Intro	Model	Estimation	IRFs and Multipliers	Conclusion

Fiscal Multipliers with Time-inconsistent Preferences

Richard W. Evans Kerk L. Phillips Benjamin Tengelsen

May 2012

$$\frac{dY_{t+s}}{dG_t}$$
 and $\frac{dY_{t+s}}{dT_t}$

- Short-term, medium-term, or long-term s
- Temporary or permanent shock
- How stimulus is financed (balanced budget or deficit)
- Where taxing comes from (capital or labor tax)
- Where is spending (household transfers, gov't consumption, gov't investment)
- How much slack (expansion or recession)
- Do constraints bind (ZLB, borrowing constraints)

Intro	Model	Estimation	IRFs and Multipliers	Conclusion

- Standard RBC models: -2.5 to 1.2
 - multipliers increase with:
 - shock permanence
 - deficit financing
 - Most multipliers less than 1
 - Barro and King (1984), Aiyagari, Christiano, and Eichenbaum (1992), Baxter and King (1993)
- New Keynesian RE models: 0.5 to 1.0
 - Price frictions increase multipliers
 - Demand determined employment increases multipliers
 - Cogan, Cwik, Taylor, and Weiland (2010): 0.64 at peak
 - Galí, Lopéz-Salido, and Vallés (2007):

A (1) > A (2) > A

Intro	Model	Estimation	IRFs and Multipliers	Conclusion

- Standard RBC models: -2.5 to 1.2
 - multipliers increase with:
 - shock permanence
 - deficit financing
 - Most multipliers less than 1
 - Barro and King (1984), Aiyagari, Christiano, and Eichenbaum (1992), Baxter and King (1993)
- New Keynesian RE models: 0.5 to 1.0
 - Price frictions increase multipliers
 - Demand determined employment increases multipliers
 - Cogan, Cwik, Taylor, and Weiland (2010): 0.64 at peak
 - Galí, Lopéz-Salido, and Vallés (2007):
 - 50% of workers are rule-of-thumb
 - employment demand determined.

A (1) > A (2) > A

Intro	Model	Estimation	IRFs and Multipliers	Conclusion

- Standard RBC models: -2.5 to 1.2
 - multipliers increase with:
 - shock permanence
 - deficit financing
 - Most multipliers less than 1
 - Barro and King (1984), Aiyagari, Christiano, and Eichenbaum (1992), Baxter and King (1993)
- New Keynesian RE models: 0.5 to 1.0
 - Price frictions increase multipliers
 - Demand determined employment increases multipliers
 - Cogan, Cwik, Taylor, and Weiland (2010): 0.64 at peak
 - Galí, Lopéz-Salido, and Vallés (2007):
 - Up to 2.0 if:
 - 50% of workers are rule-of-thumb
 - employment demand determined

• (10) • (10)

Intro	Model	Estimation	IRFs and Multipliers	Conclusion

- Standard RBC models: -2.5 to 1.2
 - multipliers increase with:
 - shock permanence
 - deficit financing
 - Most multipliers less than 1
 - Barro and King (1984), Aiyagari, Christiano, and Eichenbaum (1992), Baxter and King (1993)
- New Keynesian RE models: 0.5 to 1.0
 - Price frictions increase multipliers
 - Demand determined employment increases multipliers
 - Cogan, Cwik, Taylor, and Weiland (2010): 0.64 at peak
 - Galí, Lopéz-Salido, and Vallés (2007):
 - Up to 2.0 if:
 - 50% of workers are rule-of-thumb
 - employment demand determined

- New Keynesian RE models with constraints: 1.0+
 - Zero lower bound: as high as 2.3
 - Egertsson(2001,2012), Woodford (2003,2011), Christiano, Eichenbaum, and Rebelo (2011)
 - Borrowing constraints:
 - Parker (2011) argues for including these
- Keynesian non-RE models: 1.5 to 2+
 - Fixed expectations (irrationality) increases multiplier
 - Evans (1969): 2+
 - Romer and Bernstein (2009): 1.5

