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Overview 
• Build an OLG model with relatively short periods 

• Model has: 
o demographic dynamics from exogenous birth rates, death rates and immigration 

o aggregate productivity shocks, but no idiosyncratic shocks to individuals within 
cohorts 

• Calibrate the model to the US economy and Social Security system. 

• Solve the model using linearization techniques commonly applied to 
DSGE models. 

• Using Monte Carlo methods, generate forecasts of the balance for the 
Social Security trust fund with confidence bands corresponding to the 
uncertainty associated with business cycle & demographic fluctuations. 

 



Questions & Motivation 
When will the social security trust fund run out? 

How do you solve DSGE models that are not stationary? 

 

Large amount of current research on countercyclical fiscal policy and 
reducing national debt. 

Two biggest problems for U.S. national debt (Soc. Sec. and 
Medicare/Medicaid) require OLG modeling. 

Need a solution for a nonstationary OLG model. 

 

 



The Model – Demographics 

Cohorts decrease in size over time due to deaths, but also increase in size 
due to immigration. 

𝑁𝑠+1
′ = 𝑁𝑠 𝜌𝑠+1 + 𝜄𝑠+1  for 1 ≤ 𝑠 ≤ 𝑆 − 1   (2.1) 

 

New births each period are the fertility rate per period for each age cohort 
times the number of people in the cohort. 

𝑁1
′ =  𝑓𝑠𝑁𝑠

𝑆
𝑠=1        (2.2) 

 



The Model – Households 
Each period households receive wage income (𝑤𝓁 𝑠), interest 
income[ 1 + 𝑟 − 𝛿 𝑘𝑠], lump-sum transfers (𝑇), and social security 
benefits (𝑏𝑠). 

They use these fund to pay taxes (𝜏𝑤𝓁 𝑠), and to purchase new capital 
(𝑘𝑠+1

′ ) and consumption (𝑐𝑠). 

 

The household’s problem is written using a Bellman equation: 

𝑉𝑠 𝑘𝑠, Ω = max
𝑘𝑠+1′

𝑢*𝑐𝑠+ + 𝛽𝜌𝑠+1𝐸*𝑉𝑠+1 Ω′, 𝑘𝑠+1
′ +  

𝑐𝑠 = 𝑤𝓁 𝑠 1 − 𝜏 + 1 + 𝑟 − 𝛿 𝑘𝑠 − 𝑘𝑠+1
′ + 𝑏𝑠 + 𝑇    (2.3) 

 

This problem yields the following Euler equation for a household of age s: 

𝑢𝑐 𝑐𝑠 = 𝛽𝜌𝑠+1𝐸 𝑢𝑐*𝑐𝑠
′+(1 + 𝑟′ − 𝛿)      (2.4) 



The Model – Firms 
Firms hire labor and capital to maximize profits each period. 

max
𝐾,𝐿

𝐾𝛼(𝑒𝑔𝑡+𝑧𝐿)1−𝛼−𝑟𝐾 − 𝑤𝐿  

 

The solution is characterized by the following three equations. 

𝑟 = 𝛼𝑌/𝐾        (2.5) 

𝑤 = (1 − 𝛼)𝑌/𝐿        (2.6) 

𝑌 = 𝐾𝛼(𝑒𝑔𝑡+𝑧𝐿)1−𝛼      (2.7) 



The Model – Stochastic Processes 
Technology is assumed to evolve over time according to the following law 
of motion. 

𝑧′ = 𝜓𝑧𝑧 + 𝑒𝑧′; 𝑒𝑧
′~𝑖𝑖𝑑(0, 𝜎𝑧

2)     (2.8) 



The Model - Government 
The government accumulates a balance over time on a trust fund. 

𝐻′ = 𝐻 +  𝑁𝑠𝜏𝑤𝓁 𝑠
𝑅−1
𝑠=𝐸 −  𝑁𝑠𝑏𝑠

𝑆
𝑠=𝑅      (2.10) 

 

AIME evolves over ages 𝐸 to 𝑅 according to: 

𝑎𝑠+1
′ =

𝜌𝑠+1

𝜌𝑠+1+𝜄𝑠+1

𝑠−𝐸−1

𝑠−𝐸
𝑎𝑠 +

1

𝑠−𝐸
𝑤𝓁 𝑠  for 𝐸 ≤ 𝑠 ≤ 𝑅 − 1   (2.13) 

 

Benefits are assigned when a household retires at age R and are a function of 
AIME at retirement. 

