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Abstract	
	

We estimate the time until the Social Security trust fund runs out by simulating an 

overlapping generations model with stochastic life spans, immigration, aggregate shocks, and a 

tax and transfer policy calibrated to the U.S. economy. This class of fiscal policy problems also 

highlights the need for a solution method that can accommodate unstable steady states and 

nonstationarity. We detail such a solution method in which we linearize the model around the 

current state each period, updating the approximated characterizing equations each period. Our 

simulations imply that the Social Security trust fund is likely to run out in 38 years. However, 95 

percent confidence intervals suggest that the trust fund could run out anytime between 34 and 50 

years from now. 
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1.		Introduction	and	Literature	Review	

A	large	amount	of	current	research	is	focused	on	the	effects	of	changing	fiscal	policy	

in	the	United	States,	both	with	regard	to	countercyclical	policy	(see	Christiano,	et	al	(2010),	

Kumhof,	et	al	(2010),	and	Zubiary	(2010))	and	to	reducing	the	national	debt	(see	Gomes,	et	

al	 (2010)	and	Traum	and	Yang	(2010)).	Regarding	questions	about	reducing	the	national	

debt,	 the	two	main	contributors	 to	U.S.	deficit	spending	now	and	 long	 into	 the	 future	are	

the	 Social	 Security	 system	 and	 the	 government	 health	 care	 benefits	 of	 Medicare	 and	

Medicaid	 (see	 CBO	 (2010)).	 Because	 Social	 Security	 policy	 (as	 well	 as	 Medicare	 and	

Medicaid	 policy)	 affect	 age	 cohorts	 differently,	 overlapping	 generations	 (OLG)	 dynamic	

stochastic	general	 equilibrium	(DSGE)	models	are	 the	 theoretical	 tool	of	 choice	 for	 these	

studies.	

In	 this	 paper,	we	 calibrate	 an	 OLG	model	with	 stochastic	 life	 spans,	 immigration,	

aggregate	shocks,	and	a	 tax	and	transfer	program	similar	 to	Social	Security	 to	 the	United	

States.	We	simulate	this	model	in	order	to	estimate	the	time	until	the	Social	Security	trust	

fund	runs	out,	as	well	as	95	percent	confidence	 intervals	around	that	point	estimate.	Our	

simulations	imply	that	the	Social	Security	trust	fund	is	likely	to	run	out	in	?	years.	However,	

95	percent	confidence	intervals	suggest	that	the	trust	fund	could	run	out	anytime	between	?	

and	?	years	from	now.	

An	additional	contribution	of	this	paper	is	that	we	detail	a	solution	method	for	the	

broad	 class	 of	 DSGE	 models	 that	 have	 unstable	 steady	 states	 and	 are	 characterized	 by	

nonstationarity.	 Recent	 official	 projections	 have	 noted	 that	 the	 current	 state	 of	 U.S.	 tax	

policy	is	not	sustainable	(see	CBO	(2010)	and	GAO	(2007))	and,	therefore,	is	not	a	steady‐

state.	 However,	 current	 DSGE	 solution	 methods	 rely	 on	 the	 models	 exhibiting	 long‐run	

stationarity.	 	 Our	 solution	 method	 accommodates	 nonstationarity	 by	 linearizing	 the	

characterizing	equations	of	the	model	around	the	current	state	each	period	and	updating	

those	 approximations	 each	 successive	 period.	 This	 solution	 technique	 is	 similar	 to	 the	

iterated	unscented	Kalman	filter	used	in	engineering	and	operations	research	(see	Banani	

and	Masnadi‐Shirazi	(2007))	but	does	not	have	the	same	latent	variable	assumptions	as	the	

Kalman	filter.	
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The	paper	proceeds	as	 follows.	 Section	2	 lays	out	 the	model.	 Section	3	presents	a	

stationary	 version	 of	 the	 model.	 Section	 4	 presents	 the	 unstable	 steady	 state	 and	 the	

calibration.	 Section	5	details	 the	updating	 linearization	around	 the	 current	 state	 solution	

method	and	a	simulation	of	the	trust	fund.	Section	6	presents	how	some	policy	experiments	

change	the	simulated	time	path	of	the	trust	fund	balance,	and	Section	7	concludes.	

	

2.		The	Model	

Demographics	

Households	 live	 for	 a	 maximum	 of	 S	 periods.	 	 Each	 period	 a	 new	 cohort	 of	

households	 is	 born	 and	 some	portion	of	 existing	households	of	 all	 ages	die.	 	 In	 addition,	

each	period	new	households	of	various	ages	immigrate	into	the	economy.		The	populations	

of	households	of	various	ages	evolve	according	to	the	following	laws	of	motion.	

	for	1 1	 (2.1)	

Where	 	is	the	population	aged	s,	 	is	the	probability	the	household	lives	to	age	

1	given	 it	 has	 already	 lived	 to	 age	 ,	 	is	 the	 immigration	 rate	 for	 households	 as	 a	

faction	 of	 the	 current	 age	 	population.	 	 	and	 	could	 be	 stochastic.	 	 A	 prime	 on	 a	

variable	(′)	denotes	its	value	in	the	following	period.	

Age	1	households	arrive	via	birth	after	all	immigration	has	occurred	and	agents	are	

one	period	older.	

∑ 		 	 (2.2)	

Where	 	is	the	fertility	rate	for	households	of	age	s,	and	could	also	be	stochastic.	

