Introduction	Model	Calibration	Results	Conclusion

Skill-Biased Technological Change and Homeownership

Alexis Anagnostopoulos Orhan Erem Atesagaoglu Eva Carceles-Poveda

QSPS 2012

Introduction	Model	Calibration	Results	Conclusion

Housing Market

- Housing and the Macroeconomy
- The August 2007 subprime crisis has raised more attention to:
 - (i) Homeownership
 - (ii) House Prices
 - (iii) Mortgage Markets
- Motivated by the recent facts, the literature has mostly focused on a specific period: housing boom-bust.

Introduction	Model	Calibration	Results	Conclusion

Homeownership Rate

AGGREGATE HOMEOWNERSHIP RATE

Introduction	Model	Calibration	Results	Conclusion

Homeownership Rates by Age

Age Group	1970s	1990s	1970s-1990s
20-24	23.9	17.6	-6.3
25-29	45.4	37.1	-8.3
30-34	64.3	55.0	-9.3
35-39	71.9	64.8	-7.1
40-44	75.9	71.7	-4.2
45-49	78.8	76.8	-2.0
50-54	79.7	80.0	0.3
55-59	80.2	82.0	1.8
60-64	78.9	83.4	4.5
65-69	76.3	84.1	7.8
70-74	72.9	83.7	10.8
75-79	69.2	80.1	10.9

Homeownership Rates by Age

* 1970s - stands for the period of 1976 to 1978, (CPS Data)

* 1990s - stands for the period of 1994 to 1997, (CPS Data)

Introduction	Model	Calibration	Results	Conclusion

Homeownership Rates by Age

20 25

30 35 40 45 50 55 60 65

Homeownership Rates by Age, % Homeownership Rates by Age, % 1970s - 1990s

Age Group (initial age)

70 75

HOMEOWNERSHIP RATES BY AGE

Introduction	Model	Calibration	Results	Conclusion
A Contribu	ting Factor.			

Question: Why has Life Cycle Profile of Homeownership Steepened?

- Our Answer: Skill-Biased Technological Change (SBTC) an important factor.
- Period coincides with significant changes in wage inequality and returns to skill.
- ▶ In particular, returns to skill increased, associated with the 'latent' SBTC.

"SBTC is a shift in the production technology that favors skilled (more educated, more experienced, more able) labor over unskilled labor by increasing its relative productivity and, therefore, its relative demand."

Violante, Giovanni L. - "Skill-Biased Technical Change" The New Palgrave Dictionary of Economics, 2nd Edition

SBTC increases the relative price of experience, an important dimension of skill.

Introduction Model Calibration Results	Conclusion

Experience Premium

U.S. EXPERIENCE PREMIUM

Introduction	Model	Calibration	Results	Conclusion

Income Profiles

LIFE CYCLE INCOME (PRODUCTIVITY) PROFILES

Introduction	Model	Calibration	Results	Conclusion
N.4. 1. 1				

Mechanism

- Skills accumulated with labor market experience
- Old agents are more skilled w.r.t. young agents
- SBTC \rightarrow increase in the relative price of skill

Wage of Young (Inexperienced) \downarrow

Wage of Old (Experienced) \uparrow

Why? "General Purpose Technological Change" and "Technology-Experience Complementarity in Adoption"

Aghion, Howitt, Violante (2002), Hornstein, Krusell, Violante (2004), Weinberg (2005)

Introduction	Model	Calibration	Results	Conclusion
NA I				

Mechanism

- The increase in returns to experience generates a steepening in life-cycle earnings profiles, widening the wage gap between young and old ages.
- This makes it increasingly hard for young households to accumulate substantial savings early in the life-cycle, in line with consumption smoothing.
- Accordingly, it takes more time for young agents to become homeowners, given frictions in (i) financial markets (downpayment requirement)
 (ii) housing markets (owned houses are larger, indivisible).
- Older agents who were not able to own a house before may now become homeowners, given higher returns to experience and depending on what has happened to average wealth level at those old ages.

Introduction	Model	Calibration	Results	Conclusion
Related Lit	terature			

- Data: Housing and Ownership
 - Segal and Sullivan (1998), Garriga, Gavin, Schlagenhauf (2006), Li (2005)
- Data: Inequality Facts
 - Heathcote, Perri and Violante (2010)
- Modelling: Housing and Ownership
 - Gervais (2002), Nakajima (2010), Diaz and Luengo-Prado (2008),
 - Fang Yang (2009), Chambers, Garriga and Schlagenhauf (2009)
- Modelling: SBTC and Experience
 - Guvenen and Kuruscu (2009,2010), Jeon, Kim and Manovskii (2008)

Introduction	Model	Calibration	Results	Conclusion
Related Liter	ature : Mc	ost Related Pa	per	
 Fisher an 	d Gervais (2011) :			
Fisher an	d Gervais (2011) -	conjecture :		

- increase in idiosyncratic risk
- decrease in marriage rates
- Fisher and Gervais (2011) :
 - Their story is complementary to ours.
 - But note that they do not aim to explain the steeping of homeownership profiles across ages.

