Adverse Selection in the Annuity Market and the Role for Social Security

Roozbeh Hosseini

Arizona State University

Quantitative Society for Pensions and Saving 2011 Summer Workshop

Social Security

• The largest government program in the U.S.

• Many debates over reform/privatization

- Central question to this debate
 - What useful aspects are lost (that market can't replicate)?
- This paper talks about one
 - Mandatory annuity insurance

Roozbeh Hosseini(ASU)

Mandatory annuity insurance _

• Is a **key** feature in almost all social security systems

• Can be **desirable** when there is adverse selection

Why is it desirable? _

- If there is private information about mortality
 - $\circ~$ High mortality types
 - Annuitize smaller portion of their wealth

Why is it desirable?

- If there is private information about mortality
 - $\circ~$ High mortality types
 - Annuitize smaller portion of their wealth
 - \circ Insurers
 - Recognize this self-selection
 - Offer high prices that reflect mortality rate of long-lived

Why is it desirable?

- If there is private information about mortality
 - $\circ~$ High mortality types
 - Annuitize smaller portion of their wealth
 - \circ Insurers
 - Recognize this self-selection
 - Offer high prices that reflect mortality rate of long-lived
- A mandatory annuity insurance Forces everyone (including high mortality) to join

Why is it desirable?

- If there is private information about mortality
 - $\circ~$ High mortality types
 - Annuitize smaller portion of their wealth
 - \circ Insurers
 - Recognize this self-selection
 - Offer high prices that reflect mortality rate of long-lived
- A mandatory annuity insurance Forces everyone (including high mortality) to join
- Thereby

Provides insurance at higher (implicit) rate of return

Roozbeh Hosseini(ASU)

Question

- We know
 - $\circ~$ Social security has mandatory annuitization
 - $\circ~$ It can be a desirable feature
 - Private markets cannot replicate it

• Question

How important is it quantitatively?

Feldstein's quote

Roozbeh Hosseini(ASU)

This paper _

- Develops model of annuity market with adverse selection
 - $\circ\,$ Heterogeneous mortality
 - Private information
 - Market structure: linear contracts

This paper $_{-}$

- Develops model of annuity market with adverse selection
 - \circ Heterogeneous mortality
 - Private information
 - Market structure: linear contracts
 - Annuities: financial contracts, difficult to observe/monitor
 - Lack of observability \Rightarrow Contracts are non-exclusive
 - Little evidence on screening in the market

This paper _

- Develops model of annuity market with adverse selection
 - \circ Heterogeneous mortality
 - Private information
 - Market structure: linear contracts

• Calibrates the model to match US facts

This paper $_$

- Develops model of annuity market with adverse selection
 - \circ Heterogeneous mortality
 - Private information
 - Market structure: linear contracts

• Calibrates the model to match US facts

• Compares welfare between three benchmarks

Roozbeh Hosseini(ASU)

Three benchmarks

- 'Private annuity markets'
 - $\circ~$ No social security
 - $\circ~$ Annuity is available only through private markets
- 'Current U.S. system'
 - 'Stylized' features of U.S. social security
 - Private markets
- 'Ex ante efficient allocations'
 - $\circ~$ Solution to utilitarian planner's problem

Roozbeh Hosseini(ASU)

Overall ex ante gains _

• If welfare is evaluated ex ante

i.e., before mortality type is realized, then ...

- Welfare gains between
 - 'Private annuity markets' and 'current US system'
 - 'Current US system' and 'ex ante efficient'

Overall ex ante gains _

• If welfare is evaluated ex ante

i.e., before mortality type is realized, then ...

- Welfare gains between
 - 'Private annuity markets' and 'current US system' 0.27%
 - 'Current US system' and 'ex ante efficient'

Overall ex ante gains

• If welfare is evaluated ex ante

i.e., before mortality type is realized, then ...

- Welfare gains between
 - 'Private annuity markets' and 'current US system' 0.27%
 - 'Current US system' and 'ex ante efficient' 0.64%

Overall ex ante gains

• If welfare is evaluated ex ante

i.e., before mortality type is realized, then ...

- Welfare gains between
 - 'Private annuity markets' and 'current US system' 0.27%
 - 'Current US system' and 'ex ante efficient' 0.64%

0.91%

Overall ex ante gains

• If welfare is evaluated ex ante

i.e., before mortality type is realized, then ...

- Welfare gains between
 - 'Private annuity markets' and 'current US system' 0.27%
 - 'Current US system' and 'ex ante efficient' 0.64%

0.91%

• Who loses and who gains ex post,

i.e., after mortality type is realized?