	

Households	

The	 objective	 of	 existing	 households	 is	 to	 maximize	 the	 expected	 value	 of	 utility	

over	their	lifetime.		All	households	are	endowed	with	the	same	amount	of	labor	at	a	given	

age.	 	We	assume	 they	do	not	work	when	young,	prior	 to	age	E,	 and	cease	working	at	 an	

exogenously	given	retirement	age	of	R.	

Households	accumulate	capital	over	time	by	saving	a	portion	of	their	wage	income.		

They	also	receive	a	transfer	payment	(denoted	T)	each	period	which	are	the	proceeds	from	

liquidating	the	capital	of	the	households	that	die	at	the	end	of	the	previous	period.		Finally,	
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households	participate	in	a	public	social	security	system	by	paying	a	portion	of	their	wage	

income	in	taxes	up	to	age	 1,	and	receiving	a	benefit	payment	(denoted	b)	each	period	

thereafter	until	death.	

For	 ease	 of	 analysis	 we	 choose	 to	 set	 up	 the	 households’	 problems	 as	 dynamic	

programs	 and	write	 them	using	 Bellman	 equations.	 	 For	 individuals	 in	 a	 generic	 cohort,	

aged	s	this	is:	

Ω max Ω 		

Where	Ω	is	the	information	set,	u{.}	is	the	within‐period	utility	function,	and	β	is	the	

household’s	subjective	discount	factor.	 	Note	that	because	households	do	not	live	forever,	

their	value	functions	vary	by	age.	

Household	consumption	is	defined	by	the	following	budget	constraint.	

ℓ 1 1 	 (2.3)	

for	1 	

Where	w	is	the	wage	rate,	ℓ 	is	the	household	endowment	of	labor	ate	age	s,	τ	is	the	

tax	rate	on	labor	income,	r	is	the	return	on	capital,	δ	is	the	rate	of	capital	depreciation,		 	is	

the	 household’s	 holdings	 of	 bonds	 coming	 into	 the	 period,	 	is	 the	 pension	 benefit	

payment	received,	and	T	is	a	lump‐sum	transfer.	

The	solution	gives	the	following	Euler	equation:	

1 		 (2.4)	

Where	 . 	denotes	the	marginal	utility	of	consumption.	

We	use	versions	of	equation	(2.4)	for	1 1.	

In	order	to	solve	for	its	own	transition	function,	 Ω ,	the	household	needs	

know	 the	 value	 functions	 for	 ages	 s	 and	 s+1	 and	 it	 needs	 to	 form	 an	 expectation	 of	 the	

aggregate	capital	stock,	 ′.		This	means	it	also	needs	to	know	the	transition	functions	of	all	

the	other	households	and	their	arguments.	 	The	transition	functions	for	the	oldest	cohort	

are	 trivial.	 	 Since	 Ω 0,	 the	 household	will	 choose	 0.	 	 Transition	 functions	

for	other	cohorts	will	be	found	using	numerical	techniques	explained	below.	

	

Firms	
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Firms	hire	 labor	and	capital	 to	produce	 final	goods	which	are	either	consumed	or	

invested	 as	 new	 capital	 goods.	 	 They	 use	 a	 simple	 Cobb‐Douglas	 production	 technology.		

The	representative	firm’s	problem	is:	

max , 		

Where	K	 is	 the	capital	hired	by	 the	 firm,	L	 is	 the	amount	of	 labor	 it	hires,	g	 is	 the	

exogenous	 growth	 rate	 of	 labor‐augmenting	 technology,	 and	 z	 is	 a	 stochastic	 technology	

shock.	

The	solution	is	characterized	by	the	following	three	equations.	

/ 		 	 (2.5)	

1 / 		 	 (2.6)	

	 	 (2.7)	

Technology	is	assumed	to	evolve	over	time	according	to	the	following	law	of	motion.	

′;	 ~ 0, 	 	 (2.8)	

		

Government	

Each	period	the	government	collects	revenues	and	makes	payments	on	two	separate	

accounts.	 	 The	 first	 is	 a	 redistribution	 of	 the	 capital	 of	 deceased	 households	 over	 the	

current	population.		We	assume	an	equal	share	for	each	household	regardless	of	age.		Since	

this	is	a	pure	redistribution	scheme,	the	account	must	balance	each	period.	

′
∑

∑
		 	 (2.9)	

The	second	is	the	social	security	system,	which	accumulates	a	balance	over	time	on	

a	trust	fund,	denoted	H,	as	illustrated	below.	

∑ ℓ ∑ 		 (2.10)	

Benefits	are	assigned	when	a	household	 retires	at	age	R	 and	are	a	 function	of	 the	

average	 index	 of	monthly	 earnings	 (AIME)	 at	 retirement.	 	We	 assume	 that	 the	 benefit	 is	

some	fraction,	θ,	of	this	value.	

	 	 (2.11)	

For	any	individual	AIME	evolves	as	a	running	average	over	ages	 	to	 	according	to:	

ℓ 	for	 1	 	
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However,	since	there	 is	 immigration	 in	our	model,	new	individuals	who	have	zero	

past	 earnings	 for	purposes	of	AIME	calculations	are	 continually	entering	 the	 cohort.	 	We	

take	the	weighted	average	of	the	surviving	domestic	workers’	AIME	and	zero	for	immigrant	

workers	when	calculating	the	cohort’s	new	value	next	year.	