A (1) > A (2) > A

- New Keynesian RE models with constraints: 1.0+
 - Zero lower bound: as high as 2.3
 - Egertsson(2001,2012), Woodford (2003,2011), Christiano, Eichenbaum, and Rebelo (2011)
 - Borrowing constraints:
 - Parker (2011) argues for including these
- Keynesian non-RE models: 1.5 to 2+
 - Fixed expectations (irrationality) increases multiplier
 - Evans (1969): 2+
 - Romer and Bernstein (2009): 1.5

< 同 > < ∃ >

- Regression, VAR, SVAR: -0.5 to 2+
 - Many of these are above unity (0.6 to 1.5)
 - Barro (1981), Hall (1986,2009) Ramey and Shapiro (1998), Fisher and Peters (2010), Ramey (2011), Barro and Redlick (2011), Blanchard and Perotti (2002)
 - Notable exceptions (-0.5 to 0.0) are Taylor (2009,2011), Pereira and Lopes (2010), Kirchner, Cimadomo, and Hauptmeir (2010)
 - Auerbach and Gorodnichenko (2012): expansion -0.3 to 0.8; recession 1.0 to 3.6

A □ > < □ >

We focus on the effect of time-inconsistent preferences on multipliers (a la Galí, Lopéz-Salido, and Vallés, 2007)

- Estimate discount factor in standard model
 - stochastic capital tax
 - balanced budget spending
- 2 Estimate discount factors in quasi-hyperbolic model
- Compare multipliers in each

Results

- We estimate quasi-hyperbolic parameters similar to micro-studies
- Multipliers bigger with quasi-hyperbolic households
- Estimation tempers how much bigger the multipliers can be

We focus on the effect of time-inconsistent preferences on multipliers (a la Galí, Lopéz-Salido, and Vallés, 2007)

- Estimate discount factor in standard model
 - stochastic capital tax
 - balanced budget spending
- Estimate discount factors in guasi-hyperbolic model
- Compare multipliers in each

Results

- We estimate guasi-hyperbolic parameters similar to micro-studies
- Multipliers bigger with guasi-hyperbolic households
- Estimation tempers how much bigger the multipliers can be

Standard exponential discounting

$$E_0\left[\sum_{t=0}^{\infty}\xi_t u(c_t, h_t)
ight]$$
 where $\xi_t = \delta^t \quad \forall t$

Quasi-hyperbolic discounting

$$\xi_t = \begin{cases} 1 & \text{if } t = 0\\ \beta \delta^{t-1} & \text{if } t \ge 1 \end{cases} \quad \text{with } \beta < \delta$$

• Discount factors are $\{1, \beta, \beta\delta, \beta\delta^2, \beta\delta^3, ...\}$

Implies two Euler equations, rather than one recursive

< 17 ▶

Intro	Model	Estimation	IRFs and Multipliers	Conclusion
Hype	rbolic disc	ounting		

Standard exponential discounting

$$E_0\left[\sum_{t=0}^{\infty}\xi_t u(\boldsymbol{c}_t, \boldsymbol{h}_t)
ight]$$
 where $\xi_t = \delta^t \quad orall t$

Quasi-hyperbolic discounting

$$\xi_t = \begin{cases} 1 & \text{if } t = 0\\ \beta \delta^{t-1} & \text{if } t \ge 1 \end{cases} \quad \text{with } \beta < \delta$$

• Discount factors are $\{1, \beta, \beta\delta, \beta\delta^2, \beta\delta^3, ...\}$

Implies two Euler equations, rather than one recursive

• (10) • (10)

Intro	Model	Estimation	IRFs and Multipliers	Conclusion
Hype	rbolic disc	ounting		

Standard exponential discounting

$$E_0\left[\sum_{t=0}^{\infty}\xi_t u(\boldsymbol{c}_t, \boldsymbol{h}_t)
ight]$$
 where $\xi_t = \delta^t \quad orall t$

Quasi-hyperbolic discounting

$$\xi_t = \begin{cases} 1 & \text{if } t = 0\\ \beta \delta^{t-1} & \text{if } t \ge 1 \end{cases} \quad \text{with } \beta < \delta$$