Introduction	Model	Calibration	Results	Conclusion
Setup: Env	vironment			

- Discrete-time OLG model with (i) housing (ii) incomplete markets
- Skill accumulated (exogenously) over the life cycle with experience
- Agents: Households Firms Financial Institutions Government
- Two consumption goods: (i) housing services (ii) non-housing goods
- Two assets: (i) financial assets (ii) houses
- Households Demographics :
 - Agents are born at age 1
 - Agents could live up to age I
 - Agents retire at age $1 < I_r < I$
 - Agents face a positive probability of dying, $1-\psi_i$
 - Population grows at a rate g_n

Introduction	Model	Calibration	Results	Conclusion		
Household Problem						
► State	e Variable: $s = (i, e, x)$	<)				
 All agents face the same problem : "owning" vs "renting": V(s) = max {V_o(s), V_r(s)} 						
Rent	er's Problem:					
	$V_r(s) = \max_{c \ge 0, d_r = 0, $	$_{a,x'} \left\{ u(c,d_r) + \beta \psi_i I \right\}$	EV(s')			

s.t.

x = a $c + x' + qd_r = y(e, i) + (1 + r)(x + tr)$ $a \ge 0$

No unsecured borrowing

Introduction	Model	Calibration	Results	Conclusion

Household Problem

Owner's Problem:

$$V_o(s) = \max_{\substack{c \ge 0, d_o \ge d, a, x'}} \left\{ u(c, d_o) + \beta \psi_i EV(s') \right\}$$

s.t.
$$x = d_o + a$$

$$c + x' = y(e, i) + (1 + r)(a + tr) + (1 - \delta_{d,o})d_o$$

$$a \ge -(1 - \chi)d_o$$

The only available form of credit: 'collateralized credit'

- Minimum down payment requirement: χ

- For homeowners, financial assets must satisfy: $a \geq -(1-\chi)d_o$

Introduction	Model	Calibration	Results	Conclusion
Household Labor Income				

Household - Labor Endowment :

- Agents provide two distinct productive services

- * "raw labor": fixed over the life-cycle, (u)
- * "skill" : accumulated with labor market experience, (h_i)

- Raw labor and skill earn separate wages in the labor market, (w_u, w_h)

- Each agent faces stochastic productivity shocks, e

- Labor Income: $e(w_u u + w_h h_i)$

Household Labor Income

$$y(e,i) = \begin{cases} (1-\tau_s)e(w_u u + w_h h_i) & \text{if } age \leq I_r \\ b & \text{if } age > I_r \end{cases}$$

Introduction	Model	Calibration	Results	Conclusion
Firm Problem				
Financial In:	stitutions :			

Callbard

Decolor

Real Estate Sector : borrow financial assets from households
 : use the financial assets to buy housing assets
 : rent the housing assets at a price of q
 : use the rental income to pay back the debt

- The problem of the intermediary:

$$\max_{D_r} \left\{ qD_r + (1-\delta_{d,r})D_r - (1+r)D_r \right\}$$

- Rental Price: $q = r + \delta_{d,r}$

Firms - Production Technology :

N.4. - 1.- 1

$$- y = AF(K, U, H) = A(K)^{\alpha} (\gamma U + (1 - \gamma)H)^{1 - \alpha}$$

- The technology parameter, γ , captures the skill-biased demand shifts

Introduction	Model	Calibration	Results	Conclusion

Firm Problem

Competitive Factor Prices in Labor Market:

$$w_{u} = \gamma(1-\alpha)A\frac{K}{L}$$
$$w_{h} = (1-\gamma)(1-\alpha)A\frac{K}{L}$$

where
$$L = \gamma U + (1 - \gamma)H$$

• Relative price of skill :
$$\frac{w_h}{w_u} = \frac{1-\gamma}{\gamma}$$

Skill-Biased Technological Change : \downarrow in γ

Introduction	Model	Calibration		Results	Conclusion
Paramete	rs				
► Utili	ty: $u(c, \varphi d) = \frac{(c^{\lambda}(d))}{(d)^{\lambda}}$	$\frac{d)^{1-\lambda}}{1-\sigma}$	$(\sigma = 2)$		
Рорг	ulation growth rate :	$g_n = 1.2\%$			
Mor	tality rates :	Life Tables for	1977 and 19	97	
► Man	idatory retirement :	$I_r = 65$			
Max	imum life span :	<i>I</i> = 80			
Soci	al security tax :	5.4% - to matc	h 33% replac (Nak	cement ratio ajima 2010)	
Mac	ro Aggregates :				
	— Capital share in n	on-housing GDP	$\alpha = 0.32$		
	- Calibrate ($\delta_k, \delta_{do},$	$\delta_{\mathit{dr}}, eta, \lambda$) to matrix	tch :		
	$\frac{K}{Y} = 1.65, \frac{D_r}{Y}$	$\frac{+D_o}{Y} = 1.08, \frac{1}{2}$	$\frac{I_k}{Y} = 0.19,$	$\frac{I_d}{Y} = 0.047,$	$rac{\delta_{dr}}{\delta_{do}}=1.15$

Introduction	Model	Calibration	Results	Conclusion
Parameters				
Downpayme	ent requirement : χ	g = 20%		

Minimum housing size : calibrated to match aggregate homeownership rate.