Roozbeh Hosseini(ASU)

Social Security has two effects _

- 1. Transfers from high mortality types to low mortality types
 - $\circ~$ About 9% suffer losses: high mortality low survival
 - $\circ~$ About 91% percent gain: low mortality high survival

Social Security has two effects _

- 1. Transfers from high mortality types to low mortality types
 - $\circ~$ About 9% suffer losses: high mortality low survival
 - $\circ~$ About 91% percent gain: low mortality high survival
- 2. Crowds out high mortality type in the annuity markert
 - These are good risk types
 - Market pool is populated by bad risk types \Rightarrow high prices
 - $\circ~$ This price effect has negative welfare impact of 0.29 percent

Social Security has two effects _

- 1. Transfers from high mortality types to low mortality types
 - $\circ~$ About 9% suffer losses: high mortality low survival
 - $\circ~$ About 91% percent gain: low mortality high survival
- 2. Crowds out high mortality type in the annuity markert
 - These are good risk types
 - Market pool is populated by bad risk types \Rightarrow high prices
 - $\circ~$ This price effect has negative welfare impact of 0.29 percent
- Can we use laternative policy to minimize this effect? Yes!

Related literature

- Theoretical models: Abel(1986); Eichenbaum and Peled(1987); Eckstein, Eichenbaum and Peled(1985)
 - $\circ~$ Welfare enhancing role for mandatory annuitization
- **Detecting AS**: Finkelstein and Poterba(2002,2004,2006); Mitchell, Poterba,Warshawsky and Brown(1999); Friedman and Warshawsky (1990)
 - Evidence for adverse selection in the annuity market
 - $\circ~$ Measure the value of access to actuarially fair annuity
- Estimate welfare cost of asymmetric information: Einav, Finkelstein and Shrimpf(2010)
 - $\circ~$ preference heterogeneity as well as risk heterogeneity
- Benefits of annuitization in social security: Hubbard and Judd (1987)

Model

Environment: information

- Individuals have private type θ known at date zero
 - $\circ~\theta$ indexes their mortality
 - $\circ~$ It determines their individual survival probabilities
 - Distribution at date zero: $G_0(\theta)$

• The only heterogeneity is in θ

• The only risk is time of death

Roozbeh Hosseini(ASU)

Environment: preferences _

 $\bullet\,$ Every one lives between 0 and T and has preferences

$$\sum_{t=0}^{T} \beta^t P_t(\theta) [u(c_t) + \beta(1 - x_{t+1}(\theta))\xi u(b_t)]$$

• Where

Environment: preferences _

 $\bullet\,$ Every one lives between 0 and T and has preferences

$$\sum_{t=0}^{T} \beta^t \underline{P_t(\theta)}[u(c_t) + \beta(1 - x_{t+1}(\theta))\xi u(b_t)]$$

- Where
 - $P_t(\theta)$: probability that type θ is alive at age t

Environment: preferences

• Every one lives between 0 and T and has preferences

$$\sum_{t=0}^{T} \beta^t P_t(\theta) [u(c_t) + \beta(1 - x_{t+1}(\theta))\xi u(b_t)]$$

• Where

• $P_t(\theta)$: probability that type θ is alive at age t

• $x_{t+1}(\theta)$: One period conditional survival $x_{t+1}(\theta) = \frac{P_{t+1}(\theta)}{P_t(\theta)}$

Roozbeh Hosseini(ASU)

Environment: preferences

• Every one lives between 0 and T and has preferences

$$\sum_{t=0}^{T} \beta^t P_t(\theta) [u(c_t) + \beta(1 - x_{t+1}(\theta)) \boldsymbol{\xi} u(b_t)]$$

- Where
 - $P_t(\theta)$: probability that type θ is alive at age t
 - $x_{t+1}(\theta)$: One period conditional survival $x_{t+1}(\theta) = \frac{P_{t+1}(\theta)}{P_{t}(\theta)}$
 - ξ : weight on bequest, b_t

Roozbeh Hosseini(ASU)

Technology

• Inelastic labor supply up to age J < T

• n units of labor produces wn units of consumption good

• Saving technology $R = \frac{1}{\beta}$

Roozbeh Hosseini(ASU)

Annuity contracts _

• Can be purchased at age J (last period before retirement)

• Makes survival contingent payment starting age J + 1

• Unit cost of annuity is q

Individual's problem _

$$\max_{c_t, k_{t+1}, a \ge 0} \sum_{t=0}^T \beta^t P_t(\theta) [u(c_t) + \beta (1 - x_{t+1}(\theta)) \xi u(Rk_{t+1})]$$

subject to

$$c_t + k_{t+1} = Rk_t + w(1 - \tau) \quad \text{for } t < J$$

$$c_t + k_{t+1} + qa = Rk_t + w(1 - \tau) \quad \text{for } t = J$$

$$c_t + k_{t+1} = Rk_t + a + z \quad \text{for } t > J$$

Roozbeh Hosseini(ASU)

Insurers

• Insurers do not observe individual demand for each type θ

• However, they know the demand function $a(\theta, q)$

• They anticipate the fraction of total sales, purchased by θ

$$dF(\theta) = \frac{a(\theta; q)dG_J(\theta)}{\int a(\theta; q)dG_J(\theta)}$$

• Insurers use $F(\theta)$ to evaluate their profit

Roozbeh Hosseini(ASU)

Annuity insurers problem

$$\max_{y \ge 0} \quad qy - y \int \left(\sum_{t=J+1}^T \frac{P_t(\theta)}{P_J(\theta)} \frac{1}{R^{s-t}} \right) dF(\theta)$$

