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Overview

Uncertainty

Standard economic theory endows agent with a lot of information:

Complete preferences over goods

Complete knowledge of data-generating process (model)

Complete knowledge of current situation (state)

Recent work abandons (2) and (3)

I will discuss these in the context of a portfolio choice problem (based

on work with Yulei Luo)
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Overview

Entropy

Key idea will be entropy:

H (X ) = −

∫
ln (f (x)) f (x) dx

Relative entropy of two distributions is a measure of distance between

them (Kullbeck-Leibler divergence)

Conditional entropy of two distributions is a measure of difference of

information content
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Overview

Entropy
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Entropy
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Model Uncertainty

Model Uncertainty

Three models of interest:

”True” model – unknown and unknowable

”Approximating” model – point estimate of true model

”Alternative” models – models that cannot be statistically

distinguished from approximating model

Think of alternative models as a ”cloud” of models that surround the

approximating one

Size of cloud determines amount of uncertainty aversion (measured

by difference in entropy between distributions implied by

approximating and alternative models)
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Model Uncertainty

Equivalence Result

Take agent with time-separable log preferences and constant

discounting

Endow agent with a fear of model misspecification, leads to utility

recursion

V (x) = log (c) + β min
g∈G

∫
V

(
x ′
)
g
(
x ′|x

)
dx ′

g is chosen from the set of alternative models, f is the approximating

model
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Model Uncertainty

Model Uncertainty

Approximating Model

Alternative Models

Θ 
1

Θ 
2

Model Uncertainty

Direction of Decreasing Utility

Worst−Case Model
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Model Uncertainty

Equivalence Result

Take agent with time-separable log preferences and constant

discounting

Endow agent with a fear of model misspecification (γ < 0)

After minimizing:

V (x) = log (c) +
β

γ
log

(∫
exp

(
γV

(
x ′
))

f
(
x ′|x

)
dx ′

)
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Model Uncertainty

Equivalence Result

Suppose agent has Epstein-Zin preferences with IES = 1 and RRA =

1− γ:

Ut = ct
(
EtU

γ

t+1

)β
γ

log (Ut) = log (ct) +
β

γ
log

(
EtU

γ

t+1

)

Vt = log (ct) +
β

γ
log (Et exp (γVt))

Provides a behavioral interpretation – aversion to model uncertainty

works like enhanced risk aversion (works for non-log case as well)
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Model Uncertainty

Estimating γ

Model misspecification that is easy to detect would simply lead to a

change in approximating model

Require that measures be absolutely continuous with respect to each

other in finite samples (same zero probability events)

Discrete random variables – implies that realizations are not altered,

only probabilities

Continuous random variables – pretty weak condition
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Model Uncertainty

Estimating γ

Use likelihood ratio test to ”estimate” a cloud of fears that are

reasonable:

Simulate approximating model and test whether worst-case model is

preferred by data (sample size matters!)

Simulate worst-case model and test whether approximating model is

preferred

Repeat lots of times and count number of ”mistakes” – this is the

detection error probability p

Pick the γ that yields p = 0.1, for example

Eric R. Young (University of Virginia) Model and State Uncertainty May 17, 2012 12 / 34



Model Uncertainty

Estimating γ

Use likelihood ratio test to ”estimate” a cloud of fears that are

reasonable:

Simulate approximating model and test whether worst-case model is

preferred by data (sample size matters!)

Simulate worst-case model and test whether approximating model is

preferred

Repeat lots of times and count number of ”mistakes” – this is the

detection error probability p

Pick the γ that yields p = 0.1, for example

Eric R. Young (University of Virginia) Model and State Uncertainty May 17, 2012 12 / 34



Model Uncertainty

Estimating γ

Use likelihood ratio test to ”estimate” a cloud of fears that are

reasonable:

Simulate approximating model and test whether worst-case model is

preferred by data (sample size matters!)

Simulate worst-case model and test whether approximating model is

preferred

Repeat lots of times and count number of ”mistakes” – this is the

detection error probability p

Pick the γ that yields p = 0.1, for example

Eric R. Young (University of Virginia) Model and State Uncertainty May 17, 2012 12 / 34



Model Uncertainty

Estimating γ

Use likelihood ratio test to ”estimate” a cloud of fears that are

reasonable:

Simulate approximating model and test whether worst-case model is

preferred by data (sample size matters!)

Simulate worst-case model and test whether approximating model is

preferred

Repeat lots of times and count number of ”mistakes” – this is the

detection error probability p

Pick the γ that yields p = 0.1, for example

Eric R. Young (University of Virginia) Model and State Uncertainty May 17, 2012 12 / 34



Model Uncertainty

Estimating γ

Use likelihood ratio test to ”estimate” a cloud of fears that are

reasonable:

Simulate approximating model and test whether worst-case model is

preferred by data (sample size matters!)

Simulate worst-case model and test whether approximating model is

preferred

Repeat lots of times and count number of ”mistakes” – this is the

detection error probability p

Pick the γ that yields p = 0.1, for example

Eric R. Young (University of Virginia) Model and State Uncertainty May 17, 2012 12 / 34



Model Uncertainty

Model Uncertainty

Approximating Model

Alternative Models

Θ 
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Θ 
2

Model Uncertainty

Direction of Decreasing Utility
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State Uncertainty

State Uncertainty

Want to model agents who are uncertain of the current state

Underlying microfoundation: rational inattention

Information-processing capacity (Shannon channel) is finite

Agents must allocate limited attention to observing state of the world
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State Uncertainty

Modeling Information Flow

Entropy measures uncertainty about a random variable

Conditional entropy: entropy of X given an observation on Y :

H (X |Y ) = −E [ln (f (X |Y ))]