• Discount factors are $\{1, \beta, \beta\delta, \beta\delta^2, \beta\delta^3, ...\}$

Implies two Euler equations, rather than one recursive

Hyperbolic discounting micro estimates

- Standard exponential discount factors: $\delta = 0.96$
 - Life cycle consumption and wealth data
 - Engen, Gale, and Scholz (1994), Hubbard, Skinner, and Zeldes (1994), Laibson, Repetto, and Tobacman (1998), Engen, Gale, Uccello (1999)
- Quasi-hyperbolic estimates
 - Shui and Ausubel (2005): eta= 0.81 0.83 and $\delta=$ 0.999
 - Passerman (2008): $\beta = 0.52 0.90$ and $\delta = 0.99$
 - Fang and Silverman (2009): $\beta = 0.48$ and $\delta = 0.88$
 - Laibson, Repetto, and Tobacman: $\beta = 0.70$ and $\delta = 0.95$
- Percent population hyperbolic discounters
 - Eisenhauer and Ventura (2006)
 - Italian and Dutch survey data
 - Less than 25% hyperbolic

• • • • • • • • • • • • •

Hyperbolic discounting micro estimates

- Standard exponential discount factors: $\delta = 0.96$
 - Life cycle consumption and wealth data
 - Engen, Gale, and Scholz (1994), Hubbard, Skinner, and Zeldes (1994), Laibson, Repetto, and Tobacman (1998), Engen, Gale, Uccello (1999)
- Quasi-hyperbolic estimates
 - Shui and Ausubel (2005): $\beta = 0.81 0.83$ and $\delta = 0.999$
 - Passerman (2008): $\beta = 0.52 0.90$ and $\delta = 0.99$
 - Fang and Silverman (2009): $\beta = 0.48$ and $\delta = 0.88$
 - Laibson, Repetto, and Tobacman: $\beta = 0.70$ and $\delta = 0.95$
- Percent population hyperbolic discounters
 - Eisenhauer and Ventura (2006)
 - Italian and Dutch survey data
 - Less than 25% hyperbolic

• • • • • • • • • • • •

Hyperbolic discounting micro estimates

- Standard exponential discount factors: $\delta = 0.96$
 - Life cycle consumption and wealth data
 - Engen, Gale, and Scholz (1994), Hubbard, Skinner, and Zeldes (1994), Laibson, Repetto, and Tobacman (1998), Engen, Gale, Uccello (1999)
- Quasi-hyperbolic estimates
 - Shui and Ausubel (2005): $\beta =$ 0.81 0.83 and $\delta =$ 0.999
 - Passerman (2008): $\beta = 0.52 0.90$ and $\delta = 0.99$
 - Fang and Silverman (2009): $\beta = 0.48$ and $\delta = 0.88$
 - Laibson, Repetto, and Tobacman: $\beta = 0.70$ and $\delta = 0.95$
- Percent population hyperbolic discounters
 - Eisenhauer and Ventura (2006)
 - Italian and Dutch survey data
 - Less than 25% hyperbolic

Image: A image: A

Intro	Model	Estimation	IRFs and Multipliers	Conclusion
Model				

- Standard representative agent RBC model
- Quasi-hyperbolic discounting
- Flexible prices
- Perfectly competitive firms
- Aggregate uninsurable shocks
- Distortionary stochastic capital tax
- Balanced budget constraint with public goods

Intro	Model	Estimation	IRFs and Multipliers	Conclusion
Mode	el: Househ	olds and fir	ms	