ℓ 	for	 1		 (2.12)	

Once	set	at	 retirement	benefits	 remain	constant	until	death,	however	 immigration	

averaging	applies	in	this	case	also.		New	immigrants	of	retirement	age	or	older	receive	no	

benefits.	

	for	 	 	 (2.13)	

	

Market‐clearing	and	Aggregation	

The	capital	and	labor	market	clearing	conditions	are	given	by:	

∑ 		 	 (2.14)	

∑ ℓ 		 	 (2.15)	

There	 is	also	a	goods	market	clearing	condition, 1 ∑ ′,	but	 it	

is	redundant	by	Walras	Law.	

	

The	laws	of	motion	for	the	demographic	parameters	are	as	follows:	

1 ̅ ′;	 ~ 0, 	 (2.16)	

1 ̅ ′;	 ~ 0, 	 (2.17)	

1 ̅ ′;	 ~ 0, 	 (2.18)	

We	can	easily	consider	the	special	case	where	these	values	are	constant	by	setting	

the	variances	of	the	shocks	(σ’s)	the	autocorrelations	(ψ’s)	to	zero.	

	

Equations	(2.1)	through	(2.18)	define	the	model.	 	There	are	 	 1	exogenous	state	

variables:	the	cohort	populations,	 	,	and	the	technology	shock,	z.		Since	capital	prior	

to	age	E	is	assumed	to	be	zero,	there	are	2 1	endogenous	state	variables:	the	bond	

holdings	 for	 each	 cohort,	 ,	 AIME	 for	 each	 cohort	 from	 labor	 force	 entry	 until	
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retirement,	 ,	 benefits	 for	 every	 cohort	 thereafter,	 ,	 and	 the	 balance	 on	 the	

social	security	trust	fund,	H.	

	

3.		A	Stationary	Version	

Our	model	as	written	is	non‐stationary.	 	Technology	has	a	 trend	rate	of	growth,	g,	

and	the	population	may	also	be	growing	over	time.		We	can	write	equations	(2.1)	&	(2.2)	in	

matrix	notation.	

	;	

0 0
0 			0			

⋯ 		 				
⋯ 				0 				0
⋯ 				0 				0

	⋮ 	⋮ ⋱
						0					 					0				 					0				
	0 	0 	0

⋱ ⋮ 	⋮
⋱ 0 	0
⋯ 	0

	

Where	 	is	the	 1	vector	of	cohort	populations.		We	define	the	total	population	as	

	.	 	 The	 growth	 rate	 of	 the	 population	 comes	 from	 	 1 ′ 	and	 by	

substitution	this	is	 ′ 1			

In	 order	 to	 solve	 our	 model	 using	 the	 numerical	 techniques	 we	 propose,	 it	 is	

necessary	 to	 transform	 the	non‐stationary	variables	 to	 stationary	ones.	 	 Some	per	 capita	

variables,	 such	 as	 consumption	 and	 wages,	 will	 grow	 at	 the	 long‐run	 rate	 of	 g.	 	 We	

transform	these	variables	by	defining	a	stationary	version	that	removes	this	growth.	 	We	

denote	 these	 transformed	 variables	 with	 a	 carat	 (^).	 	 ≡ / 		 for	

∈ , , , , 	

To	transform	the	cohort	populations	we	need	to	remove	a	unit	root,	which	we	do	by	

dividing	by	the	total	population,	N.		 ≡ / 		for	 ∈ , 	

Finally	 some	 aggregate	 variable	 grow	 at	 the	 rate	 	and	 also	 have	 a	 unit	 root.		

≡ / 		for	 ∈ , , 	

If	we	assume	a	within‐period	utility	function,	 1 ,	the	transformed	

equations	that	define	the	stationary	model	are:	

′;	 ~ 0, 	 	 (3.1)	

1 ̅ ′;	 ~ 0, 	 (3.2)	

1 ̅ ′;	 ~ 0, 	 (3.3)	
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1 ̅ ′;	 ~ 0, 	 (3.4)	

′ 1			 	 (3.5)	

1 	 	 (3.6)	

	 for	1 1	

1 ∑ 		 	 (3.7)	

̂ ℓ 1 1 1 	 (3.8)	

	 for	1 	

̂ ̂ 1 1 		 (3.9)	

	 for	1 1	

/ 		 	 (3.10)	

1 / 		 	 (3.11)	

	 	 (3.12)	

′
∑

∑
		 	 (3.12)	

1 ∑ ℓ ∑ 		 (3.14)	

1 ℓ 	 	 (3.15)	

	 for	 1	

	 	 (3.16)	

1 	 	 (3.17)	

	 for	 	

∑ 		 	 (3.18)	

∑ ℓ 		 	 (3.19)	

	

	

4.		Calibration	and	Steady	States	

We	have	the	following	set	of	parameters	we	must	calibrate	in	order	to	simulate	the	

model.	

S	 	 maximum	age	in	periods	

E	 	 period	workers	enter	the	labor	force	

R	 	 period	workers	retire	



 

10 

 

̅ 		 average	fertility	rates	by	age	

̅ 		 average	immigration	rates	by	age	

̅ 	 average	survival	rates	by	age	

ℓ 	 effective	labor	endowment	by	age	

		 	 payroll	tax	rate	

	 	 capital	depreciation	rate	

	 	 subjective	discount	factor	

g	 	 growth	rate	of	technology	

	 	 coefficient	of	relative	risk	aversion	

	 	 capital	share	in	GDP	

	 	 pension	benefits	as	percent	of	AIME	

In	addition	we	have	parameters	governing	the	stochastic	processes.	