- $F(\theta)$ is anticipated distribution of pay-outs
 - Determines fraction of y sold to type θ
 - Taken as given by the insurer

Roozbeh Hosseini(ASU)

Government Budget Constraint _

$$\int \tau w \left(\sum_{t=0}^{J} \frac{P_t(\theta)}{R^t}\right) dG_0(\theta) = \int z \left(\sum_{t=J+1}^{T} \frac{P_t(\theta)}{R^t}\right) dG_0(\theta)$$

Roozbeh Hosseini(ASU)

Equilibrium

- Households and firms optimize + markets clear
- $F(\theta)$ is consistent with individual decisions

$$dF(\theta) = \frac{a(\theta)dG_J(\theta)}{\int a(\theta)dG_J(\theta)}$$

• Government budget constraint

▶ Skip Example

Properties of Equilibrium: Two period case

Use two period example to illustrate two properties

- 1 In this environment there is adverse selection
 - Equilibrium price is higher than aggregate risk

- 2 Increasing social security tax and benefit
 - Crowds out annuity market
 - Increases equilibrium price of annuity

A two period example

 $\max u(c_1) + Pu(c_2)$

subject to

$$c_1 + qa \leq w(1 - \tau)$$
$$c_2 \leq a + z$$

- P is probability of survival (with distribution G(P))
- Aggregate risk of survival is $\int P dG(P)$
- The goal is to show in equilibrium

$$q > \int P dG(P)$$

Roozbeh Hosseini(ASU)

Adverse selection _

$$\underbrace{q\int a(P;q)dG(P)}_{\text{Total sale}} = \underbrace{\int Pa(P;q)dG(P)}_{\text{Total expected payment}}$$

Adverse selection _

$$q = \frac{\int Pa(P;q)dG(P)}{\int a(P;q)dG(P)}$$

Adverse selection _

$$q = \int P \frac{a(P;q)dG(P)}{\int a(P;q)dG(P)}$$

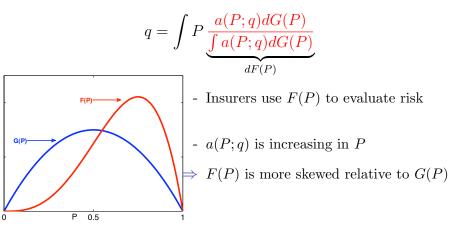
Adverse selection

• Consider the zero profit condition

$$q = \int P \underbrace{\frac{a(P;q)dG(P)}{\int a(P;q)dG(P)}}_{dF(P)}$$
- Insurers use $F(P)$ to evaluate risk

G(P)-

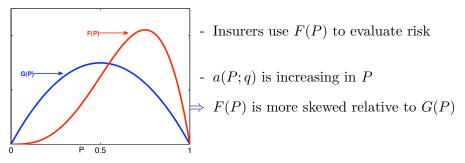
Adverse selection



Adverse selection

• Consider the zero profit condition

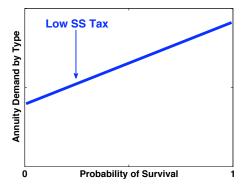
$$q = \int P dF(P) > \int P dG(P)$$



Therefore, equilibrium price is higher than aggregate risk

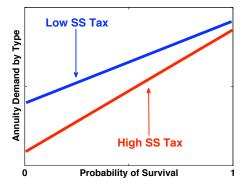
- SS benefit is a substitute for annuity
 - $\Rightarrow\,$ increasing SS reduces demand for annuity

- SS benefit is a substitute for annuity
 - \Rightarrow increasing SS reduces demand for annuity



- a(P;q) is increasing in P

- SS benefit is a substitute for annuity
 - \Rightarrow increasing SS reduces demand for annuity

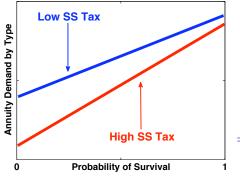


- a(P;q) is increasing in P
- As SS tax goes up

a(P;q) shifts down

And becomes steeper

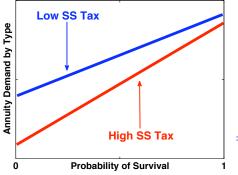
- SS benefit is a substitute for annuity
 - \Rightarrow increasing SS reduces demand for annuity



a(P;q) is increasing in P
As SS tax goes up
a(P;q) shifts down
And becomes steeper

 \Rightarrow price goes up

- SS benefit is a substitute for annuity
 - \Rightarrow increasing SS reduces demand for annuity



a(P;q) is increasing in P
As SS tax goes up
a(P;q) shifts down
And becomes steeper

 \Rightarrow price goes up

What about wlefare?

