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Abstract

Altruistic dynasty models in which family members care about the consumption or utility of other
family members can account for the existence of inter vivos transfers and intended bequests between
family members, but they struggle to match the quantitative properties of data regarding these gifts.
For example, dynasty models predict that families should undo any exogenous transfer between family
members (such as Social Security) with a countervailing endogenous transfer, but this is not observed
empirically. Here we consider a simple generalization of the two-period overlapping generations model
in which both the parent and the child care about the other family member’s consumption, and the
net transfer between them is determined by cooperative bargaining. While this model nests altruistic
dynasty models, more generally we find that transfers only occur when the parent to child wealth ratio
is above or below certain thresholds. If the parent and child have reciprocal feelings towards each other,
transfers will only happen when one party is extremely poor relative to the other.
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We study to what extent augmenting standard overlapping generations (OLG) models with inter vivos
transfers alters the key insights we have learned from such models. OLG models are workhorse models for
studying a wide array of topics, such as the wealth distribution (Cagetti and DeNardi 2006, 2009, DeNardi
2004, Yang 2005), entrepreneurship formation (Cagetti and DeNardi 2006), welfare effects of the Great
Recession (Glover, Heathcote, Krueger, and Rios-Rull 2011), and life cycle dynamics of consumption and
saving (Bullard and Feigenbaum 2007), among others. A common feature of the canonical OLG model is
that, apart from bequest motives, households in each generation are modelled largely as maximizing only
their own welfare. Although bequests are a significant component of intergenerational transfers, they are
by no means the only transfers. In particular, bequests are typically one-way transfers– from parents to
children– and only take place at the end of the life cycle. Meanwhile, inter vivos intergenerational transfers
between living members of a family are quite common. For example, Kaplan (2010) documented that young
adults under financial pressure often move back to live with their parents so they may economize resources
spent on rent, utility and food. Moreover, ample anecdotal evidence suggests that elderly parents often get
financial and in-kind transfers from their adult children.
With the seminal contribution of Barro (1974), students of OLG models came to the realization that finite

lives may not have any implications for the capitalization of future tax liabilities if generations are linked by
a chain of operational intergenerational transfers. In a similar spirit, we ask what happens if households of
different generations living concurrently in the same family intrinsically care about each other’s welfare and
engage in inter vivos transfers. To what extent would an otherwise standard OLG model behave like a model
with infinitely-lived consumers and how would the key results derived from typical OLG models change?
This is a quantitative question, the answer to which depends crucially on the strength of intergenerational
welfare linkage and the way in which transfers are determined.
A key innovation of our model is that we allow inter vivos transfers to be state-dependent and to happen

in both directions– parents transferring resources to children and children transferring resources to parents.
Accordingly, the size and direction of the transfer is determined in a Nash-bargaining setup. We show that
earlier intergenerational transfer models, such as Altonji, Hayashi, and Kotlikoff (1997), can be nested in
our Nash-bargaining model with specific parameterizations of the bargaining power between generations.
To gain insight into the mechanism of such an intra-family intergenerational Nash-bargaining model, we

focus here on a study a stylized model in which each generation lives for two periods, coexisting first with their
parents and then in the second period of life with their children. We present analytical results for the cases
where either the parent or the child has all bargaining power and show that such models are observationally
equivalent to those of the altruistic model, which in turn implies results observationally equivalent to those
of models with infinitely-lived consumers such as Aiyagari (1994). We next turn to the more interesting case
where both the parent and child have some bargaining power. If neither generation has complete bargaining
power, the model will generally behave differently from models with infinitely-lived consumers unless parents
and children both assign the same relative weight to utility from each generation. Also, Nash-bargaining
implies that transfers only occur when the parent-child wealth-ratio is far enough from unity that a transfer
will increase the welfare of both the transfer recipient and provider. One surprising result is how the family
responds to exogenous transfers from the child to the parent as described in Altonji, Hayashi, and Kotlikoff
(1997). In an altruism model like Barro (1974), the allocation of consumption to the parent and child only
depends on the total wealth of the family, so the family should respond to such an exogenous transfer by
undoing it. In the present model with bargaining, we find that the apportionment of wealth between the
parent and child matters. If the disparity of wealth between the parent and child is small, they will not
undo the exogenous transfer. When the parent to child wealth ratio exceeds a threshold level, however, the
parent will provide a countervailing transfer that more than undoes the exogenous transfer from the child
to the parent.
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1 The Model

We consider a two-period overlapping generations model. Every household has one child household.1 When
young, a household coexists with its parents. When old, a household coexists with its children. Each chain
of households defines a dynasty with intergenerational links similar to Yang (2005).
A household in dynasty i born at time t will maximize

u(cit,t) + vp(c
i
t,t−1) + β[u(c

i
t+1,t) + vc(c

i
t+1,t+1)] (1)

subject to

cit,t + b
i
t+1 = yit,t + τ

i
t

cit+1,t + τ
i
t+1 = yit+1,t +Rb

i
t+1

cit,t−1 + τ
i
t = xit,t−1 ≡ yit,t−1 +Rbit

cit+1,t+1 + b
i
t+2 = yit+1,t+1 + τ

i
t+1,

where cit,s is consumption at time t of the household in dynasty i born at time s; y
i
t,s is the income at time

t of the household in dynasty i born at time s; bit is the saving of the household in dynasty i born at t− 1;
τ it is the transfer from the parent in dynasty i to its child (which could be negative) at time t; and R > 0 is
the gross interest rate. The household’s own period utility function is u(c), the utility that it gets from its
parent or child’s contemporaneous consumption is v(c), and β > 0 is the discount factor.

Let us suppose that we have consumption functions cit,s(τ
i
t′) expressed as a function of the transfer at

time t′, the details of which will be specified below. Then τ it is determined by Nash bargaining with a threat
point of no transfer, which is always feasible if the expected transfer next period is not too large.2 Thus we
maximize

LN (τ it) = [u(cit,t−1(τ
i
t)) + vc(c

i
t,t(τ

i
t))− u(cit,t−1(0))− vc(cit,t(0))]θ

×[u(cit,t(τ it)) + vp(cit,t−1(τ it)) + β[u(cit+1,t(τ it)) + vc(cit+1,t+1(τ it))]
−u(cit,t(0))− vp(cit,t−1(0))− β[u(cit+1,t(0)) + vc(cit+1,t+1(0))]]1−θ, (2)

where θ is the relative bargaining power of the parent and 1− θ is the relative bargaining power of the child.
To define an equilibrium we will have to specify a bargaining mechanism to determine the transfer between

each contemporaneous pair of generations.
We assume income is nonstochastic with yt,s = yt−s for t = s, s+ 1.
The policy functions for a young household in dynasty i at period t will be a function of the parent’s

wealth xit,t−1. We will need to solve for consumption functions cit,t(x
i
t,t−1), c

i
t,t−1(x

i
t,t−1), a bond demand

function bit+1(x
i
t,t−1), an expected transfer function τ̃

i
t+1(x

i
t,t−1) and a transfer function τ

i
t(x

i
t,t−1). A young

household solves its problem with the expectation that the transfer when old will be governed by τ̃ it+1. In
a rational-expectations equilibrium we must have

τ̃ t+1(x
i
t,t−1) = τ it+1(y1 +Rb

i
t+1(x

i
t,t−1)) (3)

for all xit,t−1.

1We may wish to generalize the model for the case where the number of children is stochastic as in Feigenbaum (2011).
However, that will require an agent-based model.

2We have to adjust the threat point for the case where the expected transfer is larger than the child’s present value of wealth.
This will only happen when the parent’s wealth is very large. See below.

3



We compute an equilibrium according to the following algorithm. Given τ̃ it+1(x
i
t,t−1), for each possible

state xit,t−1 we solve the young household’s problem for c̃it,t(τ
i
t) and b̃

i
t+1(τ

i
t). Then τ

i
t(x

i
t,t−1) is determined

to solve the bargaining problem between the young and old household at t. The next iteration of τ̃ it+1(x
i
t,t−1)

is then computed according to (3).
Let u(c) be CRRA with risk aversion γ > 0 and let vi(c) = χiu(c), where χi ≥ 0 for i = p, c.
We also assume that yit,s = yt−s. Given τ it and τ

i
t+1, the household born at t will maximize

u(ct,t) + βu(ct+1,t)

subject to

ct,t + bt+1 = y0 + τ t (4)

ct+1,t + τ t+1 = y1 +Rbt+1 (5)

Thus
L(bt+1|τ t, τ t+1) = u(y0 + τ t − bt+1) + βu(y1 +Rbt+1 − τ t+1)

dL(bt+1|τ t, τ t+1)
dbt+1

= −(y0 + τ t − bt+1)−γ + βR(y1 +Rbt+1 − τ t+1)−γ = 0

y0 + τ t − bt+1 = (βR)−1/γ(y1 +Rbt+1 − τ t+1)

Define
φ = (βR1−γ)−1/γ (6)

y0 + τ t − bt+1 = φ

(
y1 − τ t+1

R
+ bt+1

)
(1 + φ)bt+1 = y0 + τ t −

φ

R
(y1 − τ t+1)

Thus the bond demand as a function of the transfers is

bt+1(τ t, τ t+1) =
1

1 + φ

[
y0 + τ t −

φ

R
(y1 − τ t+1)

]
. (7)

The consumption functions are

ct,t(τ t, τ t+1) = y0 + τ t − bt+1(τ t, τ t+1) = y0 + τ t −
1

1 + φ

[
y0 + τ t −

φ

R
(y1 − τ t+1)

]

ct,t(τ t, τ t+1) =
φ

1 + φ

[
y0 + τ t +

y1 − τ t+1
R

]
(8)

ct+1,t = y1 − τ t+1 +Rbt+1 = y1 − τ t+1 +
R

1 + φ

[
y0 + τ t −

φ

R
(y1 − τ t+1)

]
=

1

1 + φ
[R(y0 + τ t) + (1 + φ− φ)(y1 − τ t+1]

ct+1,t(τ t,τ t+1) =
R

1 + φ

[
y0 + τ t +

y1 − τ t+1
R

]
(9)
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Having solved for the consumption functions, let us guess at τ t+1 and compute τ t that maximizes (2).
In a symmetric Nash equilibrium, we will have τ t = τ t+1 = τ . The parent at t will have cash on hand
xt,t−1. Holding τ t+1 and τ t+2 fixed, the utility gain of the parent will be

Upt (τ t) = u (xt,t−1 − τ t)− (xt,t−1) + χc
(
u

(
φ

1 + φ

[
y0 + τ t +

y1 − τ t+1
R

])
− u

(
φ

1 + φ

[
y0 +

y1 − τ t+1
R

]))

Upt (τ t) = u (xt,t−1 − τ t)− (xt,t−1) +
(

φ

1 + φ

)1−γ
χc

[
u

(
y0 + τ t +

y1 − τ t+1
R

)
− u

(
y0 +

y1 − τ t+1
R

)]
.

(10)
The utility gain of the child will be

U ct (τ t) = u

(
φ

1 + φ

[
y0 + τ t +

y1 − τ t+1
R

])
+ βu

(
R

1 + φ

[
y0 + τ t +

y1 − τ t+1
R

])
+χpu (xt,t−1 − τ t) + βχcu

(
φ

1 + φ

[
y0 + τ t+1 +

y1 − τ t+2
R

])
−u
(

φ

1 + φ

[
y0 +

y1 − τ t+1
R

])
− βu

(
R

1 + φ

[
y0 +

y1 − τ t+1
R

])
−χpu (xt,t−1)− βχcu

(
φ

1 + φ

[
y0 + τ t+1 +

y1 − τ t+2
R

])
Note that

u

(
φ

1 + φ
x

)
+ βu

(
R

1 + φ
x

)
=

1

1− γ

(
x

1 + φ

)1−γ
[φ1−γ + βR1−γ ]

=
1

1− γ

(
x

1 + φ

)1−γ
[φ1−γ + φ−γ ]

= u(x)
φ−γ

(1 + φ)−γ
= (1 + φ−1)γu(x).