, , , 	 autocorrelations	

, , , 	 variances	

	

We	 set	 the	 number	 of	 periods	 in	 our	 model	 and	 interpret	 the	 period	 so	 that	 S	

periods	corresponds	 to	100	years.	 	We	assume	agents	become	financially	 independent	at	

and	enter	 the	 labor	 force	at	age	16,	which	gives	 round .	 	We	assume	retirement	

occurs	at	age	65	so	that	 round .		The	depreciation	rate	is	set	to	correspond	to	an	

annual	rate	of	10%,	 1 1 0.1 / .		Similarly,	β	is	chosen	to	yield	an	annual	rate	of	

time	 preference	 of	 approximately	 2%,	 .98 / .	 	 And	 g	 is	 chosen	 to	 yield	 an	 annual	

growth	rate	of	technology	of	1.5%,	 1 0.015 / .			

The	 capital	 share	 in	 GDP	 (α)	 is	 set	 to	 0.33.	 	 γ	 is	 the	 intertemporal	 elasticity	 of	

substitution	and	we	set	 this	 to	1.0,	which	yields	 logarithmic	utility.	 	The	benefit	 to	AIME	

ratio	 (θ)	 is	 set	 to	 .186,	 the	 average	 ratio	 of	 OASDI	 benefits	 per	 retiree	 to	 the	 average	

worker’s	wage	for	the	years	2001	through	2009.		The	payroll	tax	rate	(τ)	is	chosen	to	make	

total	social	security	benefits	and	taxes	equal	in	the	steady	state.	

Effective	labor	supply,	fertility	rates,	survival	rates	and	immigration	rates	by	age	are	

estimated	 using	 data	 from	 a	 variety	 of	 sources.	 	 Data	 on	 effective	 labor	 comes	 from	 the	

Bureau	 of	 Labor	 Statistics’	 Current	 Population	 Survey.	 	 Data	 on	 immigration	 rates	 come	
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from	 the	 US	 Census	 Bureau.	 	 Fertility	 rates	 come	 from	 Nishiyama	 &	 Smetters	 (2007).		

Cumulative	 survival	 rates	 come	 from	 the	 Center	 for	 Disease	 Control’s	 (CDC)	 mortality	

tables.	 	 	 	We	 fit	 polynomials	 to	 the	data	by	 age.	 	 For	 fertility	 and	 immigration	we	 fit	 the	

number	of	births	or	immigrants	of	a	certain	age	as	a	percent	of	the	population	of	that	age.	

Data	for	effective	labor	supply	comes	from	quarterly	earnings	data	for	2001	through	

2010.	 	We	use	 earnings	because	our	 effective	 labor	 includes	both	hours	worked	 and	 the	

productivity	of	 the	worker.	 	 Since	wage	 rates	 should	be	proportional	 to	productivity,	we	

can	 simply	 use	 earnings	 which	 is	 hours	 worked	 times	 the	 wage	 rate	 per	 hour.	 	 We	

normalize	so	that	the	average	earnings	over	the	ages	reported	is	one.		We	then	fit	earnings	

by	age	to	the	average	age	of	the	cohort	using	a	6th‐order	polynomial	in	the	age.		Since	these	

polynomials	are	ill‐behaved	at	the	ends,	we	interpolate	exponentially	to	get	better	fit	there.		

Figure	1	shows	the	data	and	the	 fitted	curve.	 	When	we	simulate	we	choose	the	size	of	a	

period	in	years,	and	use	this	fitted	curve	to	get	effective	labor	for	each	cohort.	

Data	 for	 immigration	 is	 available	 from	 2005	 detailing	 the	 number	 of	 those	 who	

immigrated	between	2000	and	2005.	 	 Immigrants	are	grouped	 into	cohorts	of	 five	years.		

We	calculate	the	number	of	immigrants	as	a	percentage	of	the	US	population	in	2000.		We	

then	fit	this	percentage	by	age	to	the	average	age	of	the	cohort	using	a	6th‐order	polynomial	

in	the	age.		We	interpolate	linearly	at	the	ends.		Figure	2	shows	the	data	and	the	fitted	curve.		

When	we	simulate	we	choose	the	size	of	a	period	in	years,	and	use	this	fitted	curve	to	get	

immigration	rates	for	each	cohort.	

For	 fertility	 rates	 the	 data	 are	 available	 in	 5	 year	 cohorts	 as	well.	 	 Fertility	 rates	

below	age	15	and	above	age	50	are	effectively	zero.		We	proceed	as	above	and	fit	this	data	

with	a	3rd‐order	polynomial	in	age.		Again	we	interpolate,	but	only	on	the	upper	end.		The	

data	and	fitted	curve	are	shown	in	Figure	3.	

For	 survival	 rates,	 we	 fit	 data	 on	 the	 cumulative	 probability	 of	 surviving	 to	 a	

particular	age.		We	infer	the	conditional	survival	rates	from	this	fitted	polynomial.		Data	are	

available	 for	10‐year	cohorts.	 	We	 fit	 this	with	a	3rd‐order	polynomial	and	 interpolate	on	

the	upper	end	so	 that	mortality	reaches	100%	at	age	100.	 	The	data	and	 fitted	curve	are	

shown	in	Figure	4.	
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With	the	model	calibrated	we	can	easily	solve	for	the	steady	state.		We	do	so	using	

numerical	techniques.		The	steady	state	is	summarized	in	Table	1	and	in	Figure	5.	

	

	

5.		Solution	and	Simulation	

We	propose	solving	and	simulating	our	model	in	the	same	way	that	many	dynamic	

stochastic	 general	 equilibrium	 (DSGE)	models	with	 infinitely‐lived	agents	 are	 solved	 and	

simulated	by	linear	approximation.	 	To	see	the	parallels	we	first	outline	the	methodology	

for	the	infinitely‐lived	representative	agent	case.	