Calibration

Calibration

- Mortality parameters
 - Survival probabilities, $P_t(\theta)$, for each t and θ
 - Initial distribution of θ : $G_0(\theta)$
- Preference/technology parameters
 - Curvature of utility function
 - Weight on bequest
 - Return on saving and time preference
- Policy parameters
 - Social security tax and benefits

Roozbeh Hosseini(ASU)

Calibrating mortality parameters _

- Observe data on
 - Average survival probabilities (from life tables)
 - Individuals' own assessment about longevity (from HRS)
- Use these observations to back out
 - $P_t(\theta)$ for each θ
 - The distribution $G_0(\theta)$
- Need to impose restriction on $P_t(\theta)$
 - Standard assumptions from demography

Roozbeh Hosseini(ASU)

Assumptions on $P_t(\theta)$ _

• Let $H_t(\theta)$ be cumulative mortality hazard for type θ , define

 $P_t(\theta) = \exp(-H_t(\theta))$

• Assumption 1: θ shifts mortality hazard

$$H_t(\theta) = \theta H_t$$

• Assumption 2: Initial distribution of θ is gamma

$$g_0(\theta) \sim Gamma(\frac{1}{k}, k) = k^k \theta^{k-1} \frac{\exp(-k\theta)}{\Gamma(k)}$$

Roozbeh Hosseini(ASU)

Assumptions on $P_t(\theta)$ _

• Let $H_t(\theta)$ be cumulative mortality hazard for type θ , define

 $P_t(\theta) = \exp(-H_t(\theta))$

• Assumption 1: θ shifts mortality hazard

$$H_t(\theta) = \theta H_t$$

• Assumption 2: Initial distribution of θ is gamma

$$g_0(\theta) \sim Gamma(\frac{1}{k}, k) = k^k \theta^{k-1} \frac{\exp(-k\theta)}{\Gamma(k)}$$

• What are implications of these assumptions?

Roozbeh Hosseini(ASU)

Implication of the assumption $H_t(\theta) = \theta H_t$ _____

• Suppose type θ has 50% chance of surviving to age t

• Then, type 2θ has 25% chance of surviving to the same age

Implication of the assumption $H_t(\theta) = \theta H_t$ _____

• Suppose type θ has 50% chance of surviving to age t

• Then, type 2θ has 25% chance of surviving to the same age

• Once $P_t(\theta)$ (or $H_t(\theta)$) is known for one θ

It is known for all θ

Roozbeh Hosseini(ASU)

Identifying survival probabilities _

- Unknowns are
 - $\circ H_t$
 - Parameter of distribution G_0

Identifying survival probabilities _

- Unknowns are
 - \circ H_t
 - Parameter of distribution G_0

T + 1 unknowns 1 unknown

Identifying survival probabilities _

- Unknowns are
 - \circ H_t
 - Parameter of distribution G_0

T + 1 unknowns 1 unknown

 $T+2\ {\rm unknowns}$

Identifying survival probabilities

- Unknowns are
 - \circ H_t
 - Parameter of distribution G_0

T + 1 unknowns 1 unknown

T+2 unknowns

• Life table gives population survival probabilities

$$\bar{P}_t = \int P_t(\theta) dG_0(\theta)$$

Roozbeh Hosseini(ASU)

Identifying survival probabilities

- Unknowns are
 - \circ H_t
 - Parameter of distribution G_0
 - Life table

T + 1 unknowns 1 unknown -(T + 1) unknowns 1 unknown

• Life table gives population survival probabilities

$$\bar{P}_t = \int \exp(-\theta H_t) dG_0(\theta)$$

• Given $G_0(\theta)$ the above identity can be solved to find H_t

Roozbeh Hosseini(ASU)

Identifying survival probabilities

- Unknowns are
 - \circ H_t
 - Parameter of distribution G_0
 - Life table

T + 1 unknowns 1 unknown -(T + 1) unknowns 1 unknown

• Life table gives population survival probabilities

$$\bar{P}_t = \int \exp(-\theta H_t) dG_0(\theta)$$

- Given $G_0(\theta)$ the above identity can be solved to find H_t
- How do we find $G_0(\theta)$?

Roozbeh Hosseini(ASU)

Subjective survival prob. in HRS

- HRS asks individuals their subjective prob. of living to 75
- Hurd & McGarry(1995,2002): responses are consistent with

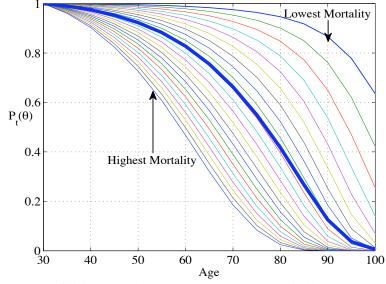
 $\circ~$ Life tables

- $\circ~$ Ex post mortality experience
- $\circ~$ Individuals' health data

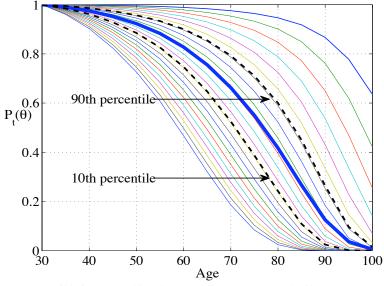
• Use Gan-Hurd-McFadden(2003)'s method to estimate $G_0(\theta)$

▶ Details

Roozbeh Hosseini(ASU)