• Households

$$\max_{c_{t},h_{t}} E_{0} \left[\sum_{t=0} \xi_{t} u(c_{t},h_{t},G_{t}) \right]$$
s.t. $c_{t} + k_{t+1} = w_{t}h_{t} + (1 + r_{t} - \tau_{t} - \kappa)k_{t} + X_{t}$
where $u(c_{t},h_{t},G_{t}) = \frac{c_{t}^{1-\sigma_{c}} - 1}{1-\sigma_{c}} + A \frac{(1-h_{t})^{1-\sigma_{h}} - 1}{1-\sigma_{h}} + \chi \frac{G_{t}^{1-\sigma_{g}} - 1}{1-\sigma_{g}}$
• Firms
 $Y_{t} = e^{z_{t}} \mathcal{K}_{t}^{\theta} \mathcal{L}_{t}^{1-\theta}$ where $\bigcup_{t \neq 2} = [\underbrace{1 \ \bigcup_{t \neq 3}}_{1 \times 3} \underbrace{\Gamma}_{3 \times 2} + \underbrace{\varepsilon_{t}}_{1 \times 2},$
 $U_{t} = [z_{t} \ \tau_{t}], \text{ and } \varepsilon_{t} \sim N(0, \Sigma)$
 $r_{t} = \theta e^{z_{t}} \left(\frac{L_{t}}{K_{t}}\right)^{1-\theta}$

Evans, Phillips, Tengelsen (BYU) Fiscal Multipliers with Time-inconsistent Preferences

Intro	Model	Estimation	IRFs and Multipliers	Conclusion
Mode	el: Househ	olds and fir	ms	

• Households

$$\max_{c_{t},h_{t}} E_{0} \left[\sum_{t=0} \xi_{t} u(c_{t},h_{t},G_{t}) \right]$$
s.t. $c_{t} + k_{t+1} = w_{t}h_{t} + (1 + r_{t} - \tau_{t} - \kappa)k_{t} + X_{t}$
where $u(c_{t},h_{t},G_{t}) = \frac{c_{t}^{1-\sigma_{c}} - 1}{1-\sigma_{c}} + A \frac{(1-h_{t})^{1-\sigma_{h}} - 1}{1-\sigma_{h}} + \chi \frac{G_{t}^{1-\sigma_{g}} - 1}{1-\sigma_{g}}$
• Firms
 $Y_{t} = e^{z_{t}} K_{t}^{\theta} L_{t}^{1-\theta}$ where $\bigcup_{t \neq 2} = [1 \bigcup_{t \neq 3} \prod_{x \neq 3} f + \frac{\varepsilon_{t}}{1 \times 2}, \int_{x \neq 2} f + \frac{\varepsilon_{t}}{1 \times 2}, \int_{x \neq 2} f + \frac{\varepsilon_{t}}{1 \times 2}, \int_{x \neq 3} f + \frac{\varepsilon_{t}}{1$

Intro	Model	Estimation	IRFs and Multipliers	Conclusion
Mod	al. Househ	olde and fir	me	

Households $\max_{c_t,h_t} E_0 \left| \sum_{t} \xi_t u(c_t,h_t,G_t) \right|$ s.t. $c_t + k_{t+1} = w_t h_t + (1 + r_t - \tau_t - \kappa)k_t + X_t$ where $u(c_t, h_t, G_t) = \frac{c_t^{1-\sigma_c} - 1}{1-\sigma_t} + A \frac{(1-h_t)^{1-\sigma_h} - 1}{1-\sigma_t} + \chi \frac{G_t^{1-\sigma_g} - 1}{1-\sigma_t}$ Firms $\overset{\mathbf{S}}{Y_t} = e^{z_t} \mathcal{K}_t^{\theta} \mathcal{L}_t^{1-\theta} \quad \text{where} \quad \underbrace{\mathbf{U}_t}_{t=1} = \underbrace{[\mathbf{1} \ \mathbf{U}_{t-1}]}_{1 \le 2} \underbrace{\Gamma}_{3 \times 2} + \underbrace{\varepsilon_t}_{1 \times 2},$ $\mathbf{U}_t = [z_t \ \tau_t], \text{ and } \varepsilon_t \sim N(\mathbf{0}, \Sigma)$

Evans, Phillips, Tengelsen (BYU) Fiscal Multipliers with Time-inconsistent Preferences

Intro	Model	Estimation	IRFs and Multipliers	Conclusion	
Medel: Hereehelde end finne					