Consider	a	simple	infinitely‐lived	agent’s	problem.	

; z max ; 			

With	 ℓ 1 ,	 , ,	 , 	&	 , , .	

The	Euler	equation	in	this	case	is:	

′ 1 ′ 		 	 (5.1)	

The	 single	 endogenous	 state	 variable	 is	 k	 and	we	 have	 assumed	 there	 is	 a	 single	

technology	shock,	z.		To	solve	this	model	we	first	log‐linearize	our	Euler	equation	about	the	

model’s	steady	state.		We	can	write	this	in	the	form	below,	where	the	tildes	(~)	denote	log‐

deviations	from	steady	state	values.	

̃ ̃ 0		 (5.2)	

Where	F,	G,	H,	L	&	M	 are	 coefficients	 that	 are	 functions	of	parameters	 and	 steady	

state	values.		When	linearizing	about	the	steady	state,	T	will	be	zero.	

Assuming	 a	 log	 linear	 law	 of	 motion	 for	 z,	 	 ̃ 1 ̅ ̃ ,	 and	

assuming	 that	 the	 transition	 function,	 , ,	 can	also	be	written	 in	 log‐linear	

form	we	can	find	its	coefficient	values.	

̃ 		 	 (5.3)	

The	techniques	for	finding	the	numerical	values	of	P	&	Q	are	well‐known	and	involve	

solving	a	quadratic	 in	P.	1		 Solution	 techniques	 for	U	are	 less	commonly	used,	but	easy	 to	

                                                 
1 See Uhlig (1999) or Christiano (2002). 
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derive.	 	They	can	be	 shown	 to	yield	a	U	 equal	 to	 zero	when	 linearizing	about	 the	 steady	

state.	

	

Next,	 consider	 an	 OLG	 model	 with	 a	 similar	 setup.	 	 An	 age	 s	 agent	 solves	 the	

following	problem.	

, z max , z 		

With	 ℓ 1 ,	 ∑ ,	 ; z ,	 ; z ,	

; z ; z 	

The	Euler	equation	in	this	case	is:	

1 ′ 			

	

If	we	set	up	and	solve	each	agent’s	problem	and	 then	stack	 the	variables	 for	each	

agent	such	that	 ≡ : ,	we	get	the	following	matrix	representation	of	the	model2,	where	

bold	variables	indicate	matrices.	

, max , 		

with	 1 1 ′ ,	 ⋅ ∘ ,	 ; z ,	

; z ,	 ; z ; z ,	 ≡ 0 .	 	 , 	and	 	are	

S×1	vector‐valued	functions.	

The	stacked	Euler	equations	are:	

′ 1 ′ 		 	 (5.3)	

where	 	is	an	S×1	vector	of	the	derivatives	of	 	with	respect	to	the	sth	element	of	

c.		Note	that	the	final	Sth	row	is	dropped	since	the	S	aged	agent	has	no	Euler	equation.		

We	can	solve	and	simulate	this	model	just	as	we	do	the	DSGE	model	above.	

We	write	the	log‐linearized	versions	of	the	Euler	equations	in	the	following	form:	

̃ ̃ 0		 (5.4)	

                                                 
2 Note that a ' always denotes next period, not a transpose.  A transpose is denoted with a T superscript, instead. 
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We	use	the	same	numerical	techniques	as	above	to	solve	for	the	matrices	P	&	Q	 in	

the	log‐linearized	transition	functions.	

	 ̃ 		 	 (5.5)	

	

To	simulate	our	particular	model	we	use	the	linearized	transition	functions	for	our	

stationary	model	laid	out	in	section	3.3			

		 	 (5.6)	 	

Where	 , 	 , 	 , 	and	 	 , 	 , 	 , .	

Along	with	the	exogenous	laws	of	motion	defined	by	equations	(3.1)	–	(3.4)	which	

we	rewrite	collectively	as:	

		 	 (5.7)	

We	begin	 our	 simulation	with	 initial	 conditions	 for	 the	 log‐deviations	 of	 the	 state	

variables,	 	&	 ,	from	their	steady	state	values.		We	also	draw	a	series	of	random	shocks	

for	the	values	of	 	in	each	period.	Equations	(5.5)	&	(5.6)	allow	us	to	generate	a	time	series	

for	the	log‐deviations	of	our	state	variables	from	their	steady	states.	

We	 can	 reconstruct	 the	 stationary	 versions	 of	 state	 variables	 by	 treating	 them	 as	

percent	 deviations	 using	 ̅ .	 	We	 can	 also	 construct	 the	 total	 population	 using	 an	

initial	value,	 the	 formula	 1 ,	and	by	noting	 that	 	is	a	 function	of	our	

stationary	state	variable	by	equation	(3.5).	

Finally,	 we	 can	 construct	 non‐stationary	 variables	 by	 putting	 in	 the	 appropriate	

trend	and/or	unit	root,	 ,	 	or	 .	 	Once	we	have	a	time‐series	

for	 all	 state	 variables	 in	 the	 non‐stationary	 model,	 we	 can	 find	 the	 value	 of	 any	 other	

variable	of	interest	by	using	the	appropriate	structural	equation(s)	from	section	2.	