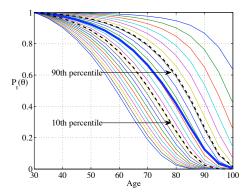


Roozbeh Hosseini(ASU)



Roozbeh Hosseini(ASU)

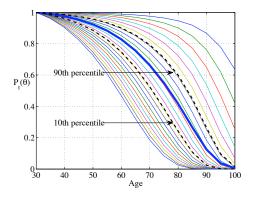
AS in Annuity Market and the Role for SS



Roozbeh Hosseini(ASU)

AS in Annuity Market and the Role for SS

33 / 61

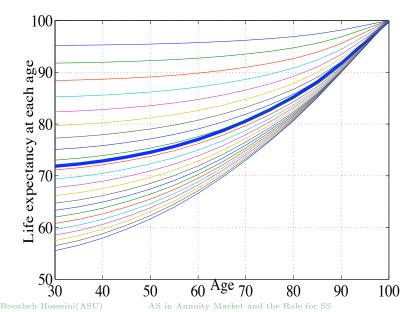


Average Life Expectancy at 30: 44 yrs (74 years old)

Standard deviation : 4 yrs

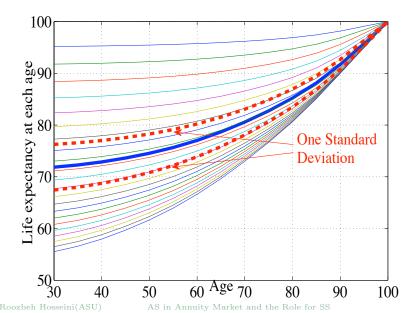
Roozbeh Hosseini(ASU)

Profile of Life Expectancy by age

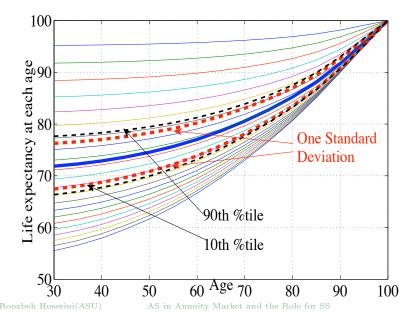


34 / 61

Profile of Life Expectancy by age



Profile of Life Expectancy by age



Calibration: preferences + social security ____

• CRRA utility function

$$u(c) = \frac{c^{1-\gamma}}{1-\gamma}$$

- Preference parameters are chosen to match
 - $\circ~$ Fraction of pension wealth for 70 yrs old in HRS $~~\xi=0.8$
 - $\circ~$ Fraction of SS wealth for 70 yrs old in HRS $~~\gamma=1.47$

 $\bullet\,$ Social security tax: chosen to match %45 replacement ratio

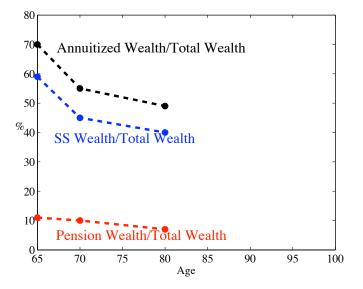
Roozbeh Hosseini(ASU)

Calibration summary _____

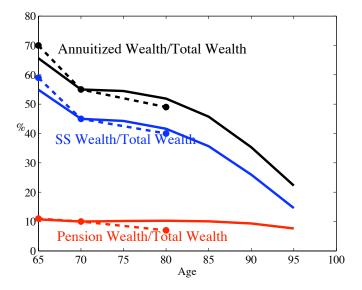
Parameter	Value
risk aversion, γ	1.47
weight on bequest, ξ	0.8
discount factor, β	0.97^{5}
return on savings, R	1.03^{5}
SS tax, τ	0.08
variance of $g_0(\theta), \ \sigma_{\theta}^2 = \frac{1}{k}$	0.12

Roozbeh Hosseini(ASU)

Fraction of wealth annuitized , average

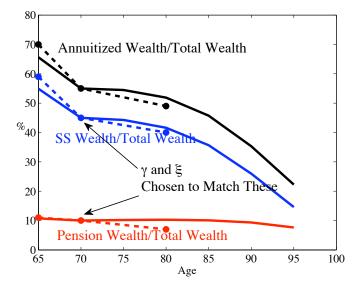


Fraction of wealth annuitized , average



Roozbeh Hosseini(ASU)

Fraction of wealth annuitized , average



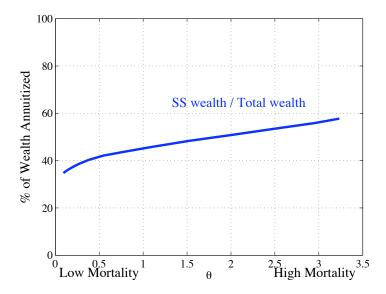
Findings

Use the model to ask

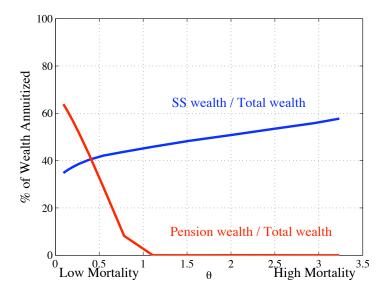
• How does annuitization decision vary by mortality type?