𝑏𝑅 = 𝜃𝑎𝑅        (2.11) 

 

Once set at retirement benefits remain constant until death. 

𝑏𝑠+1
′ =

𝜌𝑠+1

𝜌𝑠+1+𝜄𝑠+1
𝑏𝑠 for 𝑠 > 𝑅     (2.12) 



The Model – Bequests 
We model redistribution of the capital of deceased households over the 
current population, by assuming an equal share for each household 
regardless of age. 

𝑇′ =
 𝑁𝑠 1−𝜌𝑠 𝑘𝑠
𝑆
𝑠=1

 𝑁𝑠
′𝑆

𝑠=1
       (2.9) 



The Model – Market Clearing 
The capital and labor market clearing conditions are given by: 

𝐾 =  𝑁𝑠𝑘𝑠
𝑆
𝑠=1 + 𝐻       (2.14) 

𝐿 =  𝑁𝑠𝓁 𝑠
𝑆
𝑠=1         (2.15) 

 

There is also a goods market clearing condition 

𝑌 + 1 − 𝛿 𝐾 =  𝑐𝑠 + 𝐾′𝑆
𝑠=1 , 

but it is redundant by Walras Law. 

 



The Model - Stationarizing 
We must transform the non-stationary variables to stationary ones, 
denoted with a carat (^). 

 

Some per capita variables, such as consumption and wages, will grow at 
the long-run rate of g. 

𝑥 ≡ 𝑥/𝑒𝑔𝑡  for 𝑥 ∈ (*𝑘𝑠+𝑠=2
𝑆 , *𝑎𝑠+𝑠=𝐸

𝑅 , *𝑏𝑠+𝑠=𝑅
𝑆 , *𝑐𝑠+𝑠=1

𝑆 , 𝑤) 

 

To transform cohort populations we need to remove a unit root, which we 
do by dividing by the total population, N. 

𝑥 ≡ 𝑥/𝑁  for 𝑥 ∈ (*𝑁𝑠+𝑠=1
𝑆 , 𝐿) 

 

Some aggregate variables grow at the rate 𝑔 and also have a unit root.  

𝑥 ≡ 𝑥/(𝑁𝑒𝑔𝑡)  for 𝑥 ∈ (𝑌, 𝐾, 𝐻) 

 



Calibration 
S   maximum age in periods 
E   period workers enter the labor force 
R   period workers retire 
*𝓁 𝑠+𝑠=1

𝑆    effective labor by age 
*𝑓 𝑠+𝑠=1

𝑆    average fertility rates by age 
*𝜄  𝑠+𝑠=2

𝑆    average immigration rates by age 
*𝜌 𝑠+𝑠=2

𝑆    average survival rates by age 
𝜏    payroll tax rate 
𝛿   capital depreciation rate 
𝛽   subjective discount factor 
g   growth rate of technology 
𝛾   coefficient of relative risk aversion 
𝛼   capital share in GDP 
𝜃   pension benefits as percent of AIME 
In addition we have parameters governing the stochastic processes 

𝜓𝑧, *𝜓𝑓𝑠, 𝜓𝜄𝑠, 𝜓𝜌𝑠+𝑠=1
𝑆   autocorrelations 

𝜎𝑧
2, *𝜎𝑓𝑠

2 , 𝜎𝜄𝑠
2 , 𝜎𝜌𝑠

2 +𝑠=1
𝑆   variances 

 



Calibration 
E = 16  age of entry into the labor force in years 

R = 65  age of retirement in years 

 

𝛿 = .10  capital depreciation rate per year 

𝛽 = .98  subjective discount factor per year 

g = .005  growth rate of technology per year 

𝛾 = 1.0  coefficient of relative risk aversion 

𝛼 = .33  capital share in GDP 

 

𝜃 = .20  pension benefits as percent of AIME 

𝜏  = .0392 payroll tax rate 

𝜓𝑧= .90  autocorrelation of technology (per year) 
𝜎𝑧
2 = .0004 variance of technology 

 

 



Calibration 
Average monthly OASDI only benefit to earnings ratio 

 