	

The	methodology	above	works	well	for	simulations	where	the	state	of	the	economy	

deviates	only	in	a	neighborhood	about	the	steady	state.		However,	our	model	is	dynamically	

unstable.	 	 This	 means	 that	 even	 if	 we	 start	 out	 at	 the	 model’s	 steady	 state	 values,	 the	

                                                 
3 We use equations (3.9), (3.15), (3.16) & (3.17) as the dynamic equations which are linearized.  Equations (3.1) 

– (3.4) define the exogenous laws of motion.  The remaining equations are used as definitions. 
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stochastic	shocks	will	drive	us	away	from	that	point	and	the	model	will	explode	thereafter.		

We	need	a	simulation	technique	that	will	be	accurate	when	we	are	far	from	the	steady	state.	

One	technique	that	fits	the	bill	is	to	linearize	about	the	current	state	of	the	economy	

rather	 than	 around	 the	 steady	 state.	 	We	 can	 use	 equations	 (5.4),	 (5.5)	 &	 (5.7),	 but	 we	

reinterpret	 the	 tilde	 as	 the	 deviation	 of	 the	 variable	 from	 its	 value	 now,	 rather	 than	 its	

value	in	the	steady	state.		We	rewrite	these	equations	noting	that	the	coefficients	will	now	

be	time	dependent	since	we	linearize	about	a	different	point	each	period.	

0		 (5.8)	

	 (5.9)	

	 	 (5.10)	

	

In	this	case	the	matrices	 	and	 	will	generally	not	be	zero.		Since	the	current	state	

is	 , 	when	we	move	to	next	period	this	becomes	 , .		 	is	found	immediately	

by	 using	 (5.5).	 	 So	 we	 linearize	 about	 the	 point	 , .	 	 This	 means	 (5.9)	 can	 be	

rewritten	as:	

	 	 (5.11)	

	can	be	shown	to	be:	

		 (5.12)	

Simulation	proceeds	by	first	setting	the	values	of	the	initial	state.		As	one	simulates	

each	period	sequentially:	

 (5.9)	gives	the	next	value	for		 .			

 One	solves	for	the	values	of	 , , &	 	by	linearizing	about	 , .		

 (5.10)	gives	the	next	value	for	 	

 (5.11)	gives	 	 .	

 One	then	proceeds	to	the	next	period.		

	

	

6.		Policy	Experiments	

With	the	basic	methodology	in	place,	we	are	now	ready	to	proceed	with	simulation	

of	the	model.		We	first	simulate	a	baseline	model	where	we	calibrate	the	initial	state	of	the	
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economy	to	match	the	current	situation	in	the	US.		We	focus	on	the	time‐path	of	the	Social	

Security	 trust	 fund,	 .	 	 We	 then	 consider	 a	 policy	 change,	 resimulate	 the	 model,	 and	

compare	the	resulting	time‐path	with	the	baseline.		

Table	 1	 reports	 the	 baseline	 model’s	 calibrated	 parameters	 and	 the	 steady	 state	

value	of	key	aggregate	variables.		Figure	5	plots	the	values	of	age‐specific	variables	against	

age.		

As	we	 have	 noted,	 however,	 the	model	 is	 unstable	 and	will	 rarely	 generate	 these	

values.		In	order	to	simulate	the	model	we	need	to	first	choose	a	starting	state.		Out	state	is	

defined	by:		S	values	for	each	population	cohort,	1	value	for	the	aggregate	productivity,	S‐E	

values	 for	 asset	 holdings	 of	 each	 cohort,	R‐E‐1	 values	 for	 the	 average	 index	 of	 monthly	

earnings	 (AIME)	 for	 each	 cohort	 of	 workers,	 S‐R+1	 values	 for	 the	 benefits	 paid	 to	 each	

cohort	 of	 retirees,	 and	 1	 value	 for	 the	 trust	 fund.	 	 We	 fit	 the	 initial	 distribution	 of	 the	

population	 to	 match	 that	 of	 the	 US	 population	 for	 2010.	 	 We	 also	 assume	 that	 the	

technology	 shock	 is	one	 standard	deviation	below	 it	mean,	due	 to	 the	effects	of	 a	 severe	

recent	recession.	 	We	set	AIME	values	at	twice	their	steady	state	values.	 	In	effect,	we	are	

assuming	 that	 the	 social	 security	 system	 has	 promised	 a	 level	 of	 benefits	 to	 current	

workers	 that	 is	 twice	what	 it	will	 offer	 in	 the	 steady	 state.	 	 Since	 the	 steady	state	 is	one	

where	 total	 tax	 revenues	match	 total	 benefits	 exactly,	 this	 is	 not	unreasonable	 as	 it	may	

seem.		We	assume	that	social	security	benefits	of	current	retirees	are	at	their	steady	state	

values.	 	Lastly	we	assume	 that	 the	 initial	value	of	 the	 trust	 fund	 is	16.3%	of	 steady	state	

GDP.	

We	 run	 1000	 Monte	 Carlo	 simulations	 of	 the	 economy	 from	 this	 starting	 point.		

Figure	7	plots	the	time	path	of	a	zero	shock	simulation	along	with	90%	confidence	bands	

from	 the	Monte	Carlos.	 	The	 simulations	 show	 that	 the	 trust	 fund	 rises	 gradually	until	 it	

peaks	 in	 2024	 and	 then	 falls	 explosively	 in	 a	 negative	 direction.	 	 The	 trust	 fund	 turns	

negative	for	the	first	time	in	2048.		The	social	security	surplus	(taxes	minus	benefits)	starts	

off	 slightly	positive,	quickly	becomes	negative,	 and	 reaches	a	minimum	 in	year	2042.	 	At	

this	point	it	begins	to	rise	again	and	is	significantly	negative	by	the	end	of	the	simulation	in	

year	2086.	