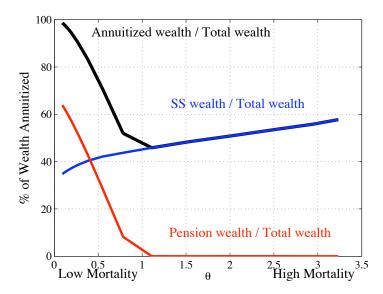
• How do these decisions change by removing SS?

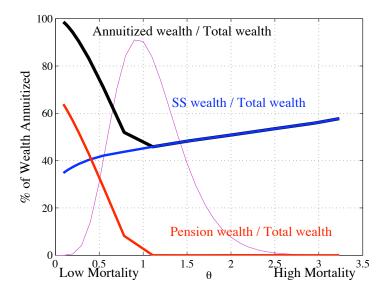
• Welfare comparison

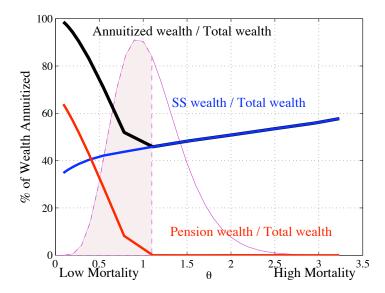


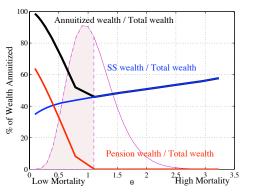
Roozbeh Hosseini(ASU)



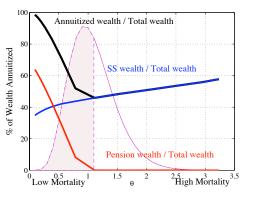








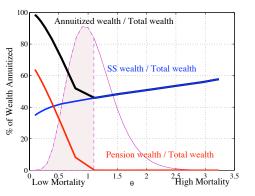
Roozbeh Hosseini(ASU)



60% hold annuity

Consistent with evidence in HRS

Roozbeh Hosseini(ASU)



60% hold annuity

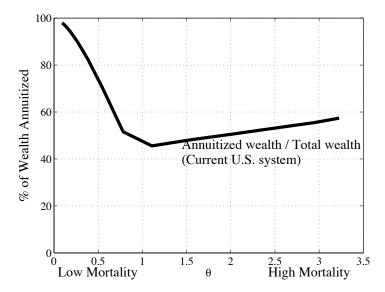
Consistent with evidence in HRS

• Johnson-Burman-Kobes(2004) evidence from HRS

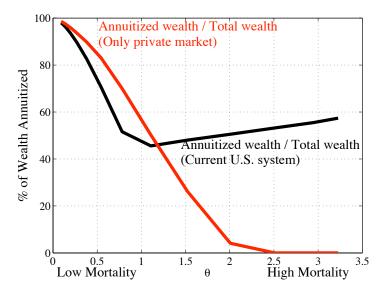
43% of all adults (52% of males) hold pensions

Roozbeh Hosseini(ASU)

Only market vs Current U.S.

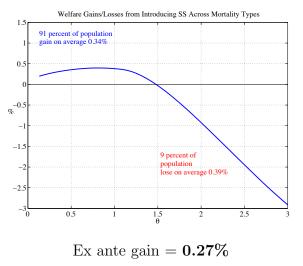


Only market vs Current U.S.



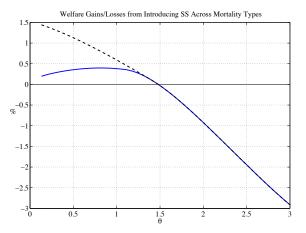
Roozbeh Hosseini(ASU)

Ex post gain/loss



Roozbeh Hosseini(ASU)

Ex post gain/loss



- Counter-factual: fix price at the equilibiurm level without SS
- Without price increase the ex ante gain is **0.56**%

Roozbeh Hosseini(ASU)

Can we do better?

• Social security forces individuals to pool their mortality risk

But keeps this pool separate from market pool

- This derives good risk types out of the market.
- Alternative policy:
 - Return contributions to people at retirement
 - Force them to buy annuity in the market

Can we do better?

• Social security forces individuals to pool their mortality risk

But keeps this pool separate from market pool

- This derives good risk types out of the market.
- Alternative policy:
 - Return contributions to people at retirement
 - Force them to buy annuity in the market
- $\bullet\,$ Ex ante welfare gain increases to 0.36%

Gains from implementing ex ante efficient $_$

• What is the maximum ex ante welfare gain from policy?

