Skill-Biased Technological Change and Homeownership

Alexis Anagnostopoulos Orhan Erem Atesagaoglu Eva Carceles-Poveda

QSPS 2012

Housing Market

- Housing and the Macroeconomy
- The August 2007 subprime crisis has raised more attention to:
(i) Homeownership
(ii) House Prices
(iii) Mortgage Markets
- Motivated by the recent facts, the literature has mostly focused on a specific period: housing boom-bust.

Homeownership Rate

AGGREGATE HOMEOWNERSHIP RATE

Homeownership Rates by Age

Homeownership Rates by Age

Age Group	1970 s	1990 s	1970s-1990s
$20-24$	23.9	17.6	-6.3
$25-29$	45.4	37.1	-8.3
$30-34$	64.3	55.0	-9.3
$35-39$	71.9	64.8	-7.1
$40-44$	75.9	71.7	-4.2
$45-49$	78.8	76.8	-2.0
$50-54$	79.7	80.0	0.3
$55-59$	80.2	82.0	1.8
$60-64$	78.9	83.4	4.5
$65-69$	76.3	84.1	7.8
$70-74$	72.9	83.7	10.8
$75-79$	69.2	80.1	10.9

* 1970s - stands for the period of 1976 to 1978, (CPS Data)
* 1990s - stands for the period of 1994 to 1997, (CPS Data)

Homeownership Rates by Age

HOMEOWNERSHIP RATES BY AGE

A Contributing Factor...

- Question: Why has Life Cycle Profile of Homeownership Steepened?
- Our Answer: Skill-Biased Technological Change (SBTC) - an important factor.
- Period coincides with significant changes in wage inequality and returns to skill.
- In particular, returns to skill increased, associated with the 'latent' SBTC.
" SBTC is a shift in the production technology that favors skilled (more educated, more experienced, more able) labor over unskilled labor by increasing its relative productivity and, therefore, its relative demand. "

> Violante, Giovanni L. - "Skill-Biased Technical Change"
> The New Palgrave Dictionary of Economics, 2nd Edition

- SBTC increases the relative price of experience, an important dimension of skill.

Experience Premium

U.S. EXPERIENCE PREMIUM

Income Profiles

LIFE CYCLE INCOME (PRODUCTIVITY) PROFILES

Mechanism

- Skills accumulated with labor market experience
- Old agents are more skilled w.r.t. young agents
- SBTC \rightarrow increase in the relative price of skill

Wage of Young (Inexperienced) \downarrow

Wage of Old (Experienced) \uparrow

- Why? "General Purpose Technological Change" and "Technology-Experience Complementarity in Adoption"

Aghion, Howitt, Violante (2002), Hornstein, Krusell, Violante (2004), Weinberg (2005)

Mechanism

- The increase in returns to experience generates a steepening in life-cycle earnings profiles, widening the wage gap between young and old ages.
- This makes it increasingly hard for young households to accumulate substantial savings early in the life-cycle, in line with consumption smoothing.
- Accordingly, it takes more time for young agents to become homeowners, given frictions in (i) financial markets (downpayment requirement)
(ii) housing markets (owned houses are larger, indivisible).
- Older agents who were not able to own a house before may now become homeowners, given higher returns to experience and depending on what has happened to average wealth level at those old ages.

Related Literature

- Data: Housing and Ownership
- Segal and Sullivan (1998), Garriga, Gavin, Schlagenhauf (2006), Li (2005)
- Data: Inequality Facts
- Heathcote, Perri and Violante (2010)
- Modelling: Housing and Ownership
- Gervais (2002), Nakajima (2010), Diaz and Luengo-Prado (2008),
- Fang Yang (2009), Chambers, Garriga and Schlagenhauf (2009)
- Modelling: SBTC and Experience
- Guvenen and Kuruscu $(2009,2010)$, Jeon, Kim and Manovskii (2008)

Related Literature : Most Related Paper

- Fisher and Gervais (2011) :
- Fisher and Gervais (2011) - conjecture :
- increase in idiosyncratic risk
- decrease in marriage rates
- Fisher and Gervais (2011) :
- Their story is complementary to ours.
- But note that they do not aim to explain the steeping of homeownership profiles across ages.