We	compare	this	baseline	time	path	with	the	following	policies:	
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 An	increase	in	immigration	rates	across	the	board.	

 Changing	immigration	rates	weighted	toward	older	immigrants.	

 A	reduction	in	benefits	by	10%.	

 An	increase	in	the	retirement	age	to	70.	

For	the	case	of	increased	immigration	we	double	the	immigration	percentages.		The	

resulting	steady	state	values	are	reported	in	Table	2.	 	Figure	8	plots	the	time	path	of	this	

simulation	 and	 the	 90%	 confidence	 bands	 for	 this	 case.	 	 The	 trust	 fund	 is	 substantially	

lower	under	this	scenario.		However,	the	net	surplus	is	substantially	higher.		Intuitively,	the	

increase	 in	 immigration	raises	 tax	revenues,	but	 the	 increased	 labor	 force	also	raises	 the	

marginal	product	of	capital	and,	thus,	the	interest	rate.		Since	these	effects	do	not	become	

large	until	after	the	trust	fund	has	a	negative	balance,	the	increased	interest	costs	dominate	

the	increased	tax	revenues,	causing	the	trust	fund	to	fall	more	rapidly	than	in	the	baseline	

case.	

We	also	consider	a	case	where	 immigration	rate	are	shifted	so	 that	older	workers	

immigrate	more	and	younger	workers	 immigrate	 less.	 	 Since	older	 immigrants	pay	 taxes	

for	 fewer	years,	 they	are	eligible	 for	 fewer	benefits	 that	younger	 immigrants.	 	This	could	

move	the	system	in	the	direction	of	long‐run	solvency.		Table	3	and	figure	9	illustrate	this	

case.	 	Here	 the	 trust	 fund	 is	 substantially	 less	negative	 in	 the	 long‐run,	but	 still	 explodes	

downward.		However,	we	note	that	the	90%	confidence	bands	indicate	that	at	least	5%	of	

the	time	the	trust	fund	exploded	in	a	positive	direction.		The	net	surplus	is	much	closer	to	

zero	on	average	and	remains	roughly	balanced	even	after	75	years.	

By	 way	 of	 comparison	 we	 also	 consider	 cases	 where	 benefits	 are	 reduced.	 	 We	

consider	 lowering	 benefits	 by	 10%	 immediately	 and	 plot	 the	 time	 paths	 in	 figure	 10.		

Finally,	figure	11	shows	the	effect	of	immediately	raising	the	retirement	age	to	70.		In	both	

these	cases	we	 find	 the	 trust	 fund	never	drops	 into	 the	negative	range	and	the	system	 is	

unstable	in	a	positive	direction.	

	

	

7.		Conclusions	
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This	paper	has	presented	an	OLG	model	with	relatively	short	periods.		Rather	than	

solve	the	model	exactly,	we	have	linearized	it.		This	allows	us	to	solve	and	simulate	models	

with	much	greater	dimensionality	that	we	could	by	solving	exactly	using	either	analytical	

or	numerical	methods.	

Our	model	still	suffers	from	the	curse	of	dimensionality,	however.	 	For	example	as	

the	size	of	the	periods	in	the	model	get	smaller,	the	number	of	cohorts	rises.		The	number	

of	state	variables	in	the	model	is	3 2 1.	 	So	as	the	number	of	cohorts	rises,	so	does	

the	state	space.		With	large	enough	state	spaces	the	computation	of	the	linear	coefficients	P	

&	Q	in	the	transition	function	becomes	computationally	burdensome.	

A	model	with	idiosyncratic	shocks	to	members	of	cohorts	would	be	intractable	with	

our	solution	method.		For	example,	a	ten‐period‐lived‐agent	model	with	only	2	values	for	a	

binary	 idiosyncratic	 shock	 would	 give	2 1 1023	different	 agents	 of	 various	 ages,	

whereas	our	current	model	with	hundred‐period‐lived	agents	has	100	different	agents.	

Despite	its	reliance	on	a	representative	agent	for	each	cohort	our	model	does	yield	

some	 useful	 results	 concerning	 immigration.	 	 First,	 expanding	 immigration	 across	 the	

board	 does	 not	 lead	 to	 better	 long‐run	 outcome	 for	 the	 trust	 fund.	 	 Targeting	 older	

immigrants	may	 be	 a	 better	 option.	 	However,	 the	 fundamental	 instability	 of	 the	 system	

makes	long‐run	predictions	very	imprecise.	

Any	Social	Security	system	that	defines	fixed	benefits	while	relying	on	stochastic	tax	

revenues	will	be	subject	to	this	instability.	A	more	appropriate	arrangement	would	be	for	

benefits	to	be	somehow	dependent	on	the	state	of	the	economy.		This	seems	like	a	fruitful	

area	for	future	research.	
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Figure	1	

Data	and	Fitted	Curve	for	Effective	Labor	by	Age4	

	

	
	
	 	

                                                 
4 Data are from the US Bureau of Labor Statistics’ Current Population Survey. 
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Figure	2	

Data	and	Fitted	Curve	for	Immigration	Rates	by	Age5	

(immigration	rates	are	over	a	5‐year	period)	

	

	 	

                                                 
5 Data are from the US Census Bureau. 
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Figure	3	

Data	and	Fitted	Curve	for	Fertility	Rates	by	Age6	

(births	per	1000	for	females	of	indicated	age	per	year)	

	

	

	 	

                                                 
6 Data are from Nishiyama (2004). 
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Figure	4	

Data	and	Fitted	Curve	for	Conditional	Hazard	Rates	by	Age7	

(vertical	scale	is	logarithmic)	