Thus the utility gain of the child simplifies to

U ct (τ t) = (1+φ
−1)γ

[
u

(
y0 + τ t +

y1 − τ t+1
R

)
− u

(
y0 +

y1 − τ t+1
R

)]
+χp [u(xt,t−1 − τ t)− u(xt,t−1)] (11)

So both the parent and the child’s utility are linear combinations of

u

(
y0 + τ t +

y1 − τ t+1
R

)
− u

(
y0 +

y1 − τ t+1
R

)
and

u(xt,t−1 − τ t)− u(xt,t−1).

They only differ in the relative weights.
An abstract formulation of this problem is

U1 = A11[u(x1 − τ)− u(x1)] +A12[u(x2 + τ)− u(x2)] (12)

U2 = A21[u(x1 − τ)− u(x1)] +A22[u(x2 + τ)− u(x2)]. (13)
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For the Nash bargaining problem, we wish to choose τ to maximize

V = θ lnU1 + (1− θ) lnU2 (14)

dV

dτ
=

θ

U1

[
−A11(x1 − τ)−γ +A12(x2 + τ)−γ

]
+
1− θ
U2

[−A21(x1 − τ)−γ +A22(x2 + τ)−γ ] = 0

Thus we need (
θA11
U1

+
(1− θ)A21

U2

)
(x1 − τ)−γ =

(
θA12
U1

+
(1− θ)A22

U2

)
(x2 + τ)

−γ

(θA11U2 + (1− θ)A21U1)(x1 − τ)−γ = (θA12U2 + (1− θ)A22U1)(x2 + τ)−γ (15)

θA11U2 + (1− θ)A21U1 = (θA11A21 + (1− θ)A21A11)[u(x1 − τ)− u(x1)]
+(θA11A22 + (1− θ)A21A12)[u(x2 + τ)− u(x2)]

= A11A21[u(x1 − τ)− u(x1)]
+(θA11A22 + (1− θ)A12A21)[u(x2 + τ)− u(x2)]

θA12U2 + (1− θ)A22U1 = ((1− θ)A22A11 + θA12A21)[u(x1 − τ)− u(x1)]
+(θA12A22 + (1− θ)A22A12)[u(x2 + τ)− u(x2)]

= ((1− θ)A22A11 + θA12A21)[u(x1 − τ)− u(x1)]
+A12A22[u(x2 + τ)− u(x2)]

This gives us

(A11A21[u(x1 − τ)− u(x1)] + (θA11A22 + (1− θ)A21A12)[u(x2 + τ)− u(x2)]) (x1 − τ)−γ

= (((1− θ)A22A11 + θA12A21)[u(x1 − τ)− u(x1)] +A12A22[u(x2 + τ)− u(x2)]) (x2 + τ)−γ (16)

This does not have an analytic solution for general θ.
If θ = 0 or 1, so either the parent or the child makes all the decisions, it will simplify to the usual solution.

If θ = 0,

(A11A21[u(x1 − τ)− u(x1)] +A21A12[u(x2 + τ)− u(x2)]) (x1 − τ)−γ

= (A22A11[u(x1 − τ)− u(x1)] +A12A22[u(x2 + τ)− u(x2)]) (x2 + τ)−γ

A21 (A11[u(x1 − τ)− u(x1)] +A12[u(x2 + τ)− u(x2)]) (x1 − τ)−γ

= A22 (A11[u(x1 − τ)− u(x1)] +A12[u(x2 + τ)− u(x2)]) (x2 + τ)−γ

A21(x1 − τ)−γ = A22(x2 + τ)
−γ

A
−1/γ
21 (x1 − τ) = A

−1/γ
22 (x2 + τ)

(A
−1/γ
21 +A

−1/γ
22 )τ = A

−1/γ
21 x1 −A−1/γ22 x2

Thus when Player 2 has all the bargaining power,

τ =
A
−1/γ
21 x1 −A−1/γ22 x2

A
−1/γ
21 +A

−1/γ
22
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c1 = D1(x1 − τ) = D1

(
x1 −

A
−1/γ
21 x1 −A−1/γ22 x2

A
−1/γ
21 +A

−1/γ
22

)
= D1

A
−1/γ
22

A
−1/γ
21 +A

−1/γ
22

(x1 + x2) (17)

c2 = D2(x2 + τ) = D2

(
x2 +

A
−1/γ
21 x1 −A−1/γ22 x2

A
−1/γ
21 +A

−1/γ
22

)
= D2

A
−1/γ
21

A
−1/γ
21 +A

−1/γ
22

(x1 + x2) (18)

In this case
c2
c1
=
D2

D1

(
A22
A21

)1/γ
.

Conversely, if θ = 1, the bargaining condition becomes

(A11A21[u(x1 − τ)− u(x1)] +A11A22[u(x2 + τ)− u(x2)]) (x1 − τ)−γ

= (A12A21[u(x1 − τ)− u(x1)] +A12A22[u(x2 + τ)− u(x2)]) (x2 + τ)−γ

A11(x1 − τ)−γ = A12(x2 + γ)
−γ

A
−1/γ
11 (x1 − τ) = A

−1/γ
12 (x2 + τ)

τ =
A
−1/γ
11 x1 −A−1/γ12 x2

A
−1/γ
11 +A

−1/γ
12

Thus

c1 = D1(x1 − τ) = D1
A
−1/γ
12

A
−1/γ
11 +A

−1/γ
12

(x1 + x2) (19)

c2 = D2(x2 + τ) = D2
A
−1/γ
11

A
−1/γ
11 +A

−1/γ
12

(x1 + x2) (20)

These are the same as (17)-(18) except now it is the weights of player 1 that matter rather than the weights
of player 2.
In this case

c2
c1
=
D2

D1

(
A12
A11

)1/γ
.

There is a third analytic case when A21 = kA11 and A22 = kA12, so the proportional weights are the
same: (

kA211[u(x1 − τ)− u(x1)] + (θkA11A12 + (1− θ)kA11A12)[u(x2 + τ)− u(x2)]
)
(x1 − τ)−γ

=
(
((1− θ)kA12A11 + θkA12A11)[u(x1 − τ)− u(x1)] + kA212[u(x2 + τ)− u(x2)]

)
(x2 + τ)

−γ

A11 (A11[u(x1 − τ)− u(x1)] +A12[u(x2 + τ)− u(x2)]) (x1 − τ)−γ

= A12 (A11[u(x1 − τ)− u(x1)] +A12[u(x2 + τ)− u(x2)]) (x2 + τ)−γ

A11(x1 − τ)−γ = A12(x2 + τ)
−γ

This just gives us (19)-(20) again, which in this case are equivalent to (17)-(18).
These preliminary results suggest that Barro’s (1974) results that an overlapping-generations model can

be equivalent to an infinite-horizon representative-agent model may not require pure altruism if either the
parent or the child has all the bargaining power, a situation that may be relevant to many developing nations
like Uzbekistan.
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1.1 Paterfamilias Model

Let us focus on the case where θ = 1 so the parent has all the bargaining power to see how closely this is
to a Barro model. Since the parent has absolute power over the child, we call this the paterfamilias model.
Let us define

ξ =

((
1

1 + φ

)1−γ
χc

)−1/γ
, (21)

so

A11 = 1

A
−1/γ
12 = ξ.

We also have

D1 = 1

D2 =
φ

1 + φ

ct,t
ct,t−1

=
φ

1 + φ

1

ξ

Then the optimal transfer must satisfy

τ t =
xt,t−1 − ξ

(
y0 +

y1−τt+1
R

)
1 + ξ

. (22)

Let us assume the transfer is a linear function:

τ(x) = Ax+B (23)

xt+1,t = y1 +Rbt+1 = y1 +
R

1 + φ

[
y0 + τ t −

φ

R
(y1 −Axt+1,t −B)

]
xt+1,t = y1 +

R

1 + φ

[
y0 + τ t −

φ

R
(y1 −B)

]
+

φ

1 + φ
Axt+1,t

xt+1,t =
1

1− φ
1+φA

[
y1 +

R

1 + φ

[
y0 + τ t −

φ

R
(y1 −B)

]]

xt+1,t =
1

1− φ
1+φA

R

1 + φ

[
1 + φ

R
y1 + y0 + τ t −

φ

R
(y1 −B)

]

xt+1,t =
1

1− φ
1+φA

R

1 + φ

[
y0 + τ t +

y1 + φB

R

]

xt+1,t =
1

1− φ
1+φA

R

1 + φ

[
y0 +Axt,t−1 +B +

y1 + φB

R

]
(24)

τ t+1 =
R

φ

1

1− φ
1+φA

Aφ

1 + φ

[
y0 + τ t +

y1 + φB

R

]
+B (25)
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Substituting this into (22

Axt,t−1 +B =

xt,t−1 − ξ
(
y0 +

y1−Rφ
1

1− φ
1+φ

A

Aφ
1+φ [y0+Axt,t−1+B+

y1+φB
R ]−B

R

)
1 + ξ

A =
1 + ξ 1

1− φ
1+φA

A2

1+φ

1 + ξ
(26)

A(1 + ξ)− 1 = ξ
1

1− φ
1+φA

A2

1 + φ
(27)

[A(1 + ξ)− 1]
(
1− φ

1 + φ
A

)
=

ξ

1 + φ
A2

−A2 φ

1 + φ
(1 + ξ) +

[
1 + ξ +

φ

1 + φ

]
A− 1 =

ξ

1 + φ
A2

[
ξ

1 + φ
+

φ

1 + φ
(1 + ξ)

]
A2 −

[
1 + ξ +

φ

1 + φ

]
A+ 1 = 0

[ξ(1 + φ) + φ]
A2

1 + φ
−
[
1 + ξ +

φ

1 + φ

]
A+ 1 = 0[

ξ +
φ

1 + φ

]
A2 −

[
1 + ξ +

φ

1 + φ

]
A+ 1 = 0[

ξ +
φ

1 + φ

]
A(A− 1)− (A− 1) = 0([

ξ +
φ

1 + φ

]
A− 1

)
(A− 1) = 0

Thus we have two solutions, A = 1 and

A =
1

ξ + φ
1+φ

(28)

B =

−ξ
(
y0 +

y1−Rφ
1

1− φ
1+φ

A

Aφ
1+φ [y0+B+

y1+φB
R ]−B

R

)
1 + ξ

B = − ξ

1 + ξ

(
y0 +

y1 −B
R

)
+

ξ

1 + ξ

1

1− φ
1+φA

A

1 + φ

[
y0 +B +

y1 + φB

R

]

B =

[
1

1− φ
1+φA

A

1 + φ
− 1
]

ξ

1 + ξ

(
y0 +

y1
R

)
+

ξ

1 + ξ

[
1

1− φ
1+φA

A

1 + φ

(
1 +

φ

R

)
+
1

R

]
B (29)

Note that if A = 1,
1

1− φ
1+φA

A

1 + φ
− 1 = 1

1 + φ− φ − 1 = 0,
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so (29) implies B = 0. Thus with this solution τ(x) = x, and ct,t = xt,t − τ(xt,t) = 0. Thus we can ignore
this solution and assume A is given by (28).