► Initial assets : Part of bequests distributed uniformly to young cohorts. $x_1 \sim U(0, \overline{x})$: The parameter \overline{x} is chosen to match the 23.9% ownership rate of 20 - 24 old.

► Income Shocks : The process estimated by Storesletten, Telmer, Yaron (2004) Persistance : $\rho = 0.95$ Innovations : $\sigma_{\epsilon} = 0.17$ (standard deviation)

- The process is discretized with 5 states using Tauchen-Hussey (1991)

• "Skill Accumulation", h_i : calibrated to match the 1970s income profile

Introduction	Model	Calibration	Results	Conclusion
Parameter	S			

- Demand for "Raw Labor" / Demand for "Skills" :
 - Before SBTC : $\gamma = 0.5$ (normalized)
 - After SBTC $: \gamma$ is calibrated to match experience premium after SBTC
- "Raw Labor", u : calibrated to match a 4.4% increase in household income due to improved female labor market outcomes.

(Fisher and Gervais 2010)

Introduction	Model	Calibration	Results	Conclusion

Calibration Targets and Corresponding Parameters

	Parameter	Target	Source
Technology	α	$\frac{(r+\delta_k)K}{Y} = 0.32$	NIPA 1947-2008
Technology	$\delta_{d,o}, \delta_{d,r}$	$\frac{I_d}{Y} = 0.047, \frac{\delta_{d,r}}{\delta_{d,o}} = 1.15$	NIPA 1947-2008
Technology	δ_k	$\frac{I_k}{Y} = 0.19$	NIPA 1947-2008
Preferences	β	$\frac{K}{Y} = 1.65$	NIPA 1947-2008
Preferences	λ	$\frac{D_o + D_r}{Y} = 1.08$	NIPA 1947-2008
Min house	d	64% Agg. Ownership	CPS 1976-1978
Initial assets	$X_1 \sim U\left(0, \bar{X}\right)$	24% Young Ownership	CPS 1976-1978
LifeCycle Prof.	h_i	70's Product. Profile	CPS 1970-1979

Introduction	Model	Calibration	Results	Conclusion
Before SBTC.				

Age Group (initial age)

65 70 75

40 45 50

Introduction	Model	Calibration	Results	Conclusion
After SB1	-C			

45 50 55 60 65 70 75

Age Group (initial age)

40

0

20 25 30 35

0

Introduction	Model	Calibration	Results	Conclusion

	Data		Model		el		
Age Group	1970s	1990s	1970s-1990s		1970s	1990s	1970s-1990s
20-24	23.9	17.6	-6.3		23.6	13.0	-10.6
25-29	45.4	37.1	-8.3		41.3	31.6	-9.7
30-34	64.3	55.0	-9.3		52.3	44.7	-7.6
35-39	71.9	64.8	-7.1		62.1	59.3	-2.8
40-44	75.9	71.7	-4.2		70.0	68.1	-1.9
45-49	78.8	76.8	-2.0		77.1	76.6	-0.6
50-54	79.7	80.0	+0.3		81.5	82.1	+0.6
55-59	80.2	82.0	+1.8		84.0	85.3	+1.3
60-64	78.9	83.4	+4.5		85.5	87.5	+1.9
65-69	76.3	84.1	+7.8		86.6	89.3	+2.7
70-74	72.9	83.7	+10.8		86.1	90.4	+4.3
75-79	69.2	80.1	+10.9		83.2	88.9	+5.6

HOMEOWNERSHIP RATES BY AGE

Introduction	Model	Calibration	Results	Conclusion

	Data			Model				
Age Group	1970s	1990s	1970s-1990s	1970s	1990s	1970s-1990s		
20-44	54.5	47.4	-7.1	48.3	41.5	-6.8		
45-59	79.5	79.4	-0.1	80.7	81.1	+0.4		
60-79	75.1	83.0	+7.9	85.5	88.8	+3.4		

HOMEOWNERSHIP RATES FOR YOUNG AND OLD

The model explains

- 96% of the decrease for the young
- 42% of the increase for the old

Introduction	Model	Calibration	Results	Conclusion

Introduction	Model	Calibration	Results	Conclusion

Introduction	Model	Calibration	Results	Conclusion

Introduction	Model	Calibration	Results	Conclusion

Introduction	Model	Calibration	Results	Conclusion