• We need to find the solution to utilitarian planner's problem

$$\max \int \left[\sum_{t=0}^{T} \beta^{t} P_{t}(\theta) [u(c_{t}(\theta)) + \beta(1 - x_{t+1}(\theta))\xi u(b_{t}(\theta))] \right] dG_{0}(\theta)$$

subject to

$$\int \sum_{t=0}^{T} \frac{P_t(\theta)}{R^t} \left[c_t(\theta) + \frac{(1-x_{t+1}(\theta))}{R} b_t(\theta) \right] dG_0(\theta) = \int w \sum_{t=0}^{J} \frac{P_t(\theta)}{R^t} dG_0(\theta)$$

Roozbeh Hosseini(ASU)

$$\max \int \left[\sum_{t=0}^{T} \beta^{t} P_{t}(\theta) [u(c_{t}(\theta)) + \beta(1 - x_{t+1}(\theta))\xi u(b_{t}(\theta))] \right] dG_{0}(\theta)$$

subject to

$$\int \sum_{t=0}^{T} \frac{P_t(\theta)}{R^t} \left[\frac{c_t(\theta)}{R} + \frac{(1-x_{t+1}(\theta))}{R} b_t(\theta) \right] dG_0(\theta) = \int w \sum_{t=0}^{J} \frac{P_t(\theta)}{R^t} dG_0(\theta)$$

Planner chooses consumption and bequest

Roozbeh Hosseini(ASU)

$$\max \int \left[\sum_{t=0}^{T} \beta^{t} P_{t}(\theta) [u(c_{t}(\theta)) + \beta(1 - x_{t+1}(\theta))\xi u(\mathbf{b}_{t}(\theta))] \right] dG_{0}(\theta)$$

subject to

$$\int \sum_{t=0}^{T} \frac{P_t(\theta)}{R^t} \left[c_t(\theta) + \frac{(1-x_{t+1}(\theta))}{R} b_t(\theta) \right] dG_0(\theta) = \int w \sum_{t=0}^{J} \frac{P_t(\theta)}{R^t} dG_0(\theta)$$

Planner chooses consumption and bequest

Roozbeh Hosseini(ASU)

$$\max \int \left[\sum_{t=0}^{T} \beta^{t} P_{t}(\theta) [u(c_{t}(\theta)) + \beta(1 - x_{t+1}(\theta))\xi u(b_{t}(\theta))] \right] dG_{0}(\theta)$$

subject to

$$\int \sum_{t=0}^{T} \frac{P_t(\theta)}{R^t} \left[c_t(\theta) + \frac{(1-x_{t+1}(\theta))}{R} b_t(\theta) \right] dG_0(\theta) = \int w \sum_{t=0}^{J} \frac{P_t(\theta)}{R^t} dG_0(\theta)$$

Notice : No I.C constraints!

Roozbeh Hosseini(ASU)

$$\max \int \left[\sum_{t=0}^{T} \beta^{t} P_{t}(\theta) [u(c_{t}(\theta)) + \beta(1 - x_{t+1}(\theta))\xi u(b_{t}(\theta))] \right] dG_{0}(\theta)$$

subject to

$$\int \sum_{t=0}^{T} \frac{P_t(\theta)}{R^t} \left[c_t(\theta) + \frac{(1-x_{t+1}(\theta))}{R} b_t(\theta) \right] dG_0(\theta) = \int w \sum_{t=0}^{J} \frac{P_t(\theta)}{R^t} dG_0(\theta)$$

It turns out they don't bind

Roozbeh Hosseini(ASU)

$$\max \int \left[\sum_{t=0}^{T} \beta^{t} P_{t}(\theta) [u(c_{t}(\theta)) + \beta(1 - x_{t+1}(\theta))\xi u(b_{t}(\theta))] \right] dG_{0}(\theta)$$

subject to

$$\int \sum_{t=0}^{T} \frac{P_t(\theta)}{R^t} \left[c_t(\theta) + \frac{(1-x_{t+1}(\theta))}{R} b_t(\theta) \right] dG_0(\theta) = \int w \sum_{t=0}^{J} \frac{P_t(\theta)}{R^t} dG_0(\theta)$$

Ex ante efficient allocations have very simple form

Roozbeh Hosseini(ASU)

Ex ante efficient allocations _

• Perfect insurance against risk type θ

$$c_t(\theta) = c_t(\theta') = c_t$$
$$b_t(\theta) = b_t(\theta') = b_t$$

• Perfect insurance against time of death,

$$u'(c_t) = \beta R u'(c_{t+1}) = \beta R \xi u'(b_t)$$

Roozbeh Hosseini(ASU)

Ex ante efficient allocations _

• Perfect insurance against risk type θ

$$c_t(\theta) = c_t(\theta') = c_t$$

 $b_t(\theta) = b_t(\theta') = b_t$

• Perfect insurance against time of death, assume $R\beta = 1$

$$u'(c_t) = u'(c_{t+1}) = \xi u'(b_t)$$

Roozbeh Hosseini(ASU)

Ex ante efficient allocations _

• Perfect insurance against risk type θ

$$c_t(\theta) = c_t(\theta') = c_t$$
$$b_t(\theta) = b_t(\theta') = b_t$$

• Perfect insurance against time of death, assume $R\beta = 1$

$$c_t = c$$
, $b_t = b$ and $u'(c) = \xi u'(b)$

Roozbeh Hosseini(ASU)