B =

[
1

1− φ
1+φA

A
1+φ − 1

]
ξ
1+ξ

1− ξ
1+ξ

[
1

1− φ
1+φA

A
1+φ

(
1 + φ

R

)
+ 1

R

] (y0 + y1
R

)
(30)

A

1 + φ
=

1

ξ + φ+ φξ

1− φ

1 + φ
A = 1− φ

ξ + φ+ φξ
=

ξ + φξ

ξ + φ+ φξ
=

ξ(1 + φ)

ξ + φ+ φξ

1

1− φ
1+φA

A

1 + φ
=

1

ξ(1 + φ)

1

1− φ
1+φA

A

1 + φ
− 1 = 1− ξ − φξ

ξ(1 + φ)

Thus we have

B =

1−ξ−φξ
(1+φ)(1+ξ)

1− ξ
1+ξ

[
1

ξ(1+φ)

(
1 + φ

R

)
+ 1

R

] (y0 + y1
R

)

B =
1− ξ − φξ

(1 + φ)(1 + ξ)− ξ
[
1
ξ

(
1 + φ

R

)
+ 1+φ

R

] (y0 + y1
R

)

B =
1− ξ − φξ

(1 + φ)(1 + ξ)−
(
1 + φ

R

)
− (1+φ)ξ

R

(
y0 +

y1
R

)
=

1− ξ − φξ
(φ+ ξ + φξ)(1− 1

R )

(
y0 +

y1
R

)
B =

R

r

1− ξ − φξ
φ+ ξ + φξ

(
y0 +

y1
R

)
(31)

Since we can rewrite (28) as

A =
1

ξ + φ
1+φ

=
1 + φ

ξ + φ+ ξφ
(32)

we have
B

A
=
1− ξ − φξ
1 + φ

R

r

(
y0 +

y1
R

)
B

A
=

(
1

1 + φ
− ξ
)
R

r

(
y0 +

y1
R

)
. (33)

Using (21), we have

ξ(1 + φ) =

(
χc
1 + φ

)−1/γ

10



can further rewrite this as

B

A
=
1−

(
χc
1+φ

)−1/γ
1 + φ

R

r

(
y0 +

y1
R

)
(34)

and

A =
1 + φ

φ+
(
χc
1+φ

)−1/γ (35)

B =
1−

(
χc
1+φ

)−1/γ
φ+

(
χc
1+φ

)−1/γ Rr (y0 + y1
R

)
(36)

Note that (29) simplifies to

B =
ξ

1 + ξ

{[
1

ξ(1 + φ)
− 1
](
y0 +

y1
R

)
+

[
1

ξ(1 + φ)

(
1 +

φ

R

)
+
1

R

]
B

}
As a check of (36), substituting it into this equation we get

B =
ξ

1 + ξ

[(
χc
1 + φ

)1/γ
− 1
](

y0 +
y1
R

)
ξ

1 + ξ
+

[(
χc
1 + φ

)1/γ (
1 +

φ

R

)
+
1

R

]
1−

(
χc
1+φ

)−1/γ
φ+

(
χc
1+φ

)−1/γ Rr (y0 + y1
R

)

B =

(
χc
1+φ

)−1/γ
1

1+φ

1 +
(
χc
1+φ

)−1/γ
1

1+φ

{(
χc
1 + φ

)1/γ [
φ+

(
χc
1 + φ

)−1/γ]
R− 1
R

+

[(
χc
1 + φ

)1/γ (
1 +

φ

R

)
+
1

R

]}
1−

(
χc
1+φ

)−1/γ
φ+

(
χc
1+φ

)−1/γ Rr (y0 + y1
R

)

1 +

(
χc
1 + φ

)1/γ
(1 + φ) =

(
χc
1 + φ

)1/γ [
φ+

(
χc
1 + φ

)−1/γ]
R− 1
R

+

[(
χc
1 + φ

)1/γ (
1 +

φ

R

)
+
1

R

]

1 +

(
χc
1 + φ

)1/γ
(1 + φ) =

(
χc
1 + φ

)1/γ [
φ

(
1− 1

R

)
+ 1 +

φ

R

]
+ 1− 1

R
+
1

R

=

(
χc
1 + φ

)1/γ
[1 + φ] + 1

11



ct,t−1 = xt,t−1 − τ t = xt,t−1 − (Axt,t−1 +B) = (1−A)xt,t−1 −B

= xt,t−1 −
1

ξ + φ
1+φ

xt,t−1 + 1−
(
χc
1+φ

)−1/γ
1 + φ

R

r

(
y0 +

y1
R

)
= xt,t−1 −

1 + φ

φ+ ξ + ξφ

xt,t−1 + 1−
(
χc
1+φ

)−1/γ
1 + φ

R

r

(
y0 +

y1
R

)
=

ξ(1 + φ)− 1
φ+ ξ + φξ

xt,t−1 −
1−

(
χc
1+φ

)−1/γ
φ+ ξ + ξφ

R

r

(
y0 +

y1
R

)

ct,t−1 =

(
χc
1+φ

)−1/γ
− 1

φ+
(
χc
1+φ

)−1/γ [xt,t−1 + R

r

(
y0 +

y1
R

)]
(37)

This is the sort of behavior we would expect in a Barro (1974) model, where consumption is a multiple
of the total wealth of the dynasty. In the limit as χc → 0 so the parent does not care about the child’s
consumption,

ct,t−1 → xt,t−1 +
R

r

(
y0 +

y1
R

)
,

as it should. The parent consumes the whole wealth of the dynasty, expecting each ensuing generation to
pay the debts of the previous generation.
The young agent’s consumption is

ct,t =
φ

1 + φ

(
y0 +

y1 − τ t+1
R

+ τ t

)
From (25),

ct,t =
φ

1 + φ

y0 + y1 − R
φ

1
1− φ

1+φA

Aφ
1+φ

[
y0 + τ t +

y1+φB
R

]
−B

R
+ τ t



ct,t =
φ

1 + φ

y0 + y1 − R
φ

1
1− φ

1+φA

Aφ
1+φ

[
y0 +Axt,t−1 +B +

y1+φB
R

]
−B

R
+Axt,t−1 +B



ct,t =
φ

1 + φ

[(
1− 1

1− φ
1+φA

A

1 + φ

)(
y0 +

y1
R
+Axt,t−1

)
+

[
1− 1

1− φ
1+φA

A

1 + φ

(
1 +

φ

R

)
− 1

R

]
B

]

From (29),

1 + ξ

ξ
B =

[
1

1− φ
1+φA

A

1 + φ
− 1
](

y0 +
y1
R

)
+

[
1

1− φ
1+φA

A

1 + φ

(
1 +

φ

R

)
+
1

R

]
B. (38)
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Thus

ct,t =
φ

1 + φ

[(
1− 1

1− φ
1+φA

A

1 + φ

)
Axt,t−1 +B −

1 + ξ

ξ
B

]

=
φ

1 + φ

[(
1− 1

1− φ
1+φA

A

1 + φ

)
Axt,t−1 −

B

ξ

]

=
φ

1 + φ

[(
1− 1

ξ(1 + φ)

)
1

ξ + φ
1+φ

xt,t−1 −
B

ξ

]

=
φ

1 + φ

[(
1−

(
χc
1 + φ

)1/γ)
1 + φ

ξ(1 + φ) + φ
xt,t−1 −B(1 + φ)

(
χc
1 + φ

)1/γ]

= φ

 1−
(
χc
1+φ

)1/γ
φ+

(
χc
1+φ

)−1/γ xt,t−1 − ( χc
1 + φ

)1/γ 1− ( χc
1+φ

)−1/γ
φ+

(
χc
1+φ

)−1/γ Rr (y0 + y1
R

)

ct,t = φ

(
χc
1 + φ

)1/γ ( χc
1+φ

)−1/γ
− 1

φ+
(
χc
1+φ

)−1/γ (xt,t−1 + R

r

(
y0 +

y1
R

))
(39)

Thus
ct,t
ct,t−1

= φ

(
χc
1 + φ

)1/γ
=

φ

1 + φ

1

ξ
(40)

as is required by the intergenerational Euler equation.

ct+1,t = xt+1,t − τ t+1

=
1

1− φ
1+φA

R

1 + φ

[
y0 + τ t +

y1 + φB

R

]
−A 1

1− φ
1+φA

R

1 + φ

[
y0 + τ t +

y1 + φB

R

]
−B

= (1−A) 1

1− φ
1+φA

R

1 + φ

[
y0 + τ t +

y1 + φB

R

]
−B

= (1−A) 1

1− φ
1+φA

R

1 + φ

[
y0 +Axt,t−1 +B +

y1 + φB

R

]
−B

= (1−A) 1

1− φ
1+φA

R

1 + φ

[
y0 +Axt,t−1 +

y1
R

]
+

(
(1−A) 1

1− φ
1+φA

R

1 + φ

(
1 +

φ

R

)
− 1
)
B

A =
1 + φ

φ+
(
χc
1+φ

)−1/γ
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1−A =

(
χc
1+φ

)−1/γ
− 1

φ+
(
χc
1+φ

)−1/γ
1− φ

1 + φ
A = 1− φ

φ+
(
χc
1+φ

)−1/γ =
(
χc
1+φ

)−1/γ
φ+

(
χc
1+φ

)−1/γ = 1

1 + φ
(
χc
1+φ

)1/γ

ct+1,t =

(
χc
1+φ

)−1/γ
− 1

φ+
(
χc
1+φ

)−1/γ
(
1 + φ

(
χc
1 + φ

)1/γ)
R

1 + φ

y0 + 1 + φ

φ+
(
χc
1+φ

)−1/γ xt,t−1 + y1
R



+


(
χc
1+φ

)−1/γ
− 1

φ+
(
χc
1+φ

)−1/γ
(
1 + φ

(
χc
1 + φ

)1/γ)
R

1 + φ

(
1 +

φ

R

)
− 1

 1−
(
χc
1+φ

)−1/γ
φ+

(
χc
1+φ

)−1/γ Rr (y0 + y1
R

)

ct+1,t =

(
χc
1+φ

)−1/γ
− 1

φ+
(
χc
1+φ

)−1/γ R

1 + φ


(
1 + φ

(
χc
1 + φ

)1/γ)y0 + 1 + φ

φ+
(
χc
1+φ

)−1/γ xt,t−1 + y1
R



+

1 + φ
R
−

(
χc
1+φ

)−1/γ
− 1

φ+
(
χc
1+φ

)−1/γ
(
1 + φ

(
χc
1 + φ

)1/γ)
R+ φ

R

 R

r

(
y0 +

y1
R

)
ct+1,t =

(
χc
1+φ

)−1/γ
− 1

φ+
(
χc
1+φ

)−1/γ R

1 + φ

{(
χc
1 + φ

)1/γ
(1 + φ)xt,t−1

+

1 + φ( χc
1 + φ

)1/γ
+

1 + φ
R
−

(
χc
1+φ

)−1/γ
− 1

φ+
(
χc
1+φ

)−1/γ
(
1 + φ

(
χc
1 + φ

)1/γ)
R+ φ

R

 R

r

(y0 + y1
R

)
ct+1,t =

(
χc
1+φ

)−1/γ
− 1

φ+
(
χc
1+φ

)−1/γ R

1 + φ

{(
χc
1 + φ

)1/γ
(1 + φ)xt,t−1

+

[
1 + φ

(
χc
1 + φ

)1/γ
+

(
1 + φ

R
−
((

χc
1 + φ

)−1/γ
− 1
)(

χc
1 + φ

)1/γ
R− 1 + 1 + φ

R

)
R

r

](
y0 +

y1
R

)}

ct+1,t =

(
χc
1+φ

)−1/γ
− 1

φ+
(
χc
1+φ

)−1/γ R

1 + φ

{(
χc
1 + φ

)1/γ
(1 + φ)xt,t−1

+

[
1 + φ

(
χc
1 + φ

)1/γ
+

(
1 + φ

R
−
(
1−

(
χc
1 + φ

)1/γ)
R− 1 + 1 + φ

R

)
R

r

](
y0 +

y1
R

)}
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ct+1,t =

(
χc
1+φ

)−1/γ
− 1

φ+
(
χc
1+φ

)−1/γ R

1 + φ

{(
χc
1 + φ

)1/γ
(1 + φ)xt,t−1

+

[
1 + φ

(
χc
1 + φ

)1/γ
−
(
1−

(
χc
1 + φ

)1/γ)
+

(
1 + φ

R
−
(
1−

(
χc
1 + φ

)1/γ)
1 + φ

R

)
R

r

](
y0 +

y1
R

)}

ct+1,t =

(
χc
1+φ

)−1/γ
− 1

φ+
(
χc
1+φ

)−1/γ R

1 + φ

(
χc
1 + φ

)1/γ
(1 + φ)

{
xt,t−1 +

(
1 +

1

r

)(
y0 +

y1
R

)}

ct+1,t =

(
χc
1+φ

)−1/γ
− 1

φ+
(
χc
1+φ

)−1/γR( χc
1 + φ

)1/γ [
xt,t−1 +

R

r

(
y0 +

y1
R

)]
. (41)

Thus ct+1,tct,t
= R

φ =
R

(βR1−γ)−1/γ
= 1

(βR)−1/γ
= (βR)1/γ , so the intertemporal Euler equation is also satisfied.