 2001 18.66% 

2002 18.75% 

2003 18.34% 

2004 18.20% 

2005 18.30% 

2006 18.42% 

2007 18.58% 

2008 18.56% 

2009 19.56% 

average 18.60% 



Calibration 
Fit a polynomial to effective labor by age 
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Calibration 
Fit a polynomial to immigration rates by age 
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Calibration 
Fit a polynomial to fertility rates by age 
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Calibration 
Fit a polynomial to death hazard rates by age (log scale) 
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Calibration 
• Implied cumulative survival rates by age 
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Steady State - Aggregate 
α 0.33   𝐾  0.9379 

γ 1   𝐻  0.0000 

𝑔 * 0.005   𝑌  0.8380 

δ* 0.1   𝐶  0.2784 

β* 0.98   𝐼   0.2180 

θ 0.2   𝐿  0.7927 

S 50   𝑟 * 0.1379 

  𝑤  0.7082 

 ψz  .9   𝑇  0.0242 

 σz  .02   𝐵  0.0218 

𝑛 * 0.0094 

τ 0.0389 



Steady State - Population 
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Steady State - Household 
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Linear Approximation - Example 
Illustrate the technique first on a simple infintely-lived agent DSGE model. 

 

Euler equation 

𝑢𝑐 𝑐 = 𝛽𝐸 𝑢𝑐*𝑐′+(1 + 𝑟′ − 𝛿)    

Budget constraint 

𝑐 = 𝑤 + 1 + 𝑟 − 𝛿 𝑘 − 𝑘′ 

Firm’s optimization conditions 

𝑟 = 𝛼𝐾𝛼−1(𝑒𝑧)1−𝛼𝑌  

𝑤 = 1 − 𝛼 𝐾𝛼 𝑒𝑧 −𝛼   

Technology 

𝑧′ = 𝑁𝑧 + 𝑒′; 𝑒′~𝑖𝑖𝑑(0, 𝜎2)      (5.1) 

 



Linear Approximation - Example 
First categorize variables into three categories: 

1. Exogenous state variables  (z) 

2. Endogenous state variables (k) 

3. Non-state variables (c, r, w) 

 

Use a 1st-order Taylor-series expansion to linearize the log of the Euler 
equation.  The other equations are used as definitions 

𝛽𝐸  (𝑐/𝑐′)𝛾 (1 + 𝑟′ − 𝛿) = 1  

 

Write the approximation as: 

𝐸*𝐹𝑘 ′′ + 𝐺𝑘 ′ + 𝐻𝑘 + 𝐿𝑧 ′ + 𝑀𝑧 + = 0  

Where 𝑘  is the deviation of k from its steady state value 

And 𝑧  is the deviation of z from its steady state value 

 

 



Linear Approximation - Example 
Assume the policy function for k’ can be written as a linear approximation 
also. 

𝑘 ′ = 𝑃𝑘 + 𝑄𝑧 ’       (5.3) 

 

Substitution of (5.3) & (5.1) into (5.2) yields 

𝐹𝑃 + 𝐺 𝑃 + 𝐻 𝑘 + 𝐹𝑄 + 𝐿 𝑁 + 𝐹𝑃 + 𝐺 𝑄 +𝑀 𝑧 = 0  

 

Which requires P & Q to satisfy two conditions: 

• 𝐹𝑃 + 𝐺 𝑃 + 𝐻 = 0  
Involves solving a (matrix) quadratic in P. 

• 𝐹𝑄 + 𝐿 𝑁 + 𝐹𝑃 + 𝐺 𝑄 +𝑀 = 0  

 



Linear Approximation – Our Model 
Categorize variables into three categories: 

1. Exogenous state variables (revealed now):   
(𝐙𝑡 = 𝑧𝑡 , *𝑁 𝑡+𝑠=1

𝑆 ) 

2. Endogenous state variables (chosen now): 

(𝐗𝑡 = *𝑘 𝑠,𝑡+1+𝑠=𝐸
𝑆  , *𝑎 𝑠,𝑡+1+𝑠=𝐸+1

𝑅−1 , *𝑏 𝑠,𝑡+1+𝑠=𝑅
𝑆 , 𝐻 𝑡+1) 

3. Non-state variables (everything else) 

 

There are S+1 exogenous state variables and  2(S-E)+1 endogenous state 
variables. 