Ex ante efficient allocations

• Perfect insurance against risk type θ

$$c_t(\theta) = c_t(\theta') = c_t$$
$$b_t(\theta) = b_t(\theta') = b_t$$

• Perfect insurance against time of death, assume $R\beta = 1$

$$c_t = c$$
, $b_t = b$ and $u'(c) = \xi u'(b)$

- Can be implemented by
 - Type-independent social security tax and benefit
 - Type-independent survivors benefit

Roozbeh Hosseini(ASU)

Implementation

Ex ante efficient allocation can be implemented useing

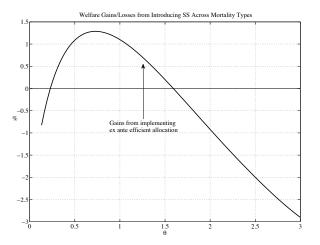
- Type-independent taxes: $0.14~({\rm compare \ this \ to \ }0.08)$
- Replacement ratio: 0.71 (compare to 0.45)
- Survival benefit before retirement (small)

Comment _

- There are two key assumptions
 - 1 **Only** heterogeneity is in mortality
 - 2 Individuals (and planner) are expected utility maximizers

 \Rightarrow Type-independent policy is optimal

Ex post gain/loss



Ex ante gain = 0.91%

Roozbeh Hosseini(ASU)

Conclusion

- Goal of the paper
 - Measure the gains from mandatory annuitization in S.S
- Welfare gain from mandatory annuitization 'current U.S. system' over 'private markets': 0.27%
- Large impact on price with negative welfare implications
- Simple policy change can aleviate this negative price effect

Extensions _

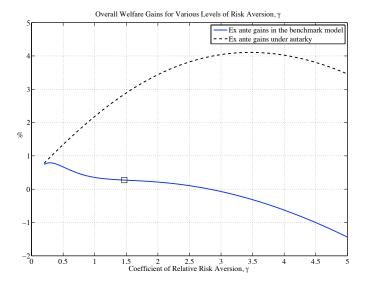
- Introducing other heterogeneities
 - Heterogeneity in preference for bequest
 - The link between measures of income and mortality

• Detailed model of altruism and intergenerational link

• Alternative equilibrium notions

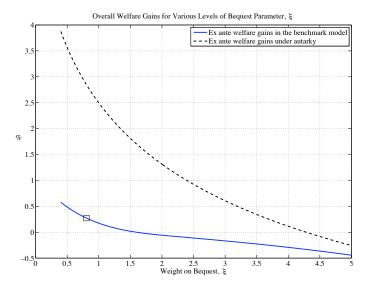
Backup slides

Sensitivity: Risk aversion



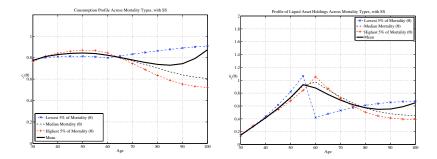
Roozbeh Hosseini(ASU)

Sensitivity: Bequest Parameter



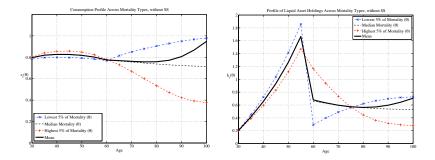
Roozbeh Hosseini(ASU)

Consumption/Saving profiles (w/ SS)



Roozbeh Hosseini(ASU)

Consumption/Saving profiles (w/o SS)



Roozbeh Hosseini(ASU)

Backups: Calculations under autarky

• Welfare gains going from

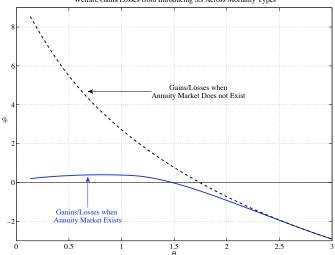
- Private saving to current US system 2.85%
- \circ Current US system to ex ante efficient 0.84%

3.71%

• When there is no annuity market, gains are large

Roozbeh Hosseini(ASU)

Ex post gain/loss



Welfare Gains/Losses from Introducing SS Across Mortality Types

Estimation procedure

- What is observed in HRS
 - Response to the question on subjective survival prob.
 - Ex post mortality/survival

• Problem : there are many 0's and 1's in responses

• Solution: assume error in reports

• Type θ at age t makes report r with prob. $f(r|\frac{P_{75}(\theta)}{P_{*}(\theta)})$

Roozbeh Hosseini(ASU)

Estimation procedure (cont.)

- Observing report, r, we can estimate θ using Baye's rule
 - Prior on θ is given by $G_t(\theta)$
 - Report, r and $f(\cdot|\cdot)$ can be used to form a posterior
 - $\circ~$ Use posterior mean as estimate for θ

• Use estimates to form likelihood functions for survival

• Estimate parameters of $G_t(\theta)$ and $f(\cdot|\cdot)$ using MLE

▶ Go Back

Roozbeh Hosseini(ASU)

"the existence of asymmetric information may justify a social insurance program (a government annuity in this case) but does not necessarily do so. The case for a mandatory annuity program depends on calculations that could be done but that have not yet been done."

Martin Feldstein, presidential address (2005)

Roozbeh Hosseini(ASU)