From (40), in a steady state we need

ct,t
ct,t−1

= φ

(
χc
1 + φ

)1/γ
= 1.

For γ = 1, we need

χc =
1 + φ

φ
=
1 + β−1

β−1
= 1 + β. (42)

1.2 Pure Altruism Model

As an alternative to the paterfamilias model of 1.1, let us consider the pure altruism model of Barro (1974).
Let ρ be the intergenerational discount factor. A household that receives the transfer τ solves the Bellman
equation

v(τ) = max
c0,c1,τ ′

u(c0) + βu(c1) + ρv(τ
′) (43)

subject to

c0 + b = y0 + τ

c1 + τ
′ = y1 +Rb.

Let us guess that
v(τ) = Du (τ + F ) +G. (44)

The Lagrangian is

L = u(y0 + τ − b) + βu(y1 +Rb− τ ′) + ρ [Du (τ ′ + F ) +G] .

∂L

∂b
= −(y0 + τ − b)−γ + βR(y1 +Rb− τ ′)−γ = 0

∂L

∂τ ′
= −β(y1 +Rb− τ ′)−γ + ρD (τ ′ + F )−γ = 0
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y0 + τ − b = (βR)−1/γ(y1 +Rb− τ ′)

y1 +Rb− τ ′ =
(
ρD

β

)−1/γ
(τ ′ + F )

y0 + τ − b = φ

(
b+

y1 − τ ′
R

)
Let us define

ζ =

(
ρD

β

)−1/γ
(45)

y1 +Rb− τ ′ = ζ (τ ′ + F )

(1 + φ)b− φ

R
τ ′ = y0 + τ −

φ

R
y1

(1 + ζ)τ ′ −Rb = y1 − ζF

(1 + φ)Rb− φτ ′ = R(y0 + τ)− φy1
(1 + ζ)(1 + φ)τ ′ −R(1 + φ)b = (1 + φ)y1 − ζ(1 + φ)F

[1 + ζ + ζφ]τ ′ = (1 + φ)y1 − ζ(1 + φ)F +R(y0 + τ)− φy1
[1 + ζ + ζφ]τ ′ = R(y0 + τ) + y1 − ζ(1 + φ)F

τ ′ =
R

1 + ζ(1 + φ)

[
y0 + τ +

y1 − ζ(1 + φ)F
R

]
(46)

b =
1

1 + φ

[
y0 + τ −

φ

R
(y1 − τ ′)

]
b =

1

1 + φ

[
y0 + τ −

φ

R

(
y1 −

R

1 + ζ(1 + φ)

[
y0 + τ +

y1 − ζ(1 + φ)F
R

])]
b =

1

1 + φ

[
y0 + τ −

φ

1 + ζ(1 + φ)

[
−y0 − τ +

ζ(1 + φ)(y1 + F )

R

]]
b =

1

1 + φ

1

1 + ζ(1 + φ)

[
(1 + φ)(1 + ζ)(y0 + τ)−

φζ(1 + φ)(y1 + F )

R

]
b =

1

1 + ζ(1 + φ)

[
(1 + ζ)(y0 + τ)− ζ

φ

R
(y1 + F )

]
(47)

c0 = y0 + τ − b = y0 + τ −
1

1 + ζ(1 + φ)

[
(1 + ζ)(y0 + τ)− ζ

φ

R
(y1 + F )

]
=

1

1 + ζ(1 + φ)

[
[1 + ζ + ζφ− (1 + ζ)] (y0 + τ) + ζ

φ

R
(y1 + F )

]

c0 =
φζ

1 + ζ(1 + φ)

[
y0 + τ +

y1 + F

R

]
(48)
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c1 = y1 +Rb− τ ′

= y1 +
R

1 + ζ(1 + φ)

[
(1 + ζ)(y0 + τ)− ζ

φ

R
(y1 + F )

]
− R

1 + ζ(1 + φ)

[
y0 + τ +

y1 − ζ(1 + φ)F
R

]

c1 =
R

1 + ζ(1 + φ)

[
1 + ζ + ζφ

R
y1 + (1 + ζ)(y0 + τ)− ζ

φ

R
(y1 + F )− y0 − τ −

y1 − ζ(1 + φ)F
R

]
c1 =

R

1 + ζ(1 + φ)

[
ζ(y0 + τ) +

(1 + ζ + ζφ)y1 − ζφ(y1 + F )− y1 + ζ(1 + φ)F
R

]
c1 =

R

1 + ζ(1 + φ)

[
ζ(y0 + τ) +

ζy1 + ζF

R

]
c1 =

ζR

1 + ζ(1 + φ)

[
y0 + τ +

y1 + F

R

]
(49)

τ ′ + F =
R

1 + ζ(1 + φ)

[
y0 + τ +

y1 − ζ(1 + φ)F
R

]
+ F

=
R

1 + ζ(1 + φ)

[
y0 + τ +

y1 − ζ(1 + φ)F
R

+
1 + ζ(1 + φ)

R
F

]

τ ′ + F =
R

1 + ζ(1 + φ)

[
y0 + τ +

y1 + F

R

]
(50)

For the ansatz to be correct, we need

τ + F = y0 + τ +
y1 + F

R(
1− 1

R

)
F = y0 +

y1
R

F =
R

r

(
y0 +

y1
R

)
(51)

For γ 6= 1, the Bellman equation becomes

D
(τ + F )

1−γ

1− γ +G =
1

1− γ

(
φζ

1 + ζ(1 + φ)
[τ + F ]

)1−γ
+

β

1− γ

(
ζR

1 + ζ(1 + φ)
[τ + F ]

)1−γ
+

ρD

1− γ

(
R

1 + ζ(1 + φ)
[τ + F ]

)1−γ
+ ρG

For ρ 6= 1, we must have G = 0.

D =

(
φζ

1 + ζ(1 + φ)

)1−γ
+ β

(
ζR

1 + ζ(1 + φ)

)1−γ
+ ρD

(
R

1 + ζ(1 + φ)

)1−γ

D =
(φζ)1−γ + β(ζR)1−γ + ρDR1−γ

(1 + ζ + ζφ)1−γ
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From (45),

ζ =

(
ρD

β

)−1/γ
D =

β

ρ
ζ−γ

D =
(φζ)1−γ + ζ1−γφ−γ + ρD

β βR
1−γ

(1 + ζ + ζφ)1−γ

=
(φζ)1−γ + ζ1−γφ−γ + ζ−γφ−γ

(1 + ζ + ζφ)1−γ

= (φζ)−γ
φζ + ζ + 1

(1 + ζ + ζφ)1−γ

D =

(
φζ

1 + ζ + φζ

)−γ
D−1/γ =

φζ

1 + ζ + φζ

ζ =

(
ρ

β

)−1/γ
φζ

1 + ζ + φζ

1 + (1 + φ)ζ =

(
ρ

β

)−1/γ
φ =

(
ρ

β
βR1−γ

)−1/γ
=
(
ρR1−γ

)−1/γ
(52)

ζ =

(
ρ
ββR

1−γ
)−1/γ

− 1
1 + φ

ζ =
(ρR1−γ)−1/γ − 1

1 + φ
(53)

We need
(ρR1−γ)−1/γ > 1

in order for ζ to be positive, so we need
ρR1−γ < 1

That is, we need
ρ < Rγ−1 (54)

in order for the pure altruism model to have a well-defined solution.

D =
β

ρ

(
(ρR1−γ)−1/γ − 1

1 + φ

)−γ
=
β

ρ

(
1 + φ

(ρR1−γ)−1/γ − 1

)γ
. (55)

Let us define
ψ = (ρR1−γ)−1/γ = 1 + ζ + φζ, (56)
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which is the intergenerational analog of φ. Then we have

c0 =
φζ

ψ
[τ + F ]

c1 =
Rζ

ψ
[τ + F ],

so
c1
c0
=
R

φ
= (βR)1/γ ,

and the intertemporal Euler equation is satisfied.

c′0
c0
=

φζ
ψ (τ

′ + F )
φζ
ψ (τ + F )

=
R

1 + ζ(1 + φ)
=
R

ψ
= (ρR)1/γ ,

so the intergenerational Euler equation is satisfied.
In a steady-state of the pure altruism model, we have to have ρ = 1

R . This is problematic because for a
thirty-year period, ρ = 1

1.0430 = .31. It is hard to see how people could evolve if they put so little weight
on the utility of their children. This is in contrast to the paterfamilias model, where a steady state requires
people to put more weight on the consumption of their children than themselves.
The mapping between the two models is

(ρR)1/γ = φ

(
χc
1 + φ

)1/γ
=

(
χc

(1 + φ)βR1−γ

)1/γ
ρR =

χc
(1 + φ)βR1−γ

χc = ρβ(1 + φ)R2−γ . (57)

Since we have to have
ρR1−γ < 1,

only paterfamilias models with
χc < βR(1 + φ)

can map into the pure altruism model. Though some have characterised the paterfamilias model as a
reduced-form version of the pure altruism model, in fact the pure altruism model is a special case of the
paterfamilias model.
Indeed, the two models ought to be easily distinguished experimentally. If you isolate a parent and

child together and offer them a candy bar, how will it be divided between them? The pure altruism model
predicts the parent will give the kid about 25% of the candy bar. The paterfamilias model predicts the
parent will give the kid more than half of the candy bar.

1.3 Logan’s Run Model

Next we consider the Logan’s Run model where children have all the bargaining power. Then we have

A21 = χp (58)

A22 = (1 + φ−1)γ (59)
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We still have

D1 = 1

D2 =
φ

1 + φ
.

