moments”
where the equity premium captures information about equity and bond hold-
ing moments. Our approach differs from STY in three ways: (i) we plan to
explicitly compute transitional dynamics between two stationary competitive
equilibria (which fluctuate in two ergodic sets), (ii) we do not use simulation
techniques to aggregate on the idiosyncratic states of the distribution and
(iii) we compute an approximate equilibrium, referred to as a “mean shock
equilibrium”, which serves three purposes: first, it enables us to initialize the
cross-sectional distribution of agents second, we use it in order to calibrate
our model in the initial competitive equilibrium in all periods t ≤ 0 (for
τt = τ0) and third, it determines the means of the aggregate grids which we
employ in the stochastic solution of our model. Computation of the “mean
shock equilibrium” is by standard methods to solve OLG models without
any aggregate risk. But in contrast to fully deterministic models, the mean
shock equilibrium gives rise to an equity premium.
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B.1.1 Mean Shock Equilibrium

As an initialization step, we solve for a degenerate path of the economy
where the realizations of all aggregate shocks are at their respective means.
We accordingly set z = z̄ = Ez and δ = δ̄ = Eδ. We assume that households
accurately solve their forecasting problem for each realization of the aggregate
state. This means that we approximate the above approximate law of motion
as

(k′, µ′) =
ˆ̂
H(k, µ, z̄, z̄′) (39)

Observe that in the two stationary equilibria of our model, we have that fixed
point relation

(k′, µ′) =
ˆ̂
H(k, µ, z̄, z̄′) = (k, µ) (40)

With these assumptions, we can solve the mean shock path by standard
Gauss-Seidel iterations as, e.g., described in Auerbach and Kotlikoff (1987).
We adopt the modifications described in Ludwig (2007). While the numerical
methods are the same as in the solution to a deterministic economy, the actual
behavior of households fully takes into account the stochastic nature of the
model. This also means that we solve the household problem using recursive
methods and store the solutions to the household problem on grids of the
idiosyncratic state x. The fixed-point computed in this auxiliary equilibrium
gives kms and µms as aggregate moments and cross-sectional distributions of
agents as induced by the mean shock path. We denote these distributions
by Φms.

B.1.2 Grids

To construct the grids for the the aggregate states k and µ, Gk, Gµ, define
scaling factors sk and sµ and the number of grid points, n. We set sk = 0.8
sµ = 0.6, and n = 7. Using these factors, we construct symmetric grids
around kms, µms.

B.1.3 Stochastic Solution

In order to solve for the stochastic recursive equilibria of our model, we use
simulation methods. To this end, we specify the approximate law of motion
in (38) as:

ln(kt+1) = ψk
0(z) + ψk

1(z) ln(kt) + ψk
2(z) ln(µt) (41a)

ln(µt+1) = ψµ
0 (z) + ψµ

1 (z) ln(kt+1) + ψµ
2 (z) ln(µt) (41b)
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Like in Krusell and Smith (1997), the forecast for kt+1 is used to forecast
µt+1. Intuitively, kt+1 contains a lot of information on the savings choice
of the agent and therefore on the returns next period. Note that, in each
period, µt is an “endogenous state”, the realization of which has to be pinned
down in that particular period (in contrast to kt which is given in period t
from decisions t − 1). As in the standard application of the Krusell and
Smith (1998) method, the coefficients also depend on the realization of the
aggregate state, z.

Stationary Equilibria

Define a number M of stochastic simulations and a number of s < M of sim-
ulations to be discarded. We follow GM and setM = 5500 and s = 500. Also
define a tolerance ζ. Further, draw a sequence for z for periods t = −M, . . . , 0
and denote these realizations by z−M , . . . , z0. Notice that we thereby use the
same sequence of aggregate shocks (as given by a random number generator)
in each iteration. Collecting coefficients as Ψ = [ψk

0 , ψ
k
1 , ψ

k
2 , ψ

µ
0 , ψ

µ
1 , ψ

µ
2 ]

′, the
iteration is as follows:

1. Initialization: Guess Ψ.

2. In each iteration i do the following:

(a) Solution of household problem. We store the solutions of the
household problem on the Ghh = GJ × Gx × Gz × Gk × Gµ. This
gives us policy functions for all households, e.g., c(j, x; z, k, µ),
κ(j, x; z, k, µ), a′(j, x; z, k, µ).