 

  

 

 



Linear Approximation – Our Model 
We linearize a series of 2(S-E)+1 equations, using the model’s equations as 
definitions as needed. 

S-E Euler equations: 

𝑐 𝑠
−𝛾 = 𝛽𝐸 ,𝑐 𝑠

′ 1 + 𝑔 -−𝛾(1 + 𝑟′ − 𝛿)   for 1 ≤ 𝑠 ≤ 𝑆 − 1 

R-E-1 AIME equations: 

𝑎 𝑠+1
′ (1 + 𝑔) = 𝑠−𝐸−1

𝑠−𝐸
𝑎 𝑠 +

1

𝑠−𝐸
𝑤 𝓁 𝑠  for 𝐸 ≤ 𝑠 ≤ 𝑅 − 1 

1 Initial benefits equation: 

𝑏 𝑅′(1 + 𝑔) = 𝜃 𝑅−2−𝐸

𝑅−1−𝐸
𝑎 𝑅−1 +

1

𝑅−1−𝐸
𝑤 𝓁 𝑅−1    

S-R later benefits equations: 

𝑏 𝑠+1
′ (1 + 𝑔) = 𝑏 𝑠    for 𝑠 > 𝑅 

1 trust fund equation: 

𝐻 ′(1 + 𝑔) = 𝐻 +  𝑁 𝑠𝜏𝑤 𝓁 𝑠
𝑅−1
𝑠=𝐸 −  𝑁 𝑠𝑏 𝑠

𝑆
𝑠=𝑅   

 

 

 

 



Linear Approximation – Our Model 
Write this set of log linearized equations as 

E*𝐅𝐗 ′′ + 𝐆𝐗 ′ + 𝐇𝐗 + 𝐋𝐙 ′ + 𝐌𝐙 + = 0  

 

We also have a set of S+1 linear equations that govern the motion of our 
exogenous  state variables , which we write in matrix form as: 

𝐙 ′ = 𝐍𝐙 + 𝐞  

 

We can proceed as above and solve for the coefficients in the linearized 
policy function 

𝐗 ′ = 𝐏𝐗 + 𝐐𝒁 ′  



Baseline Simulation 
We need to first calibrate an initial state. 

For the population distribution we fit a polynomial to census data.  
Depicted in earlier figure. 

We assume the technology level is one standard deviation below the 
mean, which is 98% of steady state productivity. 

For capital stock and social security benefits across cohorts we assume the 
initial values are the same as the steady state. 

For AIME we assume the initial values are twice the steady state values. 

We assume the trust fund is initially 16.3% of GDP. 

Simulate by imposing a series of zero shocks and let the model’s dynamics 
move the economy back toward the steady state for a period of 75 years. 

In our model, the trust fund has a unit root. 



Baseline Simulation 

Trust Fund Balance Social Security Surplus 
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Baseline Simulation 

2010  Trustees Report Our Model 
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Baseline Simulation 

2010  Trustees Report Our Model 
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Baseline Simulation 
This simulation is a “best guess” scenario where all future shocks are 
assumed to be at their expected value of zero. 

In reality, there will be stochastic shocks. 

We impose zero variance on the demographic parameters, but allow a 
positive variance (.0004) and autocorrelation (.9 per annum) for the 
technology shocks. 

We run 1000 Monte Carlos of 75 years each.  We plot the 90% confidence 
bands around our original predictions from the previous slide. 

 



Baseline Simulation 

Trust Fund Balance Social Security Surplus 
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S=50, 1000 Monte Carlos 



Stability Issues 
• Model is unstable. 

• Higher balances on the trust fund earn greater interest payments, 
allowing the surpluses even when tax receipts exactly equal benefits 
payments 

• Trust fund balances contribute to the total capital stock and will have 
influences on future wages and interest rates. 



Linearizing about the Current State 
• We need to be able to simulate a model that UNSTABLE or is NOT 

converging to a steady state. 

• Change immigration holding benefits and tax parameters constant, 
leading to unstable behavior for the trust fund. 

 

• We could approximate our dynamic behavior equations about a point 
other than the steady state. 



Linearizing about 
the Steady State 

Accurate in the neighborhood of 

the steady state. 

Less accurate the further away 

one gets from the steady state 

and the more nonlinear the true 

function is. 

Linearized function may be very 

different if we choose a different 

point. 

May also converge to a different 

steady state. 



