Happy Together: A Structural Model of Couples’ Joint Retirement Choices

Maria Casanova
UCLA

QSPS 2015 Summer Workshop

05/29/2015
This paper estimates a life cycle model of labor supply and saving of older couples.
This paper estimates a life cycle model of labor supply and saving of older couples.

Large literature aiming to understand why individuals retire when they do so as to predict effects of policy changes.
Introduction

This paper estimates a life cycle model of labor supply and saving of older couples.

Large literature aiming to understand why individuals retire when they do so as to predict effects of policy changes.

- Increase in full retirement age.
This paper estimates a life cycle model of labor supply and saving of older couples.

Large literature aiming to understand why individuals retire when they do so as to predict effects of policy changes.

- Increase in full retirement age.
- Change in indexation of Social Security benefit formula and cost-of-living adjustments.
This paper estimates a life cycle model of labor supply and saving of older couples.

Large literature aiming to understand why individuals retire when they do so as to predict effects of policy changes.

- Increase in full retirement age.
- Change in indexation of Social Security benefit formula and cost-of-living adjustments.
- Elimination of spousal benefit.
Introduction

This paper estimates a life cycle model of labor supply and saving of older couples.

Large literature aiming to understand why individuals retire when they do so as to predict effects of policy changes.

- Increase in full retirement age.
- Change in indexation of Social Security benefit formula and cost-of-living adjustments.
- Elimination of spousal benefit.

Main contribution of the paper is analysis of retirement at the couple level.
Introduction

Structural models of individual retirement

Wealth

Income

Health Status

Health Insurance

Private Pensions

Social Security
Introduction

Structural models of individual retirement

Introduction

Structural models of individual retirement

- Individuals respond to incentives from
 - Wealth
 - Income
 - Health Status
 - Health Insurance
 - Private Pensions
 - Social Security
Introduction

Structural models of individual retirement

- Individuals respond to incentives from
 - Wealth
 - Income
 - Health Status
 - Health Insurance
 - Private Pensions
 - Social Security
Introduction

Structural models of couples’ retirement.
Structural models of couples’ retirement.

- Husband and wife are separate decision-making agents within the household.
Introduction

Structural models of couples’ retirement.

▶ Husband and wife are separate decision-making agents within the household.
▶ Each spouse’s preferences represented by a separate utility function.
Structural models of couples’ retirement.

- Husband and wife are separate decision-making agents within the household.
- Each spouse’s preferences represented by a separate utility function.

These models can be broadly divided in two groups:
Introduction

Structural models of couples’ retirement.

- Husband and wife are separate decision-making agents within the household.
- Each spouse’s preferences represented by a separate utility function.

These models can be broadly divided in two groups:

1. Studies focused on modeling shared budget constraint.
Introduction

Structural models of couples’ retirement.

- Husband and wife are separate decision-making agents within the household.
- Each spouse’s preferences represented by a separate utility function.

These models can be broadly divided in two groups:

1. Studies focused on modeling shared budget constraint.
Introduction

Structural models of couples’ retirement.

- Husband and wife are separate decision-making agents within the household.
- Each spouse’s preferences represented by a separate utility function.

These models can be broadly divided in two groups:

1. Studies focused on modeling shared budget constraint.

2. Studies focused on modeling leisure complementarities.
Introduction

Structural models of couples’ retirement.

- Husband and wife are separate decision-making agents within the household.
- Each spouse’s preferences represented by a separate utility function.

These models can be broadly divided in two groups:

1. Studies focused on modeling shared budget constraint.

2. Studies focused on modeling leisure complementarities.
 Gustman and Steinmeier (2000, 2004), Maestas (2001)
Structural models of couples’ retirement.

- Husband and wife are separate decision-making agents within the household.
- Each spouse’s preferences represented by a separate utility function.