(b) Simulation and aggregation. We simulate the model economy for
the M realizations of aggregate shocks, z. To aggregate on the
idiosyncratic states, we start in period t = −M with the initial
distribution generated by the mean shock path, Φms. We then
loop forward using the transition functions Q to update distribu-
tions. Notice that, conditional on the realization of z, this ag-
gregation is by standard methods that are used in OLG models
with idiosyncratic risk. Simulation and aggregation then gives us
M realizations of kt and µt for t = −M, . . . , 0. Observe that, in
order to compute the realizations for µt, we have to solve for the
bond market clearing equilibrium in each t. We do so by using
a univariate function solver (Brent’s method). We are thereby
more accurate than Gomes and Michaelides (2008) who simply
interpolate on Gµ.
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(c) From the stochastic simulations, discard the first s observations
and, for the remaining periods t = s, . . . , 0 run regressions on:

ln(kt+1) = ψ̃k
0(z) + ψ̃k

1(z) ln(kt) + ψ̃k
2(z) ln(µt) + ϑk

t+1 (42a)

ln(µt+1) = ψ̃µ
0 (z) + ψ̃µ

1 (z) ln(kt) + ψ̃µ
2 (z) ln(µt) + ϑµ

t+1 (42b)

and collect the resulting coefficient estimates in the vector Ψ̃.

(d) IF ∥Ψi − Ψ̃i∥ < ζ then STOP, ELSE define

g(Ψ) = Ψ− Ψ̃(Ψ) (43)

as the distance function (=root finding problem) and update Ψi+1

as
Ψi+1 = Ψi − sJ(Ψ)−1g(Ψ) (44)

where J(Ψ) is the Jacobi matrix of the system of equations in (43)
and s is a scaling factor. Continue with step 2a. We solve the root
finding problem using Broyden’s method, see Ludwig (2007).

B.2 Household Problem

We iterate on the Euler equation, using ideas developed in Carroll (2006).
As derived in section 3.7, the transformed dynamic programming problem of
the household reads as

u(t, j,x, η; z, k, µ)

= max
c,κ,a′

{[
c

1−θ
γ + β̃

(
E
[
u (t+ 1, j + 1, x′, η′; z′, k′, µ′)

1−θ
]) 1

γ

] γ
1−θ

}
s.t. x = a′ + c,

where x′ = a′R̃′ + y′, with R̃′ = (1+rf
′
+κ(r′−rf

′
))

(1+g)
, and β̃ = βς

1
γ

j+1 ((1 + g))
1−θ
γ .

Dropping the time index to simplify notation and using the dynamic budget
constraint in the continuation value we get

u(j, ·) =max
c,κ

{[
c

1−θ
γ + β̃

(
E
[
u(j + 1, (x− c)R̃′ + y′, ·)1−θ

]) 1
γ

] γ
1−θ

}
(45)

The first-order conditions are given by:

c : c
1−θ−γ

γ − β̃
(
E
[
u(j + 1, ·)1−θ

]) 1−γ
γ

· E
[
u(j + 1, ·)−θux′(j + 1, ·)R̃′

]
= 0 (46a)

κ : E
[
u(j + 1, ·)−θux′(j + 1, ·)

(
r′ − rf

′
)]

= 0 (46b)
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and the envelope condition reads as:

ux =
(
c

1−θ
γ + β̃

(
E
[
u(j + 1, ·)1−θ

]) 1
γ

) γ−1+θ
1−θ · . . .

· β̃
(
E
[
u(j + 1, ·)1−θ

]) 1−γ
γ E

[
R̃′u(j + 1, ·)−θux′(j + 1, ·)

]
=u(j, ·)

γ−1+θ
γ β̃

(
E
[
u(j + 1, ·)1−θ

]) 1−γ
γ · . . .

· E
[
R̃′u(j + 1, ·)−θux′(j + 1, ·)

]
=

(
c

u(j, ·)

) 1−θ−γ
γ

, (47)

where the last line follows from equation (46a) and is exactly the result one
would get from direct application of the Benveniste/Scheinkman theorem to
recursive preferences, namely vx = u1(c, Ev) (see Weil (1989)). Plugging this
into the FOCs we get

c : c
1−θ−γ

γ − β̃
(
E
[
u(j + 1, ·)1−θ

]) 1−γ
γ . . .

· E
[
u(j + 1, ·)

(1−θ)(γ−1)
γ (c′)

1−θ−γ
γ R̃′

]
= 0 (48a)

κ : E
[
u(j + 1, ·)

(1−θ)(γ−1)
γ (c′)

1−θ−γ
γ

(
r′ − rf

′
)]

= 0 (48b)

With respect to our numerical solution, we will interpolate the functions
u(j, ·) and c(j, ·). Note that we can expect u(j, ·) to be approximately linear,
since in period J it is simply given by u(J) = cJ = xJ .

Next, notice that u(j+1, ·) and c′ are functions of (x− c) so that c shows
up on both sides of the equation in (48a). This would require calling a non-
linear solver whenever we solve optimal consumption and portfolio shares. To
alleviate this computational burden we employ the endogenous grid method
of Carroll (2006). Accordingly, instead of working with an exogenous grid
for x (and thereby an endogenous grid for savings, s = x− c) we revert the
order and work with an exogenous grid for s = x− c and an endogenous grid
for x.