Linearizing about 
the Steady State 

Convergence path to the when 

we use a function approximated 

about the steady state. 



Linearizing about 
the Current State 

Convergence path to the when 

we use a function approximated 

about the current state. 

Requires approximating the 

function each period, rather 

than just once. 



Linearizing about the Current State 
Write the set of log linearized equations as 

E*𝐓 + 𝐅𝐗 ′′ + 𝐆𝐗 ′ + 𝐇𝐗 + 𝐋𝐙 ′ + 𝐌𝐙 + = 0  

Where we are now considering deviation from the current values of X and 
Z, rather than the SS values. 

 

Linear laws of motion: 

𝐙 ′ = 𝐍𝐙 + 𝐍 − 𝐈 𝐙0 − 𝐙 + 𝐞  

 

Solve for the following linearized policy function: 

𝐗 ′ = 𝐏𝐗 + 𝐐𝐙 ′ + 𝐔  

 



Linearizing about the Current State 
Iterative substitution yields: 

𝐅𝐏 + 𝐆 𝐏 + 𝐇 𝐗 + 𝐅𝐐 + 𝐋 𝐍 + 𝐅𝐏 + 𝐆 𝐐 +𝐌 𝐙 + 𝐓 +
𝑭 𝐈 + 𝐏 + 𝐆 𝐔 + 𝐅𝐐 + 𝐋 𝐍 − 𝐈 𝐙0 − 𝐙 = 𝟎  

 

Which gives three conditions: 

𝐅𝐏𝟐 + 𝐆𝐏 + 𝐇 = 𝟎  

𝐅𝐐𝐍 + (𝐅𝐏 + 𝐐)𝐆 +𝐌+ 𝐋𝐍 = 𝟎  

𝐓 + 𝑭 𝐈 + 𝐏 + 𝐆 𝐔 + 𝐅𝐐 + 𝐋 𝐍 − 𝐈 𝐙0 − 𝐙 = 𝟎  

 

First two are same as before. 

Last one gives: 

𝐔 = − 𝑭 𝐈 + 𝐏 + 𝐆 −𝟏,𝐓 + 𝐅𝐐 + 𝐋 𝐍 − 𝐈 𝐙0 − 𝐙 -  

 

 

 

 



Linearizing about the Current State 
Note that both 𝐗  and 𝐙 ′ will be zero if we are linearizing about the current 
state, (𝐗, 𝐙′), so that our linearized policy function becomes: 

𝐗 ′ = 𝐔  

 

Hence, solving for P & Q is necessary only to obtain the correct value for U. 

𝐔 = − 𝑭 𝐈 + 𝐏 + 𝐆 −𝟏,𝐓 + 𝐅𝐐 + 𝐋 𝐍 − 𝐈 𝐙0 − 𝐙 -  

 

With high dimensionality of the state, solving for P & Q  can be 
computationally burdensome.  

Since we need to do this for each period this is a distinct disadvantage of 
this method. 

 



Linearizing about the Current State 
However, we could reduce computation time by implementing either of 
the following shortcuts: 

• Shortcut 1 - Assume the policy function can be well-approximated by 
𝐗 ′ = 𝐔  
In this case there is no need to calculate P & Q  and the formula for U is 

𝐔 = − 𝑭 + 𝐆 −𝟏, 𝐓 + 𝐋 𝐍 − 𝐈 𝐙0 − 𝐙 -  

• Shortcut 2 - Use the steady state values of P & Q in the formula for U. 
In this case we calculate P & Q  only once about the steady state and then calculate U 
each period using these values as approximations of the values we would get if we were 
to linearize about the current state. 

 

How well do these shortcuts work? 



Linearizing about the Current State 
We run Monte Carlo 
experiments on a 
model where the exact 
solution is known. 

• Log utility 

• 100% depreciation 

• Cobb-Douglas 
Production 

 

We compare the mean 
absolute deviations 
(MAD)of these 
methods. 