Then we have

τ t =
χ
−1/γ
p xt,t−1 − φ

1+φ

(
y0 +

y1−τt+1
R

)
χ
−1/γ
p + φ

1+φ

Let us define
ξp = χ−1/γp (60)

τ t =
(1 + φ)ξpxt,t−1 − φ

(
y0 +

y1−τt+1
R

)
φ+ (1 + φ)ξp

(61)

ct,t−1 =

φ
1+φ

χ
−1/γ
p + φ

1+φ

(
xt,t−1 + y0 +

y1 − τ t+1
R

)

ct,t−1 =
φ

φ+ (1 + φ)ξp

(
xt,t−1 + y0 +

y1 − τ t+1
R

)
(62)

ct,t =
φ

1 + φ

χ
−1/γ
p

χ
−1/γ
p + φ

1+φ

(
xt,t−1 + y0 +

y1 − τ t+1
R

)

ct,t =
φξp

φ+ (1 + φ)ξp

(
xt,t−1 + y0 +

y1 − τ t+1
R

)
(63)

Note that
ct,t
ct,t−1

= ξp. (64)

Let us suppose again that (23) still holds. Then (24) and (25) still follow since they only depend on
(23).If we substitute (25) into (61), we get

Axt,t−1 +B =

(1 + φ)ξpxt,t−1 − φ
(
y0 +

y1
R −

1
1− φ

1+φA
A
1+φ

[
y0 +Axt,t−1 +B +

y1+φB
R

]
− B

R

)
φ+ (1 + φ)ξp

A =
(1 + φ)ξp +

1
1− φ

1+φA

φ
1+φA

2

φ+ (1 + φ)ξp

(1 + φ)ξp(A− 1) + φA =
1

1− φ
1+φA

φ

1 + φ
A2 =

φA2

1 + φ(1−A)

[(1 + φ)ξp(A− 1) + φA][1 + φ(1−A)] = φA2

(1 + φ)ξp(A− 1)[1 + φ(1−A)] + φA+ φ2A(1−A) = φA2

(1 + φ)ξp(A− 1)[1 + φ(1−A)] + φA(1−A) + φ2A(1−A) = 0

(1 + φ)[ξp(A− 1)[1 + φ(1−A)] + φA(1−A)] = 0
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(A− 1)[ξp[1 + φ(1−A)]− φA] = 0

B =

−φ
(
y0 +

y1
R −

1
1− φ

1+φA
A
1+φ

[
y0 +B +

y1+φB
R

]
− B

R

)
φ+ (1 + φ)ξp

(65)

If A = 1, (65) reduces to

B =

−φ
(
y0 +

y1
R −

1
1− φ

1+φ

1
1+φ

[
y0 +B +

y1+φB
R

]
− B

R

)
φ+ (1 + φ)ξp

=
−φ
(
y0 +

y1
R −

[
y0 +B +

y1+φB
R

]
− B

R

)
φ+ (1 + φ)ξp

=
−φ
(
−
[
1 + φ

R

]
B − B

R

)
φ+ (1 + φ)ξp

,

which implies B = 0. Since this would imply τ t = xt,t−1, we can again rule out this solution.

ξp[1 + φ(1−A)]− φA = 0

ξp(1 + φ)− (ξp + 1)φA = 0

A =
ξp

ξp + 1

1 + φ

φ
(66)

1

1− φ
1+φA

A

1 + φ
=

1

1− ξp
ξp+1

1

φ

ξp
1 + ξp

=
1
1

1+ξp

1

φ

ξp
1 + ξp

=
ξp
φ
.

[φ+ (1 + φ)ξp]B = −φ
(
y0 +

y1
R
−
ξp
φ

[
y0 +B +

y1 + φB

R

]
− B

R

)
=

(
ξp − φ

) (
y0 +

y1
R

)
+

[
ξp + (1 + ξp)

φ

R

]
B

[
φ+ (1 + φ)ξp − ξp − (1 + ξp)

φ

R

]
B =

(
ξp − φ

) (
y0 +

y1
R

)
[
φ(1 + ξp)− (1 + ξp)

φ

R

]
B =

(
ξp − φ

) (
y0 +

y1
R

)
(1 + ξp)φ

r

R
B =

(
ξp − φ

) (
y0 +

y1
R

)
B =

R

r

ξp − φ
(1 + ξp)φ

(
y0 +

y1
R

)
(67)

B

A
=
ξp + 1

ξp

φ

1 + φ

R

r

ξp − φ
(1 + ξp)φ

(
y0 +

y1
R

)
B

A
=

ξp − φ
(1 + φ)ξp

R

r

(
y0 +

y1
R

)
(68)
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Thus

τ t =
ξp

ξp + 1

1 + φ

φ

[
xt,t−1 +

ξp − φ
(1 + φ)ξp

R

r

(
y0 +

y1
R

)]
. (69)

The x map becomes

xt+1,t =
1

1− φ
1+φA

R

1 + φ

[
Axt,t−1 + y0 +

y1
R
+

(
1 +

φ

R

)
B

]
=

1

1− ξp
1+ξp

R

1 + φ

[
ξp

ξp + 1

1 + φ

φ
xt,t−1 + y0 +

y1
R
+

(
1 +

φ

R

)
R

r

ξp − φ
(1 + ξp)φ

(
y0 +

y1
R

)]

= R
1 + ξp
1 + φ

[
ξp

ξp + 1

1 + φ

φ
xt,t−1 +

[
1 +

(
1 +

φ

R

)
R

r

ξp − φ
(1 + ξp)φ

](
y0 +

y1
R

)]

xt+1,t = ξp
R

φ
xt,t−1 +R

1 + ξp
1 + φ

[
1 +

(
1 +

φ

R

)
R

r

ξp − φ
(1 + ξp)φ

](
y0 +

y1
R

)
xt+1,t = ξp

R

φ
xt,t−1 +

R

1 + φ

[
1 + ξp +

R+ φ

R− 1

(
ξp
φ
− 1
)](

y0 +
y1
R

)
xt+1,t = ξp

R

φ
xt,t−1 +

R

1 + φ

[
1 + ξp +

ξp
φ
− 1 + 1 + φ

R− 1

(
ξp
φ
− 1
)](

y0 +
y1
R

)
xt+1,t = ξp

R

φ
xt,t−1 +

R

1 + φ

[
1 + φ

φ
ξp +

1 + φ

R− 1

(
ξp
φ
− 1
)](

y0 +
y1
R

)
xt+1,t = ξp

R

φ
xt,t−1 +R

[
1

φ
ξp +

1

R− 1

(
ξp
φ
− 1
)](

y0 +
y1
R

)
xt+1,t = ξp

R

φ
xt,t−1 +

R

r

[
R

φ
ξp − 1

](
y0 +

y1
R

)
xt+1,t = ξp

R

φ

(
xt,t−1 +

R

r

(
y0 +

y1
R

))
− R

r

(
y0 +

y1
R

)
(70)

τ t+1 =
ξp

ξp + 1

1 + φ

φ

[
ξp
R

φ
xt,t−1 +

R

r

[
R

φ
ξp − 1

](
y0 +

y1
R

)
+

ξp − φ
(1 + φ)ξp

R

r

(
y0 +

y1
R

)]
τ t+1 =

ξp
ξp + 1

1 + φ

φ

[
ξp
R

φ
xt,t−1 +

[
R

φ
ξp − 1 +

ξp − φ
(1 + φ)ξp

]
R

r

(
y0 +

y1
R

)]
τ t+1 =

ξp
ξp + 1

1 + φ

φ

[
ξp
R

φ
xt,t−1 +

[
R

φ
ξp − 1 +

1

1 + φ
− φ

(1 + φ)ξp

]
R

r

(
y0 +

y1
R

)]
τ t+1 =

ξp
ξp + 1

1 + φ

φ

[
ξp
R

φ
xt,t−1 +

[
R

φ
ξp −

φ

1 + φ
− φ

(1 + φ)ξp

]
R

r

(
y0 +

y1
R

)]
τ t+1 =

ξp
ξp + 1

1 + φ

φ

[
ξp
R

φ
xt,t−1 +

[
R

φ
ξp −

φ

1 + φ

1 + ξp
ξp

]
R

r

(
y0 +

y1
R

)]
τ t+1 =

ξp
ξp + 1

1 + φ

φ
ξp
R

φ

(
xt,t−1 +

R

r

(
y0 +

y1
R

))
− R

r

(
y0 +

y1
R

)
(71)

22



ct,t−1 = xt,t−1 − τ t = xt,t−1 −
ξp

ξp + 1

1 + φ

φ

[
xt,t−1 +

ξp − φ
(1 + φ)ξp

R

r

(
y0 +

y1
R

)]
=

1

(ξp + 1)φ

[
(ξp + 1)φxt,t−1 − ξp(1 + φ)xt,t−1 − (ξp − φ)

R

r

(
y0 +

y1
R

)]
=

1

(ξp + 1)φ

[
(φ− ξp)xt,t−1 − (ξp − φ)

R

r

(
y0 +

y1
R

)]

ct,t−1 =
φ− ξp
(ξp + 1)φ

[
xt,t−1 +

R

r

(
y0 +

y1
R

)]
, (72)

which is again consistent with Barro’s (1974) result.

ct,t =
φ

1 + φ

[
y0 + τ t +

y1 − τ t+1
R

]

ct,t =
φ

1 + φ

[
y0 +

y1
R
+

ξp
ξp + 1

1 + φ

φ

[
xt,t−1 +

ξp − φ
(1 + φ)ξp

R

r

(
y0 +

y1
R

)]
−

ξp
ξp + 1

1 + φ

φ

ξp
φ

(
xt,t−1 +

R

r

(
y0 +

y1
R

))
+
1

r

(
y0 +

y1
R

)]

ct,t =
φ

1 + φ

R

r

(
y0 +

y1
R

)
+

ξp
ξp + 1

[
xt,t−1 +

ξp − φ
(1 + φ)ξp

R

r

(
y0 +

y1
R

)
−
ξp
φ

(
xt,t−1 +

R

r

(
y0 +

y1
R

))]
ct,t =

φ

1 + φ

R

r

(
y0 +

y1
R

)
+

ξp
ξp + 1

[
φ− ξp
φ

xt,t−1 +
ξp − φ
(1 + φ)ξp

R

r

(
y0 +

y1
R

)
−
ξp
φ

R

r

(
y0 +

y1
R

)]
ct,t =

ξp
ξp + 1

[
φ− ξp
φ

xt,t−1 +
ξp − φ
(1 + φ)ξp

R

r

(
y0 +

y1
R

)
−
ξp
φ

R

r

(
y0 +

y1
R

)
+

φ

1 + φ

ξp + 1

ξp

R

r

(
y0 +

y1
R

)]
ct,t =

ξp
ξp + 1

[
φ− ξp
φ

xt,t−1 +

(
ξp − φ
(1 + φ)ξp

−
ξp
φ
+

φ

1 + φ

ξp + 1

ξp

)
R

r

(
y0 +

y1
R

)]
ct,t =

ξp
ξp + 1

[
φ− ξp
φ

xt,t−1 +

(
−
ξp
φ
+
φξp + φ+ ξp − φ

ξp(1 + φ)

)
R

r

(
y0 +

y1
R

)]
ct,t =

ξp
ξp + 1

[
φ− ξp
φ

xt,t−1 +

(
−
ξp
φ
+ 1

)
R

r

(
y0 +

y1
R

)]
ct,t =

ξp
ξp + 1

φ− ξp
φ

[
xt,t−1 +

R

r

(
y0 +

y1
R

)]
(73)

Thus the intergenerational Euler equation
ct,t
ct,t−1

= ξp

is satisfied.

ct+1,t = xt+1,t − τ t+1 = ξp
R

φ

(
xt,t−1 +

R

r

(
y0 +

y1
R

))
− R

r

(
y0 +

y1
R

)
−1 + φ

φ

ξp
1 + ξp

R
ξp
φ

(
xt,t−1 +

R

r

(
y0 +

y1
R

))
+
R

r

(
y0 +

y1
R

)
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ct+1,t = ξp
R

φ

(
xt,t−1 +

R

r

(
y0 +

y1
R

))
− 1 + φ

φ

ξp
1 + ξp

R
ξp
φ

(
xt,t−1 +

R

r

(
y0 +

y1
R

))
ct+1,t =

(
1− 1 + φ

φ

ξp
1 + ξp

)
R
ξp
φ

(
xt,t−1 +

R

r

(
y0 +

y1
R

))
ct+1,t =

(
φ+ φξp − ξp − φξp

φ(1 + ξp)

)
R
ξp
φ

(
xt,t−1 +

R

r

(
y0 +

y1
R

))
ct+1,t = R

ξp
φ

φ− ξp
φ(1 + ξp)

(
xt,t−1 +

R

r

(
y0 +

y1
R

))
(74)

Thus the intertemporal Euler equation
ct+1,t
ct,t

=
R

φ

is also satisfied.
The Logan’s Run model is equivalent to the paterfamilias model when

ξp = χ−1/γp = φ

(
χc
1 + φ

)1/γ
1

χp
=
χcφ

γ

1 + φ

χp =
(1 + (βR1−γ)−1/γ)βR1−γ

χc
.