These models can be broadly divided in two groups:

This paper aims to bridge the gap between the two strands
Dynamic, stochastic model of labor supply and saving choices
Model

- Dynamic, stochastic model of labor supply and saving choices
- Agents maximize expected discounted utility
Model

- Dynamic, stochastic model of labor supply and saving choices
- Agents maximize expected discounted utility
- At each period t, given i) initial assets ii) wage and iii) measure of lifetime earnings, households make decisions in two steps:
Model

- Dynamic, stochastic model of labor supply and saving choices
- Agents maximize expected discounted utility
- At each period t, given i) initial assets ii) wage and iii) measure of lifetime earnings, households make decisions in two steps:
 1. choose participation status

Retirement is not an absorbing state
Benefit receipt is an absorbing state
Model

- Dynamic, stochastic model of labor supply and saving choices
- Agents maximize expected discounted utility
- At each period t, given i) initial assets ii) wage and iii) measure of lifetime earnings, households make decisions in two steps:
 1. choose participation status
 2. conditional on participation status, choose optimal consumption/savings

Agents face uncertainty on a) wages, b) survival, and c) medical expenditures

Retirement is not an absorbing state

Benefit receipt is an absorbing state
Model

- Dynamic, stochastic model of labor supply and saving choices
- Agents maximize expected discounted utility
- At each period t, given i) initial assets ii) wage and iii) measure of lifetime earnings, households make decisions in two steps:
 1. choose participation status
 2. conditional on participation status, choose optimal consumption/savings
- Agents face uncertainty on a) wages, b) survival, and c) medical expenditures
Model

- Dynamic, stochastic model of labor supply and saving choices
- Agents maximize expected discounted utility
- At each period t, given i) initial assets ii) wage and iii) measure of lifetime earnings, households make decisions in two steps:
 1. choose participation status
 2. conditional on participation status, choose optimal consumption/savings
- Agents face uncertainty on a) wages, b) survival, and c) medical expenditures
- Retirement is not an absorbing state
Dynamic, stochastic model of labor supply and saving choices

Agents maximize expected discounted utility

At each period t, given i) initial assets ii) wage and iii) measure of lifetime earnings, households make decisions in two steps:

1. choose participation status
2. conditional on participation status, choose optimal consumption/savings

Agents face uncertainty on a) wages, b) survival, and c) medical expenditures

Retirement is not an absorbing state

Benefit receipt is an absorbing state
Model

CHOICE SET

Discrete choices: \(d_j \in \{ R, PT, FT \} \), for \(j = m, f \)

Continuous choices: \(s_t \in C_t(z_t, \epsilon_t; d_t) \)

STATE SPACE

Observable variables: \(z_t = \{ A_t, E_m t, E_f t, w_m t, w_f t, B_m t, B_f t, agediff \} \)

Unobservable variables: \(\epsilon_t = \{ \epsilon_t(d_t) | d_t \in D \} \)
CHOICE SET

Discrete choices: $d_t^j \in D^j = \{R, PT, FT\}$, for $j = m, f$
MODEL

CHOICE SET

Discrete choices: $d_t^j \in D^j = \{R, PT, FT\}$, for $j = m, f$

Continuous choices: $s_t \in C_t(z_t, \varepsilon_t; d_t)$
Model

CHOICE SET

Discrete choices: $d_t^j \in D^j = \{R, PT, FT\}$, for $j = m, f$

Continuous choices: $s_t \in C_t(z_t, \epsilon_t; d_t)$

STATE SPACE
CHOICE SET

Discrete choices: $d^j_t \in D^j = \{R, PT, FT\}, \text{ for } j = m, f$

Continuous choices: $s_t \in C_t(z_t, \varepsilon_t; d_t)$

STATE SPACE

Observable variables
Model

CHOICE SET

Discrete choices: \(d_t^j \in D^j = \{ R, PT, FT \} \), for \(j = m, f \)

Continuous choices: \(s_t \in C_t(z_t, \varepsilon_t; d_t) \)

STATE SPACE

Observable variables

\[z_t = \{ A_t, E_t^m, E_t^f, w_t^m, w_t^f, B_t^m, B_t^f, \text{agediff} \} \]
Model

CHOICE SET

Discrete choices: \(d^j_t \in D^j = \{ R, PT, FT \}, \) for \(j = m, f \)

Continuous choices: \(s_t \in C_t(z_t, \varepsilon_t; d_t) \)

STATE SPACE

Observable variables

\[z_t = \{ A_t, E^m_t, E^f_t, w^m_t, w^f_t, B^m_t, B^f_t, agediff \} \]

Unobservable variables
CHOICE SET

Discrete choices: \(d^j_t \in D^j = \{ R, PT, FT \} \), for \(j = m, f \)

Continuous choices: \(s_t \in C_t(z_t, \varepsilon_t; d_t) \)