 

 

MAD vs Exact Solution Ratio to No Shortcut 

No Shortcut Shortcut 1 Shortcut 2 Shortcut 1 Shortcut 2 

Stochastic Fluctuations 

(250 observations, 1000 Monte Carlos) 

0.0243 0.0232 0.0232 0.9547 1.0000 

0.0191 0.0199 0.0199 1.0419 1.0000 

0.0122 0.0125 0.0125 1.0246 1.0000 

0.0118 0.0107 0.0107 0.9068 1.0000 

Smooth Convergence to Steady State 

(10 observations, 1 simulation) 

0.0593 0.0534 0.0529 0.9005 0.9906 

0.0108 0.0089 0.0089 0.8241 1.0000 

0.0056 0.0039 0.0039 0.6964 1.0000 

0.0095 0.0051 0.0050 0.5368 0.9804 

0.0105 0.0169 0.0143 1.6095 0.8462 

Convergence to Steady State with Stochastic Shocks 

(250 observations, 1000 Monte Carlos) 

0.0144 0.0146 0.0145 1.0139 0.9932 

0.0124 0.0127 0.0127 1.0242 1.0000 

0.0123 0.0126 0.0126 1.0244 1.0000 

0.0124 0.0127 0.0126 1.0242 0.9921 



Linearizing about the Current State 
We run Monte Carlo 
experiments on this 
model where the exact 
solution is unknown. 

 

We compare the mean 
absolute deviations 
(MAD)of these 
methods. 

 

 

Mean Absolute Deviation 
from Case 1 benchmark 

Case 2 Case 3 
Steady 
State 

H 0.0071 0.1228 0.1883 

surplus 0.0010 0.0293 0.0141 



Linearizing about the Current State 

Trust Fund Balance Social Security Surplus 
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Linearizing about the Current State 
We try simulating a version of our model with no steady state using the 
Shortcut 2 method. 



Baseline Simulation 

2010  Trustees Report Our Model 
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S=50, 1000 Monte Carlos 



Baseline Simulation 

2010  Trustees Report Our Model 
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Baseline Simulation 

Trustees Baseline 

Surplus becomes negative now 2020 

Trust fund begins to fall 2022 2026 

Trust fund falls below zero 2035 2048 



Higher Immigration 
• Suppose we permanently 

doubled the immigration 
rates for each age cohort. 
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Higher Immigration 
Doubled ι Baseline Difference Percentage 

𝐾  0.9435 0.9379 0.0055 0.59% 

𝐻  0.0000 0.0000 0.0000 n/a 

𝑌  0.8458 0.8380 0.0078 0.93% 

𝐶  0.2777 0.2784 -0.0007 -0.24% 

𝐼   0.2253 0.2180 0.0073 3.36% 

𝐿  0.8015 0.7927 0.0087 1.10% 

𝑟 * 0.1383 0.1379 0.0004 0.32% 

𝑤  0.7071 0.7082 -0.0012 -0.17% 

𝑇  0.0221 0.0242 -0.0021 -8.67% 

𝐵  0.0206 0.0218 -0.0012 -5.63% 

𝑛 * 0.0161 0.0094 0.0066 70.69% 

τ 0.0363 0.0389 -0.0025 -6.51% 



Higher Immigration 

Trust Fund Balance Social Security Surplus 

S=50, 1000 Monte Carlos 

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

20
12

20
16

20
20

20
24

20
28

20
32

20
36

20
40

20
44

20
48

20
52

20
56

20
60

20
64

20
68

20
72

20
76

20
80

20
84

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

20
12

20
16

20
20

20
24

20
28

20
32

20
36

20
40

20
44

20
48

20
52

20
56

20
60

20
64

20
68

20
72

20
76

20
80

20
84



Higher Immigration 

Trustees Baseline 
Doubled 

Immigration 

Surplus becomes negative now 2020 2020 

Trust fund begins to fall 2022 2026 2026 

Trust fund falls below zero 2035 2048 2044 



Skewed Immigration 
• Suppose we encouraged 

the immigration of older 
immigrants 
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Skewed Immigration 
Skewed Baseline Difference Percentage 

𝐾  0.9608 0.9379 0.0229 2.44% 

𝐻  0.0000 0.0000 0.0000 n/a 

𝑌  0.8542 0.8380 0.0162 1.94% 

𝐶  0.2865 0.2784 0.0081 2.91% 

𝐼   0.2154 0.2180 -0.0026 -1.20% 

𝐿  0.8061 0.7927 0.0134 1.69% 

𝑟 * 0.1373 0.1379 -0.0006 -0.46% 

𝑤  0.7100 0.7082 0.0017 0.24% 

𝑇  0.0263 0.0242 0.0021 8.62% 

𝐵  0.0243 0.0218 0.0025 11.34% 

𝑛 * 0.0065 0.0094 -0.0029 -31.09% 

τ 0.0424 0.0389 0.0036 9.22% 



Skewed Immigration 

Trust Fund Balance Social Security Surplus 
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Skewed Immigration 