So if

χpχc =
1 + φ

φγ
, (75)

the Logan’s Run and paterfamilias models are observationally equivalent. This is not surprising since

A12
A11

=

(
1

1 + φ

)1−γ
χc

A22
A21

=
(1 + φ−1)γ

χp
.

The condition that the utility weights are equal is(
1

1 + φ

)1−γ
χc =

(
1 + φ

φ

)γ
1

χp

χcχp =

(
1 + φ

φ

)γ
(1 + φ)

1−γ
=
1 + φ

φγ
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2 Equilibrium with Nash Bargaining

Now we consider what happens when θ ∈ (0, 1) so both parties have some say in the value of the transfer.
Bargaining is only possible when both parties have something to gain from a transfer so U1, U2 > 0. We
know that U1 = U2 = 0 when τ = 0. If we plot the utility-possibilities frontier U2(U1), we need this to pass
through the first quadrant. Thus for small τ , we should have

U2 = mU1.

If m ≤ 0, we must have τ = 0.
m = lim

τ→0

U2(τ)

U1(τ)
= lim
τ→0

U ′2(τ)

U ′1(τ)
(76)

by l’Hôpital’s rule.

U ′1(τ) = −A11u′(x1 − τ) +A12u′(x2 + τ)
U ′2(τ) = −A21u′(x1 − τ) +A22u′(x2 + τ)

m =
A22x

−γ
2 −A21x

−γ
1

A12x
−γ
2 −A11x

−γ
1

=
A22 −A21

(
x2
x1

)γ
A12 −A11

(
x2
x1

)γ
Bargaining requires A22 −A21

(
x2
x1

)γ
and A12 −A11

(
x2
x1

)γ
to have the same sign.

x2
x1

< min

{(
A12
A11

)1/γ
,

(
A22
A21

)1/γ}
or

x2
x1

> max

{(
A12
A11

)1/γ
,

(
A22
A21

)1/γ}
Let us define

η1 =
A12
A11

(77)

and

η2 =
A22
A21

(78)

Then there are gains from bargaining if

x2
x1

< min{η1/γ1 , η
1/γ
2 }, (79)

in which case the parent will make a transfer to the child with τ > 0, or if

x2
x1

> max{η1/γ1 , η
1/γ
2 }, (80)

in which case the child will make a transfer to the parent with τ < 0. When η1 = η2, as we saw above,
the two sides will have their incentives perfectly aligned and will agree to what is optimal for both of them.
The bigger the difference between η1 and η2 the less likely it is that they will be able to agree to a transfer.
Since in the underlying model,

η1 =

(
1

1 + φ

)1−γ
χc
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and

η2 =

(
φ

1 + φ

)−γ
1

χp
,

we need the child’s weight on the parent to be roughly reciprocal to the parent’s weight on the child. Thus
if the parent and child reciprocate their feelings toward each other, bargaining will be diffi cult and transfers
will rarely occur.
Note that (12) and (13) imply that

U1(τ) = A11[u(x1 − τ)− u(x1)] +A12[u(x2 + τ)− u(x2)]
U2(τ) = A21[u(x1 − τ)− u(x1)] +A22[u(x2 + τ)− u(x2)].

U ′1(τ) = −A11u′(x1 − τ) +A12u′(x2 + τ)
U ′2(τ) = −A21u′(x1 − τ) +A22u′(x2 + τ)

U ′′1 (τ) = A11u
′′(x1 − τ) +A12u′′(x2 + τ) < 0

U ′′2 (τ) = A21u
′′(x1 − τ) +A22u′′(x2 + τ) < 0,

so both U1(τ) and U2(τ) are strictly concave functions of τ . Suppose it is the case that U ′1(0)U
′
2(0) < 0.

Then there cannot be τ such that U1(τ) > 0 and U2(τ) > 0. Suppose that U ′1(0) < 0 < U ′2(0). Since
U1 is strictly concave, U ′1(τ) < U ′1(0) < 0 for τ > 0. Thus U1 will be strictly decreasing for τ > 0, so
U1(τ) < U1(0) = 0 for τ > 0. Meanwhile since U2 is strictly concave, U ′2(τ) > U ′2(0) > 0 for τ < 0. Thus
U2(τ) is strictly increasing for τ < 0. Then U2(τ) < U2(0) = 0 for τ < 0. Thus U1(τ) is only positive for
τ < 0 and U2(τ) is only positive for τ > 0. So there is no τ for which U1(τ) > 0 and U2(τ) > 0.
So the condition for there to be a nonzero bargaining solution is, indeed, that

dU2
dU1

(0) =
U ′2(0)

U ′1(0)
> 0. (81)

Let τ∗1 satisfy U
′
1(τ
∗
1) = 0 and τ

∗
2 satisfy U

′
2(τ
∗
2) = 0. Thus

(x1 − τ∗1)−γ = η1(x2 + τ
∗
1)
−γ

x1 − τ∗1 = η
−1/γ
1 (x2 + τ

∗
1)

τ∗1 =
x1 − η−1/γ1 x2

1 + η
−1/γ
1

(82)

Likewise,

τ∗2 =
x1 − η−1/γ2 x2

1 + η
−1/γ
2

(83)

If (81) is satisfied, τ∗1 and τ
∗
2 must have the same sign. The optimal τ must be between τ

∗
1 and τ

∗
2.

U(τ) = θ lnU1(τ) + (1− θ) lnU2(τ).

U ′(τ) = θ
U ′1(τ)

U1(τ)
+ (1− θ)U

′
2(τ)

U2(τ)
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Without loss of generality, we can suppose τ∗1 < τ∗2. Then U ′1(τ
∗
1) = 0 < U ′2(τ

∗
2). For τ < τ∗1, U

′
1(τ) > 0

and U ′2(τ) > 0, so U(τ) < U(τ∗1). Likewise U
′
2(τ
∗
2) = 0 > U ′1(τ

∗
2). For τ > τ∗2, U

′
1(τ) < 0 and U

′
2(τ) < 0, so

U ′(τ) < 0. Therefore U(τ) < U(τ∗2). Note, however that if 0 < τ∗1 < τ∗2, U1(τ
∗
2) ≤ 0 is possible. Likewise

if τ∗1 < τ∗2 < 0, U2(τ
∗
1) ≤ 0 is possible. In these cases, we can further constrain the search for τ by looking

in the regime where U1(τ) = 0 or U2(τ) = 0. If U1(τ) = 0, then we have

u(x1 − τ)− u(x1) + η1[u(x2 + τ)− u(x2)] = 0

For γ = 1, this is

ln

(
x1 − τ
x1

)
= η1 ln

(
x2

x2 + τ

)
x1 − τ
x1

=

(
x2

x2 + τ

)η1
,

which cannot be solved analytically.
Another way of characterizing (81) is that 0 /∈ (τ∗1, τ∗2). Suppose that

τ∗1 < 0 < τ∗2.

Then
x1 − η−1/γ1 x2 < 0 < x1 − η−1/γ2 x2

η
1/γ
1 <

x2
x1

< η
1/γ
2 .

Likewise if
τ∗2 < 0 < τ∗1,

x1 − η−1/γ2 x2 < 0 < x1 − η−1/γ1 x2,

so
η
1/γ
2 <

x2
x1

< η
1/γ
1 .

Eq. (16) simplifies to

([u(x1 − τ)− u(x1)] + (θη2 + (1− θ)η1)[u(x2 + τ)− u(x2)]) (x1 − τ)−γ

= (((1− θ)η2 + θη1)[u(x1 − τ)− u(x1)] + η1η2[u(x2 + τ)− u(x2)]) (x2 + τ)−γ . (84)

At a given t, the budget constraints are

cit,t + b
i
t+1 = yit,t + τ

i
t

cit,t−1 + τ
i
t = xit,t−1.

We must have cit,t, c
i
t,t−1 ≥ 0. In partial equilibrium with fixed R, let us assume we impose the no-Ponzi

condition

lim
s→∞

bit+s
Rs
≥ 0.

ct,t + b
i
t+1 + c

i
t,t−1 = yit,t + x

i
t,t−1 (85)

is the resource constraint for dynasty i at time t. For s ≥ 1,

cit+s,t+s + b
i
t+s+1 = yit+s,t+s + τ

i
t+s

cit+s,t+s−1 + τ
i
t+s = yit+s,t+s−1 +Rb

i
t+s.
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This gives the resource constraint

cit+s,t+s + c
i
t+s,t+s−1 + b

i
t+s+1 = yit+s,t+s + y

i
t+s,t+s−1 +Rb

i
t+s (86)

Summing over (85) and (86) for s = 1 to T , we get

T∑
s=0

cit+s,t+s + c
i
t+s,t+s−1 + b

i
t+s+1

Rs
= yit,t + x

i
t,t−1 +

T∑
s=1

yit+s,t+s + y
i
t+s,t+s−1 +Rb

i
t+s

Rs

T∑
s=0

cit+s,t+s + c
i
t+s,t+s−1 + b

i
t+s+1

Rs
=

T∑
s=0

yit+s,t+s
Rs

+

T∑
s=1

yit+s,t+s−1
Rs

+ xit,t−1 +

T∑
s=1

bit+s
Rs−1

T∑
s=0

cit+s,t+s + c
i
t+s,t+s−1 + b

i
t+s+1

Rs
=

T∑
s=0

yit+s,t+s
Rs

+

T∑
s=1

yit+s,t+s−1
Rs

+ xit,t−1 +

T−1∑
s=0

bit+s+1
Rs

bit+T+1
Rs

=

T∑
s=0

yit+s,t+s
Rs

+

T∑
s=1

yit+s,t+s−1
Rs

+ xit,t−1 −
T∑
s=0

cit+s,t+s + c
i
t+s,t+s−1

Rs

Using the no-Ponzi game condition, we get as T →∞,
∞∑
s=0

yit+s,t+s
Rs

+

∞∑
s=1

yit+s,t+s−1
Rs

+ xit,t−1 −
∞∑
s=0

cit+s,t+s + c
i
t+s,t+s−1

Rs
≥ 0.

Thus we get the dynasty resource constraint

0 ≤
∞∑
s=0

cit+s,t+s + c
i
t+s,t+s−1

Rs
≤
∞∑
s=0

yit+s,t+s
Rs

+

∞∑
s=1

yit+s,t+s−1
Rs

+ xit,t−1

0 ≤
∞∑
s=0

cit+s,t+s + c
i
t+s,t+s−1

Rs
≤
∞∑
s=0

yit+s,t+s
Rs

+

∞∑
s=0

yit+s+1,t+s
Rs+1

+ xit,t−1

0 ≤
∞∑
s=0

cit+s,t+s + c
i
t+s,t+s−1

Rs
≤ xit,t−1 +

∞∑
s=0

1

Rs

[
yit+s,t+s +

yt+s+1,t+s
R

]
(87)

In the perfect-foresight model, this simplifies to

0 ≤
∞∑
s=0

ct+s,t+s + ct+s,t+s−1
Rs

≤ xt,t−1 +
∞∑
s=0

1

Rs

[
y0 +

y1
R

]
= xt,t−1 +

[
y0 +

y1
R

] 1

1− 1
R

= xt,t−1 +
[
y0 +

y1
R

] R
r
.