So, roughly speaking, for each age j and each grid point in the savings
grid Gs, our procedure is the following:

1. Solve equation (48b) for κ using a univariate equation solver (Brent’s
method).

2. Given the solution to (48b) invert (48a) to compute

c =
(
β̃
(
E
[
u(j + 1, ·)1−θ

]) 1−γ
γ E

[
v(j + 1, ·)−θR̃′

]) γ
1−θ−γ

. (49)
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3. Update u, ux and v.

More precisely, our procedure is as follows:

1. Loop on the grids of the aggregate states, Gz, Gk, Gµ.

2. For each (z, k, µ) use (41) to compute the associated k′, µ′.

3. Initialize the loop on age for j = J by setting cJ = xJ and compute
u(xJ) = cJ , ux(xJ) = 1 and v(xJ) = u(xJ) = cJ .

4. Loop backwards in age from j = J − 1, . . . , 0 as follows:

(a) As k′ /∈ Gk, µ′ /∈ Gµ, interpolate on the aggregate states and store
the interpolated objects u(k′, µ′, x′, z′, j + 1), v(k′, µ′, x′, z′, j + 1)
as a projection on Gx. Do so for each z′ ∈ Gz. Denote the inter-
polated objects as ū(x′, z′, j + 1), v̄(x′, z′, j + 1).

(b) For each s in Gs first solve (48b) for κ. To so, we have to loop on
z′ ∈ Gz (as well as the idiosyncratic shock) to evaluate the expec-
tation taking into account the Markov transition matrix π(z′|z).
In this step, we also use the law of motion of the idiosyncratic
state x:

x′ = sR̃′ + y′ (50)

As, generally, x′ /∈ Gx we have to interpolate on ū(x′, z′, j+1) and
v̄(x′, z′, j + 1) before evaluating the expectation.

(c) Taking the optimal κ as given, next compute c from (49). Again
we interpolate on ū(x′, z′, j+1) and v̄(x′, z′, j+1) before evaluating
the expectation.

B.3 Calibration of Income Process

We determine η∓(z) and π̄η such that we match the unconditional variance
of the STY estimates, i.e.,

E[(ln η′)2 | z′] = σ(z′)2ln η (51)

and the unconditional autocorrelation, i.e.,

E[ln η′ ln η]

E[(ln η′)2]
= ρ. (52)
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To match the variance we specify the states of the Markov process as

η∓(z) =
2 exp(1∓ σ̃(z))

exp(1− σ̃(z)) + exp(1 + σ̃(z))

so that the unconditional mean equals one.
We pick σ̃(z) such that the unconditional variance—which of course pre-

serves its contingency on z—satisfies (51). To achieve this, observe that

ln η∓ = ln

(
2

exp(1− σ̃(z)) + exp(1 + σ̃(z))

)
+ 1∓ σ̃(z) ≡ ϕ(σ̃(z))∓ σ̃(z).

Hence

E[(ln η′)2 | η = η−, z
′] = π̄η(ϕ(σ̃(z′))− σ̃(z′))2+

(1− π̄η)(ϕ(σ̃(z′)) + σ̃(z′))2

E[(ln η′)2 | η = η+, z
′] = π̄η(ϕ(σ̃(z′)) + σ̃(z′))2+

(1− π̄η)(ϕ(σ̃(z′))− σ̃(z′))2.

The unconditional mean of the above—conditional on z′—is

E[(ln η′)2 | z′] = ϕ(σ̃(z′))2 + σ̃(z′)2.

To determine σ̃(z), we then numerically solve the distance function

f(σ̃(z)) = ϕ(σ̃(z))2 + σ̃(z)2 − σ(z)2ln η = 0

for all z. Standard procedures ignore the bias term ϕ(σ̃(z))2.
To determine π̄η observe that, in the stationary invariant distribution, we

have

E[ln η′ ln η | η = η−] =
∑
z

Πz(z)
{
π̄η(ϕ(σ̃(z))− σ̃(z))2+

(1− π̄η)(ϕ(σ̃(z))− σ̃(z))(ϕ(σ̃(z)) + σ̃(z))}

E[ln η′ ln η | η = η+] =
∑
z

Πz(z)
{
π̄η(ϕ(σ̃(z)) + σ̃(z))2+

(1− π̄η)(ϕ(σ̃(z)) + σ̃(z))(ϕ(σ̃(z))− σ̃(z))}

and

E[ln η′ ln η] =
∑
η

Πη(η)E[ln η′ ln η | η]
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as well as

E[(ln η′)2] =
∑
z′

Πz′E[(ln η′)2 | z′].

Noticing that

E[ln η′ ln η]

E[(ln η′)2]
= ρ

we use the above relationships to determine π̄η.
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