Model: Households and firms

• Households

$$\max_{c_{t},h_{t}} E_{0} \left[\sum_{t=0} \xi_{t} u(c_{t},h_{t},G_{t}) \right]$$
s.t. $c_{t} + k_{t+1} = w_{t}h_{t} + (1 + r_{t} - \tau_{t} - \kappa)k_{t} + X_{t}$
where $u(c_{t},h_{t},G_{t}) = \frac{C_{t}^{1-\sigma_{c}} - 1}{1-\sigma_{c}} + A\frac{(1-h_{t})^{1-\sigma_{h}} - 1}{1-\sigma_{h}} + \chi \frac{G_{t}^{1-\sigma_{g}} - 1}{1-\sigma_{g}}$
• Firms
 $Y_{t} = e^{z_{t}}K_{t}^{\theta}L_{t}^{1-\theta}$ where $\underbrace{\mathbf{U}_{t}}_{1\times 2} = \underbrace{[1 \ \mathbf{U}_{t-1}]}_{1\times 3}\underbrace{\Gamma}_{3\times 2} + \underbrace{\varepsilon_{t}}_{1\times 2},$
 $\mathbf{U}_{t} = [z_{t} \ \tau_{t}],$ and $\varepsilon_{t} \sim N(\mathbf{0}, \Sigma)$
 $r_{t} = \theta e^{z_{t}} \left(\frac{L_{t}}{K_{t}}\right)^{1-\theta}$
 $w_{t} = (1-\theta)e^{z_{t}} \left(\frac{K_{t}}{L_{t}}\right)^{\theta}$

Evans, Phillips, Tengelsen (BYU) Fiscal Multipliers with Time-inconsistent Preferences

æ

Intro	Model	Estimation	IRFs and Multipliers	Conclusion	

Model: Market clearing and government

Market clearing

$$K_t = k_t$$
$$L_t = h_t$$

Government balanced budget constraint

$$\underbrace{\tau_t k_t}_{\text{revenues}} = \underbrace{\gamma G_t + (1 - \gamma) X_t}_{\text{expenditures}}$$

Equilibrium definition

Recursive rational expectations equilibrium

Policy functions $c(k, z, \tau)$, $k'(k, z, \tau)$, and $h(k, z, \tau)$ and price functions $r(k, z, \tau)$ and $w(k, z, \tau)$ such that:

- households maximize lifetime expected utility
- firms maximize profits
- markets clear
- government budget constraint holds

< 同 > < ∃ >

Equilibrium: standard exponential households

$$u_{c}(c_{t}, h_{t}) = \delta E_{t} \left[(1 + r_{t+1} - \tau_{t+1} - \kappa) u_{c}(c_{t+1}, h_{t+1}) \right]$$

$$w_{t} u_{c}(c_{t}, h_{t}) = -u_{h}(c_{t}, h_{t})$$

$$r_{t} = \theta e^{z_{t}} \left(\frac{L_{t}}{K_{t}} \right)^{1-\theta}$$

$$w_{t} = (1 - \theta) e^{z_{t}} \left(\frac{K_{t}}{L_{t}} \right)^{\theta}$$

$$K_{t} = k_{t}$$

$$L_{t} = h_{t}$$

$$\tau_{t} k_{t} = \gamma G_{t} + (1 - \gamma) X_{t}$$

Equilibrium: quasi-hyperbolic households

$$u_{c}(c_{t}, h_{t}) = \beta E_{t} \left[(1 + r_{t+1} - \tau_{t+1} - \kappa) u_{c}(c_{t+1}, h_{t+1}) \right]$$

$$E_{t} \left[u_{c}(c_{t+1}, h_{t+1}) \right] = \delta E_{t} \left[(1 + r_{t+2} - \tau_{t+2} - \kappa) u_{c}(c_{t+2}, h_{t+2}) \right]$$

$$w_{t} u_{c}(c_{t}, h_{t}) = -u_{h}(c_{t}, h_{t})$$

$$r_{t} = \theta e^{z_{t}} \left(\frac{L_{t}}{K_{t}} \right)^{1-\theta}$$

$$w_{t} = (1 - \theta) e^{z_{t}} \left(\frac{K_{t}}{L_{t}} \right)^{\theta}$$

$$K_{t} = k_{t}$$

$$L_{t} = h_{t}$$

$$\tau_{t} K_{t} = \gamma G_{t} + (1 - \gamma) X_{t}$$

Calibrated parameters

Parameter	Source to match	Value
$\sigma_c, \sigma_h, \sigma_g$	log utility	1
Α	shape parameter on leisure $1 - h_t$ in utility function, set to match steady-state hours worked $\bar{h} = 0.3$. ^a	1.72
χ	shape parameter on public goods spending G_t in utility function	1
θ	capital share of income	0.36
κ	annual depreciation rate	0.06
γ	percent of government revenues spent on public goods G_t , set to match avg. household transfers percent of revenues. ^b	0.7