0 ≤
∞∑
s=0

ct+s,t+s + ct+s,t+s−1
Rs

≤ xt,t−1 +
[
y0 +

y1
R

] R
r
. (88)

This implies that the minimum cash on hand is

xt,t−1 ≥ xmin = −
[
y0 +

y1
R

] R
r
. (89)
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Note that if xt,t−1 = xmin, we must have ct,t = ct,t−1 = 0. This implies

τ(xmin) = xmin = −
[
y0 +

y1
R

] R
r

(90)

However, the full resource constraint is only relevant for the paterfamilias and Logan’s Run models since
the parent or child can demand the other party go along with such a huge transfer from the child to the
parent. In the general bargaining model, households must abide by the Aiyagari (1994) constraint that
x ≥ 0 or else the threat point is not defined. Thus

bit+1 ≥ −
min{yit+1,t+1}

R
. (91)

Since
ct,t + bt+1 = y0 + τ t,

in the perfect-foresight model (91) implies that

y0 + τ t − ct,t ≥ −
y1
R

0 ≤ ct,t ≤ y0 +
y1
R
+ τ t

further implies that

τ t ≥ −
[
y0 +

y1
R

]
.

Thus the transfer is bounded by

−
[
y0 +

y1
R

]
≤ τ t ≤ xt,t−1. (92)

Let us suppose now that x2(x1) is a decreasing function of x1 since a higher x1 means a higher transfer
when the child is the parent. Let τ̃ t(x) be the current iteration of the expected transfer function and let
τ t(x) be the resulting iteration of the actual transfer function. Suppose that τ̃ t and τ t are increasing in x.
The (3) implies the next iteration of τ̃ is

τ̃ t+1(x) = τ t(y1 +Rb(τ t(x), τ̃ t+1(x)))

= τ t

(
y1 +R

1

1 + φ

[
y0 + τ t(x)−

φ

R
(y1 − τ̃ t(x))

])

τ̃ ′t+1(x) = τ ′t

(
y1 +R

1

1 + φ

[
y0 + τ t(x)−

φ

R
(y1 − τ̃ t(x))

])
R

1 + φ

(
τ ′t(x) +

φ

R
τ̃ ′t(x)

)
≥ 0.

Thus if we start out with a guess that the expected transfer function is increasing, and the resulting transfer
function is increasing, the expected transfer function will remain increasing.
Then we have

([u(x1 − τ)− u(x1)] + (θη2 + (1− θ)η1)[u(x2 + τ)− u(x2)]) (x1 − τ)−γ

= (((1− θ)η2 + θη1)[u(x1 − τ)− u(x1)] + η1η2[u(x2 + τ)− u(x2)]) (x2 + τ)−γ

If η1 = η2 = η, this simplifies to
(x1 − τ)−γ = η(x2 + τ)

−γ

x1 − τ = η−1/γ(x2 + τ)
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dx1 − dτ = η−1/γ
(
dx2
dx1

dx1 + dτ

)
(
1− η−1/γ dx2

dx1

)
dx1 = (1 + η

−1/γ)dτ

dτ

dx1
=
1− η−1/γ dx2dx1

1 + η−1/γ
> 0

since dx2/dx1 ≤ 0.[
(x1 − τ)−γ − x−γ1 + (θη2 + (1− θ)η1)[(x2 + τ)−γ − x

−γ
2 ]

dx2
dx1

]
(x1 − τ)−γdx1

−γ ([u(x1 − τ)− u(x1)] + (θη2 + (1− θ)η1)[u(x2 + τ)− u(x2)]) (x1 − τ)−γ−1(dx1 − dτ)
+
[
−(x1 − τ)−γ + (θη2 + (1− θ)η1)(x2 + τ)−γ

]
(x1 − τ)−γdτ

=

[
((1− θ)η2 + θη1)[(x1 − τ)−γ − x

−γ
1 ] + η1η2[(x2 + τ)

−γ − x−γ2 ]
dx2
dx1

]
(x2 + τ)

−γdx1

−γ (((1− θ)η2 + θη1)[u(x1 − τ)− u(x1)] + η1η2[u(x2 + τ)− u(x2)]) (x2 + τ)−γ−1
(
dx2
dx1

dx1 + dτ

)
+
[
−((1− θ)η2 + θη1)(x1 − τ)−γ + η1η2(x2 + τ)−γ

]
(x2 + τ)

−γdτ

Note that if dx2/dx1 ≤ 0,
dτ∗1
dx1

=
1− η−1/γ1

dx2
dx1

1 + η
−1/γ
1

> 0

Likewise,

dτ∗2
dx1

=
1− η−1/γ2

dx2
dx1

1 + η
−1/γ
2

> 0

U1(τ |x1) = A11[u(x1 − τ)− u(x1)] +A12[u(x2(x1) + τ)− u(x2(x1))]
U2(τ |x1) = A21[u(x1 − τ)− u(x1)] +A22[u(x2(x1) + τ)− u(x2(x1))]

Let us assume that x2(x1) is decreasing. There will be x
−
1 and x

+
1 such that

x2(x
−
1 )

x−1
= max{η1/γ1 , η

1/γ
2 } (93)

and
x2(x

+
1 )

x+1
= min{η1/γ1 , η

1/γ
2 }. (94)

0 = U ′(τ |x1) = θ
−A11u′(x1 − τ) +A12u′(x2 + τ)

A11[u(x1 − τ)− u(x1)] +A12[u(x2(x1) + τ)− u(x2(x1))]

+(1− θ) −A21u′(x1 − τ) +A22u′(x2 + τ)
A21[u(x1 − τ)− u(x1)] +A22[u(x2(x1) + τ)− u(x2(x1))]
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0 = U ′(τ |x1) = θ
−u′(x1 − τ) + η1u′(x2 + τ)

[u(x1 − τ)− u(x1)] + η1[u(x2(x1) + τ)− u(x2(x1))]
(95)

+(1− θ) −u′(x1 − τ) + η2u′(x2 + τ)
[u(x1 − τ)− u(x1)] + η2[u(x2(x1) + τ)− u(x2(x1))]

(96)

Since this must hold for all x1,

U ′′(τ |x1)dτ +
∂U ′(τ |x1)

∂x1
dx1 = 0

dτ

dx1
= −U

′′(τ |x1)
∂U ′(τ |x1)

∂x1

.

U ′′(τ |x1) = θ
u′′(x1 − τ) + η1u′′(x2 + τ)

[u(x1 − τ)− u(x1)] + η1[u(x2(x1) + τ)− u(x2(x1))]

+(1− θ) u′′(x1 − τ) + η2u′′(x2 + τ)
[u(x1 − τ)− u(x1)] + η2[u(x2(x1) + τ)− u(x2(x1))]

−θ (−u′(x1 − τ) + η1u′(x2 + τ))
2

([u(x1 − τ)− u(x1)] + η1[u(x2(x1) + τ)− u(x2(x1))])
2

−(1− θ) (−u′(x1 − τ) + η2u′(x2 + τ))
2

([u(x1 − τ)− u(x1)] + η2[u(x2(x1) + τ)− u(x2(x1))])
2

< 0

as long as U1(τ |x1), U2(τ |x2) > 0.

∂U ′(τ |x1)
∂x1

= θ
−u′′(x1 − τ) + η1u′′(x2 + τ)dx2dx1

[u(x1 − τ)− u(x1)] + η1[u(x2(x1) + τ)− u(x2(x1))]

+(1− θ)
−u′′(x1 − τ) + η2u′′(x2 + τ)dx2dx1

[u(x1 − τ)− u(x1)] + η2[u(x2(x1) + τ)− u(x2(x1))]

−θ
(−u′(x1 − τ) + η1u′(x2 + τ))

(
u′(x1 − τ)− u′(x1) + η1[u′(x2(x1) + τ)− u′(x2(x1))]dx2dx1

)
([u(x1 − τ)− u(x1)] + η1[u(x2(x1) + τ)− u(x2(x1))])

2

−(1− θ)
(−u′(x1 − τ) + η2u′(x2 + τ))

(
u′(x1 − τ)− u′(x1) + η2 [u′(x2(x1) + τ)− u′(x2(x1))] dx2dx1

)
([u(x1 − τ)− u(x1)] + η2[u(x2(x1) + τ)− u(x2(x1))])

2

The first two terms are both positive since u is strictly concave and dx2/dx1 < 0. Empirically, I find in
“bargainingpfderivative.nb”that the other two terms may not be positive, although so far I have only found
cases where the sum is positive.
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Using (95), these terms are

−θ
(−u′(x1 − τ) + η1u′(x2 + τ))

(
u′(x1 − τ)− u′(x1) + η1[u′(x2(x1) + τ)− u′(x2(x1))]dx2dx1

)
([u(x1 − τ)− u(x1)] + η1[u(x2(x1) + τ)− u(x2(x1))])

2

−(1− θ)
(−u′(x1 − τ) + η2u′(x2 + τ))

(
u′(x1 − τ)− u′(x1) + η2 [u′(x2(x1) + τ)− u′(x2(x1))] dx2dx1

)
([u(x1 − τ)− u(x1)] + η2[u(x2(x1) + τ)− u(x2(x1))])

2

= (1− θ)
(−u′(x1 − τ) + η2u′(x2 + τ))

(
u′(x1 − τ)− u′(x1) + η1[u′(x2(x1) + τ)− u′(x2(x1))]dx2dx1

)
([u(x1 − τ)− u(x1)] + η1[u(x2(x1) + τ)− u(x2(x1))]) ([u(x1 − τ)− u(x1)] + η2[u(x2(x1) + τ)− u(x2(x1))])

+θ
(−u′(x1 − τ) + η1u′(x2 + τ))

(
u′(x1 − τ)− u′(x1) + η2 [u′(x2(x1) + τ)− u′(x2(x1))] dx2dx1

)
([u(x1 − τ)− u(x1)] + η1[u(x2(x1) + τ)− u(x2(x1))]) ([u(x1 − τ)− u(x1)] + η2[u(x2(x1) + τ)− u(x2(x1))])

Assuming U1(τ), U2(τ) > 0, the denominator is positive. The numerator is

N = (1− θ) (−u′(x1 − τ) + η2u′(x2 + τ))
(
u′(x1 − τ)− u′(x1) + η1[u′(x2(x1) + τ)− u′(x2(x1))]

dx2
dx1

)
θ (−u′(x1 − τ) + η1u′(x2 + τ))

(
u′(x1 − τ)− u′(x1) + η2 [u′(x2(x1) + τ)− u′(x2(x1))]

dx2
dx1

)
Let

N1 = [(1− θ) (−u′(x1 − τ) + η2u′(x2 + τ)) + θ (−u′(x1 − τ) + η1u′(x2 + τ))] [u′(x1 − τ)− u′(x1)] (97)

and

N2 = (1− θ)η1 (−u′(x1 − τ) + η2u′(x2 + τ)) [u′(x2(x1) + τ)− u′(x2(x1))]
dx2
dx1

+θη2 (−u′(x1 − τ) + η1u′(x2 + τ)) [u′(x2(x1) + τ)− u′(x2(x1))]
dx2
dx1

, (98)

so N = N1 +N2.