Setup: Environment

- Discrete-time OLG model with (i) housing (ii) incomplete markets
- Skill accumulated (exogenously) over the life cycle with experience
- Agents: Households - Firms - Financial Institutions - Government
- Two consumption goods: (i) housing services (ii) non-housing goods
- Two assets: (i) financial assets (ii) houses
- Households-Demographics:
- Agents are born at age 1
- Agents could live up to age I
- Agents retire at age $1<I_{r}<I$
- Agents face a positive probability of dying, $1-\psi_{i}$
- Population grows at a rate g_{n}

Household Problem

- State Variable: $s=(i, e, x)$
- All agents face the same problem : "owning" vs "renting":

$$
V(s)=\max \left\{V_{o}(s), V_{r}(s)\right\}
$$

- Renter's Problem:

$$
\begin{aligned}
& V_{r}(s)= \max _{c \geq 0, d_{r} \geq 0, a, x^{\prime}}\left\{u\left(c, d_{r}\right)+\beta \psi_{i} E V\left(s^{\prime}\right)\right\} \\
& \text { s.t. } \\
& x= a \\
& c+x^{\prime}+q d_{r}= y(e, i)+(1+r)(x+t r) \\
& a \geq 0
\end{aligned}
$$

- No unsecured borrowing

Household Problem

- Owner's Problem:

$$
\begin{aligned}
& V_{o}(s)=\max _{c \geq 0, d_{o} \geq \underline{d}, a, x^{\prime}}\left\{u\left(c, d_{o}\right)+\beta \psi_{i} E V\left(s^{\prime}\right)\right\} \\
& \quad \text { s.t. } \\
& \quad x=d_{o}+a \\
& c+x^{\prime}=y(e, i)+(1+r)(a+t r)+\left(1-\delta_{d, o}\right) d_{o} \\
& \quad a \geq-(1-\chi) d_{o}
\end{aligned}
$$

- The only available form of credit: 'collateralized credit'
- Minimum down payment requirement: χ
- For homeowners, financial assets must satisfy:

$$
a \geq-(1-\chi) d_{0}
$$

Household Labor Income

- Household - Labor Endowment :
- Agents provide two distinct productive services
* "raw labor": fixed over the life-cycle, (u)
* "skill" : accumulated with labor market experience, $\left(h_{i}\right)$
- Raw labor and skill earn separate wages in the labor market, $\left(w_{u}, w_{h}\right)$
- Each agent faces stochastic productivity shocks, e
- Labor Income: $\quad e\left(w_{u} u+w_{h} h_{i}\right)$
- Household Labor Income

$$
y(e, i)=\left\{\begin{array}{cc}
\left(1-\tau_{s}\right) e\left(w_{u} u+w_{h} h_{i}\right) & \text { if age } \leq I_{r} \\
b & \text { if age }>I_{r}
\end{array}\right.
$$

Firm Problem

- Financial Institutions:
- Real Estate Sector : borrow financial assets from households
: use the financial assets to buy housing assets
: rent the housing assets at a price of q
: use the rental income to pay back the debt
- The problem of the intermediary:

$$
\max _{D_{r}}\left\{q D_{r}+\left(1-\delta_{d, r}\right) D_{r}-(1+r) D_{r}\right\}
$$

- Rental Price: $q=r+\delta_{d, r}$
- Firms - Production Technology :

$$
-y=A F(K, U, H)=A(K)^{\alpha}(\gamma U+(1-\gamma) H)^{1-\alpha}
$$

- The technology parameter, γ, captures the skill-biased demand shifts

Firm Problem

- Competitive Factor Prices in Labor Market:

$$
\begin{aligned}
& w_{u}=\gamma(1-\alpha) A \frac{K}{L} \\
& w_{h}=(1-\gamma)(1-\alpha) A \frac{K}{L}
\end{aligned}
$$

$$
\text { where } \quad L=\gamma U+(1-\gamma) H
$$

- Relative price of skill : $\quad \frac{w_{h}}{w_{u}}=\frac{1-\gamma}{\gamma}$
- Skill-Biased Technological Change : \downarrow in γ

Parameters

- Utility : $u(c, \varphi d)=\frac{\left(c^{\lambda}(d)^{1-\lambda}\right)^{1-\sigma}}{1-\sigma} \quad(\sigma=2)$
- Population growth rate : $g_{n}=1.2 \%$
- Mortality rates : Life Tables for 1977 and 1997
- Mandatory retirement : $I_{r}=65$
- Maximum life span : $I=80$
- Social security tax : 5.4\% - to match 33% replacement ratio
(Nakajima 2010)
- Macro Aggregates :
- Capital share in non-housing GDP : $\alpha=0.32$
- Calibrate ($\delta_{k}, \delta_{d o}, \delta_{d r}, \beta, \lambda$) to match :

$$
\frac{K}{Y}=1.65, \quad \frac{D_{r}+D_{o}}{Y}=1.08, \quad \frac{I_{k}}{Y}=0.19, \quad \frac{I_{d}}{Y}=0.047, \quad \frac{\delta_{d r}}{\delta_{d o}}=1.15
$$