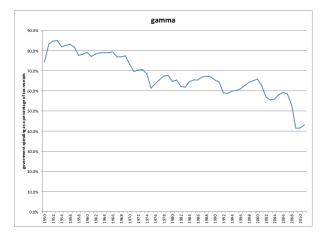
^a This approach to calibrating A follows Hansen (1984).

^b Total tax revenue data (SCTAX+W055RC1+AFLPITAX) and household transfers (PCTR) come from St. Louis Fed FRED, 1947-2011.

A D N A D N A D N A D

э

Other government expenditures: γ



- *τ*_t, use real federal corporate tax revenues as percent of total revenues
- *z*_t, use Solow residual approach from production function

 $z_t = \log(Y_t) - \theta \log(K_t) - (1 - \theta) \log(L_t)$

- *Y_t*, real GDP 1951-2011
- *K_t*, capital stock series from BEA
- L_t, nonfarm employment times average annual hours

• VAR: $\tilde{\mathbf{U}}_t = \tilde{\mathbf{U}}_{t-1}\hat{\Gamma} + \varepsilon_t$, $\varepsilon_t \sim N(\mathbf{0}, \hat{\Sigma})$, $\tilde{\mathbf{U}}_t = [\tilde{z}_t, \tilde{\tau}_t]$ $\hat{\Gamma} = \begin{bmatrix} 0.1298 & 0.2551 \\ -0.0571 & 0.9030 \end{bmatrix}$ and $\hat{\Sigma} = \begin{bmatrix} 0.000057 & 0.000007 \\ 0.000007 & 0.000062 \end{bmatrix}$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

- *τ*_t, use real federal corporate tax revenues as percent of total revenues
- *z*_t, use Solow residual approach from production function

$$z_t = \log(Y_t) - \theta \log(K_t) - (1 - \theta) \log(L_t)$$

- *Y_t*, real GDP 1951-2011
- *K*_t, capital stock series from BEA
- *L_t*, nonfarm employment times average annual hours
- VAR: $\tilde{\mathbf{U}}_t = \tilde{\mathbf{U}}_{t-1}\hat{\Gamma} + \varepsilon_t$, $\varepsilon_t \sim N(\mathbf{0}, \hat{\Sigma})$, $\tilde{\mathbf{U}}_t = [\tilde{z}_t, \tilde{\tau}_t]$ $\hat{\Gamma} = \begin{bmatrix} 0.1298 & 0.2551 \\ -0.0571 & 0.9030 \end{bmatrix}$ and $\hat{\Sigma} = \begin{bmatrix} 0.000057 & 0.000007 \\ 0.000007 & 0.000062 \end{bmatrix}$

< 日 > < 回 > < 回 > < 回 > < 回 > <

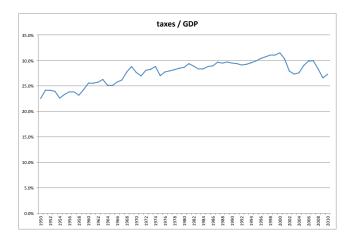
- *τ_t*, use real federal corporate tax revenues as percent of total revenues
- *z*_t, use Solow residual approach from production function

$$z_t = \log(Y_t) - \theta \log(K_t) - (1 - \theta) \log(L_t)$$

- *Y_t*, real GDP 1951-2011
- *K_t*, capital stock series from BEA
- L_t, nonfarm employment times average annual hours