N1 = (−u′(x1 − τ) + (θη1 + (1− θ)η2))u′(x2 + τ)) [u′(x1 − τ)− u′(x1)] . (99)

If τ > 0, the second factor is positive because u′ is strictly decreasing.

0 = θ
−u′(x1 − τ) + η1u′(x2 + τ)

[u(x1 − τ)− u(x1)] + η1[u(x2(x1) + τ)− u(x2(x1))]

+(1− θ) −u′(x1 − τ) + η2u′(x2 + τ)
[u(x1 − τ)− u(x1)] + η2[u(x2(x1) + τ)− u(x2(x1))]

Since the denominators are both positive, one numerator must be positive and the other negative. Suppose
η1 < η2. Since u

′ > 0, we must have

−u′(x1 − τ) + η1u′(x2 + τ) < 0 < −u′(x1 − τ) + η2u′(x2 + τ). (100)
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Then

0 = θ
−u′(x1 − τ) + η1u′(x2 + τ)

[u(x1 − τ)− u(x1)] + η1[u(x2(x1) + τ)− u(x2(x1))]

+(1− θ) −u′(x1 − τ) + η2u′(x2 + τ)
[u(x1 − τ)− u(x1)] + η2[u(x2(x1) + τ)− u(x2(x1))]

< θ
−u′(x1 − τ) + η1u′(x2 + τ)

[u(x1 − τ)− u(x1)] + η1[u(x2(x1) + τ)− u(x2(x1))]

+(1− θ) −u′(x1 − τ) + η2u′(x2 + τ)
[u(x1 − τ)− u(x1)] + η1[u(x2(x1) + τ)− u(x2(x1))]

.

Since u is strictly increasing and τ > 0, u(x2(x1)+ τ)−u(x2(x1)) > 0, so [u(x1− τ)−u(x1)]+η2[u(x2(x1)+
τ)− u(x2(x1))] > [u(x1 − τ)− u(x1)] + η1[u(x2(x1) + τ)− u(x2(x1))]. Thus

0 <
−u′(x1 − τ) + (θη1 + (1− θ)η2)u′(x2 + τ)

[u(x1 − τ)− u(x1)] + η1[u(x2(x1) + τ)− u(x2(x1))]

0 < −u′(x1 − τ) + (θη1 + (1− θ)η2)u′(x2 + τ),

and so N1 > 0. The analogous argument holds if η1 > η2.
Alternatively, if τ < 0, the second factor in (99) is negative and u(x2(x1) + τ) − u(x2(x1)) > 0. If

η1 < η2, we must still have (100). Then since τ < 0, u(x2(x1)+ τ)−u(x2(x1)) < 0, so [u(x1− τ)−u(x1)]+
η2[u(x2(x1) + τ)− u(x2(x1))] < [u(x1 − τ)− u(x1)] + η1[u(x2(x1) + τ)− u(x2(x1))]. Therefore

0 = θ
−u′(x1 − τ) + η1u′(x2 + τ)

[u(x1 − τ)− u(x1)] + η1[u(x2(x1) + τ)− u(x2(x1))]

+(1− θ) −u′(x1 − τ) + η2u′(x2 + τ)
[u(x1 − τ)− u(x1)] + η2[u(x2(x1) + τ)− u(x2(x1))]

> θ
−u′(x1 − τ) + η1u′(x2 + τ)

[u(x1 − τ)− u(x1)] + η1[u(x2(x1) + τ)− u(x2(x1))]

+(1− θ) −u′(x1 − τ) + η2u′(x2 + τ)
[u(x1 − τ)− u(x1)] + η1[u(x2(x1) + τ)− u(x2(x1))]

,

so

0 >
−u′(x1 − τ) + (θη1 + (1− θ)η2)u′(x2 + τ)

[u(x1 − τ)− u(x1)] + η1[u(x2(x1) + τ)− u(x2(x1))]
.

Since the denominator is still positive,

0 > −u′(x1 − τ) + (θη1 + (1− θ)η2)u′(x2 + τ),

so N1 > 0 again. Thus if x2 is independent of x1, we must have τ(x1) an increasing function.

N2 = [((1− θ)η1 + θη2) (−u′(x1 − τ) + η1η2u′(x2 + τ))] [u′(x2(x1) + τ)− u′(x2(x1))]
dx2
dx1

.

If dx2dx1
< 0, [u′(x2(x1) + τ) − u′(x2(x1))]dx2dx1

will have the same sign as u′(x1 − τ) − u′(x1). To show that
N2 > 0, we need to show that

DMUh = −u′(x1 − τ) +
η1η2

(1− θ)η1 + θη2
u′(x2 + τ)
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has the same sign as
DMUa − u′(x1 − τ) + (θη1 + (1− θ)η2)u′(x2 + τ),

where a stands for arithmetic mean and h stands for harmonic mean since we can rewrite

DMUh = −u′(x1 − τ) +
1

θ
η1
+ (1−θ)

η2

u′(x2 + τ).

We can rewrite the Nash condition as

([u(x1 − τ)− u(x1)] + (θη2 + (1− θ)η1)[u(x2 + τ)− u(x2)])u′(x1 − τ)
= (((1− θ)η2 + θη1)[u(x1 − τ)− u(x1)] + η1η2[u(x2 + τ)− u(x2)])u′(x2 + τ)

−[u′(x1 − τ)− ((1− θ)η2 + θη1)u′(x2 + τ)][u(x1 − τ)− u(x1)]

= ((1− θ)η1 + θη2)
[
u′(x1 − τ)−

η1η2
(1− θ)η1 + θη2

u′(x2 + τ)

]
[u(x2 + τ)− u(x2)]

Since u is strictly increasing, u(x2+τ)−u(x2) and u(x1)−u(x1−τ) must have the same sign. Consequently
DMUa and DMUh also have the same sign.
Let f(x) be an expected transfer function. Let τf (x) be the optimal transfer given the expected transfer

function f . The mapping to determine the next iteration of the expected transfer function is

(Tf)(x) = τf (y1 +Rbt+1(τf (x), f(x)))

(Tf)(x) = τf

(
y1 +R

1

1 + φ

[
y0 + τf (x)−

φ

R
(y1 − f(x))

])
(Tf)(x) = τf

(
R

1

1 + φ

[
(1 + φ)y1

R
+ y0 + τf (x)−

φ

R
y1 +

φ

R
f(x))

])
(Tf)(x) = τf

(
R

1

1 + φ

[
y0 +

y1
R
+ τf (x) +

φ

R
f(x))

])
(Tf)(x) = τf

(
R

1

1 + φ

[
y0 +

y1
R
+ τf (x)

]
+

φ

1 + φ
f(x)

)
(101)

The induced transfer function is

τf (x) = arg max
τ∈−[y0+ y1

R ,x]

(
max

{
u(x− τ)− u(τ) + ηp

[
u

(
y0 +

y1 − f(x)
R

+ τ

)
− u

(
y0 +

y1 − f(x)
R

)]
, 0

})θ
×
(
max

{
u(x− τ)− u(τ) + ηc

[
u

(
y0 +

y1 − f(x)
R

+ τ

)
− u

(
y0 +

y1 − f(x)
R

)]
, 0

})1−θ
(102)

We have already shown that τf is increasing in x. Since the model is symmetric between player 1 (i.e.
the parent) and 2 (i.e. the child), the flip-side of that argument is that τ will be decreasing in the child’s
wealth. Consequently, we will have τf (x) ≤ τg(x) for all x if f(x) ≤ g(x) for all x. Then

(Tf)(x) = τf

(
R

1

1 + φ

[
y0 +

y1
R
+ τf (x)

]
+

φ

1 + φ
f(x)

)
≤ τf

(
R

1

1 + φ

[
y0 +

y1
R
+ τg(x)

]
+

φ

1 + φ
g(x)

)
≤ τg

(
R

1

1 + φ

[
y0 +

y1
R
+ τg(x)

]
+

φ

1 + φ
g(x)

)
= (Tg)(x).
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That establishes the first Blackwell condition. If we can further show the second Blackwell condition, we
will establish that T is a contraction. Empirically, I do find that the discounting condition holds.
A problem does arise when f(x) > Ry0 + y1 because then the expected transfer cannot be made if there

is no bargaining. We need to adjust the threat point so

x2 = y0 +
y1 − f(x)

R
+B(x) ≥ 0.

If γ ≥ 1, as x2 → 0, the bargaining condition becomes

lim
x2→0

([u(x1 − τ)− u(x1)] + (θη2 + (1− θ)η1)[u(x2 + τ)− u(x2)]) (x1 − τ)−γ

= lim
x2→0

(((1− θ)η2 + θη1)[u(x1 − τ)− u(x1)] + η1η2[u(x2 + τ)− u(x2)]) (x2 + τ)−γ ,

(θη2 + (1− θ)η1)(x1 − τ)−γ = η1η2τ
−γ .

x1 − τ =
(
θη2 + (1− θ)η1

η1η2

) 1
γ

τ

x1 − τ =
(
θ

η1
+
1− θ
η2

) 1
γ

τ

τ =
x1

1 +
(
θ
η1
+ 1−θ

η2

) 1
γ

(103)

When γ < 1, we can still solve (84) for τ .
One of the motivating questions of the paper was to understand under what circumstances the model

will behave like a standard overlapping-generations model without transfers. If there is no transfer,

b =
1

1 + φ

[
y0 −

φ

R
y1

]
. (104)

The parent’s wealth will then be

xp = y1 +Rb = y1 +
R

1 + φ

[
y0 −

φ

R
y1

]
=

R

1 + φ

[
1 + φ

R
y1 + y0 −

φ

R
y1

]
=

R

1 + φ

[
y0 +

y1
R

]
. (105)

The child’s wealth will be
xc = y0 +

y1
R

(106)

Thus
xc
xp
=
1 + φ

R
(107)

The condition for this no transfer equilibrium to hold will then be

min{η1/γp , η1/γc } ≤
1 + φ

R
≤ max{η1/γp , η1/γc }. (108)

If we set β = .9730, α = 1/3, γ = 1, δ = 1, e0 = 1, and e1 = 1/3, we will have K/Y = 3 years, φ = 2.49
and R = 3.12 (equivalent to r = 3.9%). Then

1 + φ

R
= 1.17.
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Thus if ηc ≤ 1.17 ≤ ηp we will have a no-transfer equilibrium. (“twoperiodolg.xls”) Hong and Rios-Rull
use life-insurance data to estimate ηc = 3.5. If we assume children care about parent’s consumption at least
as much as their own, then we should see no transfers in the steady state. However, if ηp = 1, then an
exogenous transfer from the child to the parent of more than 9% of the child’s lifetime wealth ought to lead
the parents to make an opposing transfer. Note that ηp ≤ 1 means that children value parental consumption
at least as much as their own. Note that 1.17 is a lower bound on ηp under which no transfer ought to
occur. This may help to explain why so many tests of bequest models have failed. If children do not care
about parents, as most models assume, we ought to see large transfers from parents to children, even in the
steady state.
Note that if we have an equilibrium where τ = 0 when xp = R

1+φ

[
y0 +

y1
R

]
, then for any parental wealth

under which there is no transfer, the child will expect to make no transfer. Let us define xpt to be the time
series of the parent’s wealth. Then xpt =

R
1+φ

[
y0 +

y1
R

]
is an absorbing state. Consequently, if we have

min{η1/γp , η1/γc } ≤
y0 +

y1
R

xpt
≤ max{η1/γp , η1/γc }

there will be no bargaining so the range in which no transfer occurs is

y0 +
y1
R

max{η1/γp , η
1/γ
c }

≤ xpt ≤
y0 +

y1
R

min{η1/γp , η
1/γ
c }

. (109)
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