Trustees Baseline 
Skewed 

Immigration 

Surplus becomes negative now 2020 2020 

Trust fund begins to fall 2022 2026 2028 

Trust fund falls below zero 2035 2048 2054 



Doubled & Skewed Immigration 
Doubled ι Baseline Difference Percentage 

𝐾  0.9885 0.9379 0.0505 5.39% 

𝐻  0.0000 0.0000 0.0000 n/a 

𝑌  0.8777 0.8380 0.0397 4.74% 

𝐶  0.2935 0.2784 0.0151 5.42% 

𝐼   0.2204 0.2180 0.0024 1.08% 

𝐿  0.8278 0.7927 0.0351 4.43% 

𝑟 * 0.1371 0.1379 -0.0008 -0.57% 

𝑤  0.7104 0.7082 0.0021 0.30% 

𝑇  0.0260 0.0242 0.0018 7.59% 

𝐵  0.0254 0.0218 0.0036 16.46% 

𝑛 * 0.0103 0.0094 0.0009 9.17% 

τ 0.0432 0.0389 0.0043 11.18% 



Doubled & Skewed Immigration 

Trust Fund Balance Social Security Surplus 
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Doubled & Skewed Immigration 

Trustees Baseline 
Doubled 

Immigration 
Skewed 

Immigration 

Surplus becomes negative now 2020 2020 2020 

Trust fund begins to fall 2022 2026 2026 2028 

Trust fund falls below zero 2035 2048 2044 2054 



Retirement Age of 70 

Trust Fund Balance Social Security Surplus 

S=50, 100 Monte Carlos 
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10% Lower Benefits 

Trust Fund Balance Social Security Surplus 

S=50, 100 Monte Carlos 
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Lower Benefits 

Trustees Baseline 
Later 

Retirement 
Lower 

Benefits 

Surplus becomes negative now 2020 never 2020 

Surplus becomes positive 
again 

never never n/a 2060 

Trust fund begins to fall 2022 2026 never 2030 

Trust fund rises again never never n/a 2048 

Trust fund falls below zero 2035 2048 never never 



Comparison of Trust Fund Balances 
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Linearizing about Cohort Averages 
In this case we have a set of cohort averages of steady state savings levels, 
*𝑏 𝑠+, and log-linearize all the Euler equations for individuals of the same 
age about these values.  This gives set of equations: 

𝚪 = 𝛽𝐸 𝐓 + 𝐅𝐗 𝑡+1 + 𝐆𝐗 𝑡 + 𝐇𝐗 𝑡−1 + 𝐋𝒁 𝑡+1 +𝐌𝒁 𝑡 = 𝟎 , where 𝐗 𝑡 is a 

vector of deviations of the X’s from the cohort averages. 

 

The policy functions are assumed to take the following form: 

𝑘 𝑖,𝑠+1,𝑡+1 = 𝑃𝐾𝑠𝐾 𝑡 + 𝑃𝑘𝑠𝑘 𝑖,𝑠,𝑡 + 𝐐𝑠𝐳 𝑡 + 𝐔𝑖,𝑠,𝑡  



Linearizing about Cohort Averages 
One could also take averages over subsets of a cohort.  For example, the 
averages over individuals with the same ability over past ability histories.  
One would then log-linearize about these average steady state values, 
*𝑘 𝑠,𝑖+. 

 

The dimensionality of this problem is related to 𝑆 − 1 𝐼𝐻 kinds of 
individuals. 

 



Linearizing about Cohort Averages 
As a practical matter simulating with 𝑆 − 1 𝐼𝐻 individuals can be 
intractable even if the decision rules are found using approximations with 
smaller dimensionality.  

One way to solve this is to discretize the allowable values of savings for 
individuals.  

In this case the past history would be completely summarized by the 
current value of savings and individuals with the same level of savings 
would be identical regardless of the ability history that led them to that 
level of savings.  

This greatly reduces the dimensionality.  We have already implemented 
this methodology in our earlier paper. 

 

 