	

	

                                                 
7 Data are from the US Center for Disease Control’s mortality tables. 
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Figure	5	

Steady	State	Values	of	Selected	Variables	by	Age	
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Figure	6	

Steady	State	and	Starting	Distributions	of	the	Population	by	Age	
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Figure	7	

Time	Paths	for	the	Trust	Fund	&	Social	Security	Surplus	in	the	Baseline	Case	
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Figure	8	

Time	Paths	for	the	Trust	Fund	&	Social	Security	Surplus	in	the	Doubled	Immigration	
Rates	Case	
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Figure	9	
Time	Paths	for	the	Trust	Fund	&	Social	Security	Surplus	in	the	Skewed	Immigration	

Rates	Case	

	

	

	
	 	

‐1

‐0.8

‐0.6

‐0.4

‐0.2

0

0.2

0.4

0.6

2
0
1
2

2
0
1
6

2
0
2
0

2
0
2
4

2
0
2
8

2
0
3
2

2
0
3
6

2
0
4
0

2
0
4
4

2
0
4
8

2
0
5
2

2
0
5
6

2
0
6
0

2
0
6
4

2
0
6
8

2
0
7
2

2
0
7
6

2
0
8
0

2
0
8
4

‐0.1

‐0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2
0
1
2

2
0
1
6

2
0
2
0

2
0
2
4

2
0
2
8

2
0
3
2

2
0
3
6

2
0
4
0

2
0
4
4

2
0
4
8

2
0
5
2

2
0
5
6

2
0
6
0

2
0
6
4

2
0
6
8

2
0
7
2

2
0
7
6

2
0
8
0

2
0
8
4



 

28 

 

Figure	10	
Time	Paths	for	the	Trust	Fund	&	Social	Security	Surplus	in	the	Reduced	Benefits	Case	
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Figure	11	
Time	Paths	for	the	Trust	Fund	&	Social	Security	Surplus	in	the	Increased	Retirement	

Age	Case	
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Table	1	
Baseline	Calibration	&	Selected	Steady	State	Values	

α	 0.33	 	 0.9379	
γ	 1	 	 0.0000	

̅
*
	 0.005	 	 0.8380	

δ
*
	 0.1	 ̅	 0.2784	

β
*
	 0.98	 	̅ 0.2180	

θ	 0.2	 	 0.7927	

S	 50	 ̅
*
	 0.1379	

	 0.7082	
		 		 	 0.0242	
		 		 	 0.0218	

*
	 0.0094	

τ	 0.0389	
	

	 	 	 *	values	are	quoted	in	per	annum	terms	
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Table	2	
Doubled	Immigration	Steady	State	Values	

new	 baseline	 diff	 %	
	 0.9435 0.9379 0.0055 0.59%	
	 0.0000 0.0000 0.0000 n/a	
	 0.8458 0.8380 0.0078 0.93%	
̅	 0.2777 0.2784 ‐0.0007 ‐0.24%	
	̅ 0.2253 0.2180 0.0073 3.36%	
	 0.8015 0.7927 0.0087 1.10%	
̅*	 0.1383 0.1379 0.0004 0.32%	
	 0.7071 0.7082 ‐0.0012 ‐0.17%	
	 0.0221 0.0242 ‐0.0021 ‐8.67%	
	 0.0206 0.0218 ‐0.0012 ‐5.63%	
*	 0.0161 0.0094 0.0066 70.69%	
τ	 0.0363 0.0389 ‐0.0025 ‐6.51%	

	

	 	 	 *	values	are	quoted	in	per	annum	terms	
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Table	3	
Skewed	Immigration	Steady	State	Values	

new	 baseline	 diff	 %	
	 0.9608 0.9379 0.0229 2.44%	
	 0.0000 0.0000 0.0000 n/a	
	 0.8542 0.8380 0.0162 1.94%	
̅	 0.2865 0.2784 0.0081 2.91%	
	̅ 0.2154 0.2180 ‐0.0026 ‐1.20%	
	 0.8061 0.7927 0.0134 1.69%	
̅*	 0.1373 0.1379 ‐0.0006 ‐0.46%	
	 0.7100 0.7082 0.0017 0.24%	
	 0.0263 0.0242 0.0021 8.62%	
	 0.0243 0.0218 0.0025 11.34%	
*	 0.0065 0.0094 ‐0.0029 ‐31.09%	
τ	 0.0424 0.0389 0.0036 9.22%	

	

	 	 	 *	values	are	quoted	in	per	annum	terms	
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Table	4	
Doubled	&	Skewed	Immigration	Steady	State	Values	

new	 baseline	 diff	 %	
	 0.9885	 0.9379	 0.0505	 5.39%	

	 0.0000	 0.0000	 0.0000	 n/a	

	 0.8777	 0.8380	 0.0397	 4.74%	

̅	 0.2935	 0.2784	 0.0151	 5.42%	

	̅ 0.2204	 0.2180	 0.0024	 1.08%	

	 0.8278	 0.7927	 0.0351	 4.43%	

̅*	 0.1371	 0.1379	 ‐0.0008 ‐0.57%	

	 0.7104	 0.7082	 0.0021	 0.30%	

	 0.0260	 0.0242	 0.0018	 7.59%	

	 0.0254	 0.0218	 0.0036	 16.46%	

*	 0.0103	 0.0094	 0.0009	 9.17%	

τ	 0.0432	 0.0389	 0.0043	 11.18%	

	

	 	 	 *	values	are	quoted	in	per	annum	terms	
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