Change in conditional entropy can be used to measure information

flow
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State Uncertainty

Signal Processing

X

Prior Distribution

Posterior Distribution with Infinite Capacity
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State Uncertainty

Rational Inattention

Agents face information-processing constraint

H (xt+1|It)− H (xt+1|It+1) ≤ κ

It is the consumer’s observed and processed information at time t

κ is the upper limit on information flow

H (xt+1|It): entropy of state before signal at time t + 1 (prior)

H (xt+1|It+1): entropy of state after signal at time t + 1 (posterior)
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State Uncertainty

Decision-Making with Rational Inattention

Decision variable is joint distribution of states and controls

Prior distribution over states (so-called belief state) combines with

joint distribution to produce posterior

Decision process:

Agent chooses joint distribution of states and controls, given prior

Nature selects controls from distribution given actual state (which is

unknown to agent)

Choice by nature is the signal that is used by agent to construct

posterior
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State Uncertainty

Signal Processing with Limited Information Flow

X

Prior Distribution

Posterior Distribution with Infinite Capacity

Posterior Distribution with Small Capacity
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State Uncertainty

Equivalence Result

Suppose world is linear-quadratic-Gaussian (including priors)

Can prove optimal posterior is also Gaussian (therefore use Kalman

filter to construct posterior)

Entropy constraint reduces to change in variances of distributions:

1

2
σt −

1

2
σt+1 ≤ κ

Interpretation – observe state with error, but distribution of error

chosen optimally
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Portfolio Choice

Portfolio Choice Model

Risky asset e with random return re,t+1

Riskless asset f with constant return rf

Let µ = Et [re,t+1] and var (re,t+1) = ω2

Intertemporal budget constraint (log-linearized):

∆at+1 =

(
1−

1

φ

)
(ct − at) + ψ + rp,t+1

rp,t+1 = αt (re,t+1 − rf ) + rf +
1

2
α (1− α)ω2
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Portfolio Choice

Portfolio Choice with Model Uncertainty

Assume agent fears model uncertainty – use the Epstein-Zin

representation:

Wt = ct −
1

2
(γ − 1) c2t −

β

γ − 1
log (Et [exp ((1− γ)Wt+1)])

Robustness is controlled by γ

Suppose IES σ is near (but not exactly) 1 and σ > γ (prefer early

resolution of uncertainty)
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Portfolio Choice

Portfolio Choice with Model Uncertainty

Optimal decision rules:

ct = b0 + at

α =
µ− rf + 0.5ω2

γω2

More uncertainty leads to smaller α
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Portfolio Choice

Portfolio Choice with Model and State Uncertainty

Exploit separation principle:

ct = b0 + ât

ât+1 = (1− θ) ât + θ
(
at+1 + ξt+1

)
+Ω

α =
µ− rf + 0.5ω2

γ̃ω2

θ = 1− 1/ exp (2κ) is optimal weight on new signal at+1 + ξt+1

γ̃ is effective risk aversion, and is decreasing in θ

Lower processing capacity leads to smaller α
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Portfolio Choice

Quantitative Analysis

Long-run effect of re on consumption:

ς = θ

∞∑

i=0

(
1− θ

β

)i

=
θ

1− (1− θ) β
≥ 1

Long-run adjustment to risk aversion:

Γ =
γ − 1

1− σ
(ς − 1) ≥ 0

Optimal portfolio share:

α = (γ + Γ)−1 µ− rf + 0.5ω2

γω2
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Portfolio Choice

Size of Γ
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Portfolio Choice

A Rough Calibration

Gabaix and Laibson (2002): α = 0.22

Campbell (2003): ω = 0.16, µ− rf = 0.06

Choose β = 0.91, σ = 0.99999, γ = 1.001, set θ = 0.48 to match

α = 0.22

If θ = 1, then need γ = 13 to match α = 0.22

Open question: how to measure θ outside a model?
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Extensions

Extending the Basic Model

Adding nontraded labor income changes nothing

What about abandoning linear-quadratic framework?

Really hard to do, because optimal posterior is not Gaussian

Matjeka and Sims (2011) show posterior is discrete if support is

bounded (conserves on information flow)

Show a single picture from a two-period portfolio choice problem

without model uncertainty
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Extensions

Risky Asset Share
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Concluding Comments

Concluding Comments

Models featuring model uncertainty and state uncertainty are

tractable

Can help solve a number of puzzles:

Portfolio puzzle discussed here

Excess sensitivity and excess smoothness puzzles in consumption (Luo

and Young 2011,2012)

Joint dynamics of current account and income (Luo, Nie, and Young

2012a)
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Concluding Comments

Current Account Dynamics

Compare along two dimensions: relative volatility of ∆ct and

corr (yt , cat)

Table: Implications of Different Models (p = 0.1)

Data RE RB

σ(∆c)/σ(∆y)em 0.71 0.21 0.77

σ(∆c)/σ(∆y)de 0.59 0.31 0.62

ρ(ca, y)em −0.17 1.00 0.60

ρ(ca, y)de −0.08 1.00 0.57

Robustness increases the first, reduces the second

However, estimated robustness demand not large enough to get

negative correlation
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Concluding Comments

Dynamics of Debt and Taxes

Table: VAR Test for Predicted Path of Debt

Model λ1 λ2 χ2
W (2) p-value

RE −0.09(0.21) 0.34(0.21) 20.04 0.00

Σ = 0.1 −0.08(0.21) 0.37(0.21) 19.48 0.00

Σ = 0.5 −0.06(0.22) 0.51(0.18) 11.36 0.00

Σ = 0.9 −0.05(0.23) 0.71(0.18) 2.78 0.25

Σ = 0.95 −0.06(0.23) 0.73(0.18) 2.23 0.33
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2012b)

Bunch of other people doing good work here too
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