• VAR:
$$\tilde{\mathbf{U}}_t = \tilde{\mathbf{U}}_{t-1}\hat{\Gamma} + \varepsilon_t$$
, $\varepsilon_t \sim N(\mathbf{0}, \hat{\Sigma})$, $\tilde{\mathbf{U}}_t = [\tilde{z}_t, \tilde{\tau}_t]$
 $\hat{\Gamma} = \begin{bmatrix} 0.1298 & 0.2551 \\ -0.0571 & 0.9030 \end{bmatrix}$ and $\hat{\Sigma} = \begin{bmatrix} 0.000057 & 0.000007 \\ 0.000007 & 0.000062 \end{bmatrix}$

▲ □ ▶ ▲ □ ▶



< E

Intro	Model	Estimation	IRFs and Multipliers	Conclusion	
MSM Estimation					

- Data moments (1951-2011, annual)
 - mean(I/Y), mean(K/Y), mean(C/Y), mean(MPK)
 - standard deviation(I/Y)
 - $corr(C_{t+1}, C_t)$, $corr(C_t, h_t)$, PCE, detrended
- Estimate standard exponential model $\beta = \delta$ and \bar{z}
- Estimate quasi-hyperbolic model β , δ , and \bar{z}
- Choose parameters to minimize error between model moments and data moments
- 2,000 simulations per iteration of 61 periods each
- Log-linear solution technique for policy functions

MSM Estimation

	Exponential		Quasi-hyperbolic		
Moments	$Data^{a}$	Mo	odel	Mo	odel
		moment	std. err. ^b	moment	std. err. ^b
mean(I/Y)	0.129	0.125	(0.003)	0.132	(0.004)
$\operatorname{mean}(C/Y)$	0.653	0.507	(0.002)	0.478	(0.002)
$\operatorname{mean}(K/Y)$	2.204	2.090	(0.038)	2.209	(0.043)
mean(MPK)	0.164	0.172	(0.003)	0.163	(0.003)
st.dev. (I/Y)	0.021	0.030	(0.004)	0.033	(0.004)
$\operatorname{corr}(C_t, C_{t+1})$	0.269	0.624	(0.118)	0.589	(0.127)
$\operatorname{corr}(C_t, h_t)$	0.108	-0.843	(0.031)	-0.856	(0.037)
Estimated parameters					
β				0.774	(?)
δ		0.921	(0.160)	0.948	(?)
\overline{z}		1.170	(0.469)	1.388	(?)

^a Data sample is 1948 to 2011 annual data.

^b MSM standard errors are derived from 50,000 simulations.

ヘロマ ヘロマ ヘロマ ヘ

Intro	Model	Estimation	IRFs and Multipliers	Conclusion
IRFs	and Multip	oliers		

- We set z_t = z̄ for all t and set τ_t = τ̄ for all t except for impulse τ₁ = τ̄ − σ^{1/2}_{τ.τ}
- Multiplier definition:

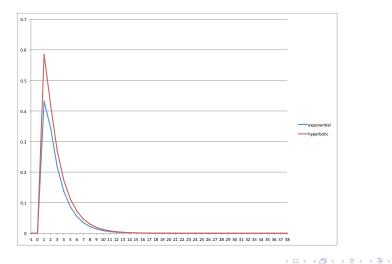
$$rac{\Delta Y_{t+s}}{\Delta au_t k_t}$$
 for $s\geq 0$

Look at both short-run and medium-run multipliers

(1日) (日) (日) (日) (日)

Intro	Model	Estimation	IRFs and Multipliers	Conclusion

Output multipliers



Evans, Phillips, Tengelsen (BYU) Fiscal Multipliers with Time-inconsistent Preferences

э

Intro	Model	Estimation	IRFs and Multipliers	Conclusion
Results				

- We estimate quasi-hyperbolic discount factors in DSGE model with values close to Laibson, et al (2012)
- Degree of "irrationality" probably not large
- Increase in multipliers minimal

Intro	Model	Estimation	IRFs and Multipliers	Conclusion
Furth	er work			

- Use better tax series
- Add two types and estimate percent quasi-hyperbolic
- Add price or wage frictions
- Deficit financing
- Try nonlinear solution methods: DYNARE
 - VFI probably not feasible