Parameters

- Downpayment requirement : $\chi=20 \%$
- Minimum housing size : calibrated to match aggregate homeownership rate.
- Initial assets : Part of bequests distributed uniformly to young cohorts. $x_{1} \sim U(0, \bar{x}):$ The parameter \bar{x} is chosen to match the 23.9% ownership rate of $20-24$ old.
- Income Shocks : The process estimated by Storesletten, Telmer, Yaron (2004)

$$
\begin{aligned}
& \text { Persistance : } \rho=0.95 \\
& \text { Innovations : } \sigma_{\epsilon}=0.17 \text { (standard deviation) }
\end{aligned}
$$

- The process is discretized with 5 states using Tauchen-Hussey (1991)
- "Skill Accumulation", h_{i} : calibrated to match the 1970s income profile

Parameters

- Demand for "Raw Labor" / Demand for "Skills" :
- Before SBTC : $\gamma=0.5$ (normalized)
- After SBTC : γ is calibrated to match experience premium after SBTC
- "Raw Labor", u : calibrated to match a 4.4\% increase in household income due to improved female labor market outcomes.
(Fisher and Gervais 2010)

Calibration Targets and Corresponding Parameters

	Parameter	Target	Source
Technology	α	$\frac{\left(r+\delta_{k}\right) K}{Y}=0.32$	NIPA 1947-2008
Technology	$\delta_{d, o}, \delta_{d, r}$	$\frac{I_{d}}{Y}=0.047, \frac{\delta_{d, r}}{\delta_{d, o}}=1.15$	NIPA 1947-2008
Technology	δ_{k}	$\frac{I_{k}}{Y}=0.19$	NIPA 1947-2008
Preferences	β	$\frac{K}{Y}=1.65$	NIPA 1947-2008
Preferences	λ	$\frac{D_{o}+D_{r}}{Y}=1.08$	NIPA 1947-2008
Min house	$\underline{\mathrm{d}}$	64% Agg. Ownership	CPS 1976-1978
Initial assets	$X_{1} \sim U(0, \bar{X})$	24% Young Ownership	CPS 1976-1978
LifeCycle Prof.	h_{i}	70 's Product. Profile	CPS 1970-1979

Before SBTC...

TOTAL ASSETS OVER THE LIFE-CYCLE

FINANCIAL ASSETS OVER THE LIFE-CYCLE

HOUSING ASSETS OVER THE LIFE-CYCLE

Before SBTC...

After SBTC...

TOTAL ASSETS OVER THE LIFE-CYCLE

After SBTC...

HOMEOWNERSHIP RATES BY AGE

	Data			Model		
Age Group	1970s	1990s	1970s-1990s	1970s	1990s	1970s-1990s
20-24	23.9	17.6	-6.3	23.6	13.0	-10.6
25-29	45.4	37.1	-8.3	41.3	31.6	-9.7
30-34	64.3	55.0	-9.3	52.3	44.7	-7.6
35-39	71.9	64.8	-7.1	62.1	59.3	-2.8
40-44	75.9	71.7	-4.2	70.0	68.1	-1.9
45-49	78.8	76.8	-2.0	77.1	76.6	-0.6
50-54	79.7	80.0	+0.3	81.5	82.1	+0.6
55-59	80.2	82.0	+1.8	84.0	85.3	+1.3
60-64	78.9	83.4	+4.5	85.5	87.5	+1.9
65-69	76.3	84.1	+7.8	86.6	89.3	+2.7
70-74	72.9	83.7	+10.8	86.1	90.4	+4.3
75-79	69.2	80.1	+10.9	83.2	88.9	+5.6

HOMEOWNERSHIP RATES FOR YOUNG AND OLD

	Data			Model		
Age Group	1970s	1990s	1970s-1990s	1970s	1990s	1970s-1990s
20-44	54.5	47.4	-7.1	48.3	41.5	-6.8
45-59	79.5	79.4	-0.1	80.7	81.1	+0.4
60-79	75.1	83.0	+7.9	85.5	88.8	+3.4

The model explains

- 96% of the decrease for the young
- 42% of the increase for the old

TOTAL ASSETS OVER THE LIFE-CYCLE

FINANCIAL ASSETS OVER THE LIFE-CYCLE
(average asset holdings)

HOUSING ASSETS OVER THE LIFE-CYCLE (OWNED)