STATE SPACE

Observable variables

\[z_t = \{ A_t, E_t^m, E_t^f, w_t^m, w_t^f, B_t^m, B_t^f, \text{agediff} \} \]

Unobservable variables

\[\varepsilon_t = \{ \varepsilon_t(d_t) | d_t \in D \} \]
PREFERENCES

Household utility

$$U(d_t, s_t; z_t, \epsilon_t, \theta_1) = \phi U_m(c_t, l_m) + (1 - \phi) U_f(c_t, l_f) + \epsilon_t(d_t)$$

Individual utility

$$U_j = \frac{1}{1 - \rho (c_{\alpha_j1} l_t \alpha_j)} l_j t - h_j(t) + \alpha_2 I(d_{mR}, d_{fR})$$

Maria Casanova UCLA

Couple's Joint Retirement Choices
PREFERENCES

Household utility
PREFERENCES

Household utility

\[U(d_t, s_t; z_t, \varepsilon_t, \theta_1) = \phi U^m(c_t, l^m_t) + (1 - \phi) U^f(c_t, l^f_t) + \varepsilon_t(d_t) \]
PREFERENCES

Household utility

\[U(d_t, s_t; z_t, \varepsilon_t, \theta_1) = \phi U^m(c_t, l^m_t) + (1 - \phi) U^f(c_t, l^f_t) + \varepsilon_t(d_t) \]

Individual utility
PREFERENCES

Household utility

\[U(d_t, s_t; z_t, \varepsilon_t, \theta_1) = \phi U^m(c_t, l^m_t) + (1 - \phi) U^f(c_t, l^f_t) + \varepsilon_t(d_t) \]

Individual utility

\[U^i = \frac{1}{1 - \rho} \left(c_{t1}^{\alpha_i} (l^i_t)^{1 - \alpha_i} \right)^{1-\rho} \]
PREFERENCES

Household utility

\[U(d_t, s_t; z_t, \varepsilon_t, \theta_1) = \phi U^m(c_t, l^m_t) + (1 - \phi) U^f(c_t, l^f_t) + \varepsilon_t(d_t) \]

Individual utility

\[U^j = \frac{1}{1 - \rho} \left(c_t^{\alpha_1^j}(l^j_t)^{1-\alpha_1^j} \right)^{1-\rho} \]

\[l^j_t = L - h^j_t(d^j_t) + \alpha_2 l(d^m_t = R, d^f_t = R) \]
Model

BUDGET CONSTRAINT

\[ct + st = At + Y(rAt, wm, wh, wft, τ) + Bm × ssbmt + Bf × ssbft + Tt \]

Next period's asset:

\[A_{t+1} = st + hc \]

Liquidity constraint:

\[st ≥ 0 \]
Model

BUDGET CONSTRAINT

\[c_t + s_t = A_t + Y(rA_t, w^m_t h^m_t, w^f_t h^f_t, \tau) + B^m_t \times ssb^m_t + B^f_t \times ssb^f_t + T_t \]
BUDGET CONSTRAINT

\[c_t + s_t = A_t + Y(rA_t, w^m_t h^m_t, w^f_t h^f_t, \tau) + B^m_t \times ssb^m_t + B^f_t \times ssb^f_t + T_t \]

Next period's asset:
BUDGET CONSTRAINT

\[c_t + s_t = A_t + Y(rA_t, w_t^m h_t^m, w_t^f h_t^f, \tau) + B_t^m \times ssb_t^m + B_t^f \times ssb_t^f + T_t \]

Next period’s asset:

\[A_{t+1} = s_t + hc_t \]
BUDGET CONSTRAINT

\[c_t + s_t = A_t + Y(rA_t, w_t^m h_t^m, w_t^f h_t^f, \tau) + B_t^m \times ssb_t^m + B_t^f \times ssb_t^f + T_t \]

Next period’s asset:

\[A_{t+1} = s_t + hc_t \]

Liquidity constraint:
BUDGET CONSTRAINT

\[c_t + s_t = A_t + Y(rA_t, w_t^m h_t^m, w_t^f h_t^f, \tau) + B_t^m \times \text{ssb}_t^m + B_t^f \times \text{ssb}_t^f + T_t \]

Next period’s asset:

\[A_{t+1} = s_t + h c_t \]

Liquidity constraint:

\[s_t \geq 0 \]
Social Security Function:

- Entitlement is a function of accumulated earnings (E_t).
- A step formula is applied to E_t to obtain PIA.
- Workers retiring at 65 receive full PIA.
- Workers retiring at 62 receive 80% of PIA.
- Workers retiring after 65 receive 5.5% increase per year.
- Benefits are indexed to CPI.
- Earnings test.
- Dependent spouse benefit.
- Surviving spouse benefit.
Social Security Function:

- Entitlement is a function of accumulated earnings \((E_t)\).
Social Security Function:

- Entitlement is a function of accumulated earnings (E_t)
- Step formula applied to E_t to obtain PIA
Social Security Function:

- Entitlement is a function of accumulated earnings \((E_t)\)
- Step formula applied to \(E_t\) to obtain PIA
- Workers retiring at 65 receive full PIA
- Workers retiring at 62 receive 80% of PIA
- Workers retiring after 65 receive 5.5% increase per year
- Benefits are indexed to CPI
- Earnings test
- Dependent spouse benefit
- Surviving spouse benefit
Social Security Function:

- Entitlement is a function of accumulated earnings (E_t)
- Step formula applied to E_t to obtain PIA
- Workers retiring at 65 receive full PIA
- Workers retiring at 62 receive 80% of PIA
- Benefits are indexed to CPI
- Earnings test
- Dependent spouse benefit
- Surviving spouse benefit
Model

Social Security Function:
- Entitlement is a function of accumulated earnings (E_t)
- Step formula applied to E_t to obtain PIA
- Workers retiring at 65 receive full PIA
- Workers retiring at 62 receive 80% of PIA
- Workers retiring after 65 receive 5.5% increase per year

Benefits are indexed to CPI
- Earnings test
- Dependent spouse benefit
- Surviving spouse benefit
Social Security Function:

- Entitlement is a function of accumulated earnings \((E_t) \)
- Step formula applied to \(E_t \) to obtain PIA
- Workers retiring at 65 receive full PIA
- Workers retiring at 62 receive 80% of PIA
- Workers retiring after 65 receive 5.5% increase per year
- Benefits are indexed to CPI
Social Security Function:

- Entitlement is a function of accumulated earnings (E_t)
- Step formula applied to E_t to obtain PIA
- Workers retiring at 65 receive full PIA
- Workers retiring at 62 receive 80% of PIA
- Workers retiring after 65 receive 5.5% increase per year
- Benefits are indexed to CPI
- Earnings test
Social Security Function:

- Entitlement is a function of accumulated earnings \((E_t) \)
- Step formula applied to \(E_t \) to obtain PIA
- Workers retiring at 65 receive full PIA
- Workers retiring at 62 receive 80% of PIA
- Workers retiring after 65 receive 5.5% increase per year
- Benefits are indexed to CPI
- Earnings test
- Dependent spouse benefit
Social Security Function:

- Entitlement is a function of accumulated earnings (E_t)
- Step formula applied to E_t to obtain PIA
- Workers retiring at 65 receive full PIA
- Workers retiring at 62 receive 80% of PIA
- Workers retiring after 65 receive 5.5% increase per year
- Benefits are indexed to CPI
- Earnings test
- Dependent spouse benefit
- Surviving spouse benefit
STOCHASTIC PROCESSES
STOCHASTIC PROCESSES

Wage:

\[\ln w_{it} = W(\text{age}_{it}) + \varsigma I\{d_{it} = PT\} + \nu_{it} \]

where:

\[\nu_i \sim N(0, \sigma_{\nu}^2) \]

For estimation purposes, \(\nu_{i0} \) is a fixed effect:

\[\ln w_{it} = \nu_{i0} + W(\text{age}_{it}) + \varsigma I\{d_{it} = PT\} + \nu^{*}_{it} \]
STOCHASTIC PROCESSES

Wage:

\[\ln w_{it} = W(\text{age}_{it}) + \varsigma I\{d_{it} = PT\} + \nu_{it} \]

where:

\[\xi_i \sim N(0, \sigma^2 \xi_i) \]

For estimation purposes, \(\nu_{i0} \) is a fixed effect:

\[\ln w_{it} = \nu_{i0} + W(\text{age}_{it}) + \varsigma I\{d_{it} = PT\} + \nu_{it} \]
STOCHASTIC PROCESSES

Wage:

\[\ln w_{it} = W(\text{age}_{it}) + \varsigma I\{d_{it} = PT\} + \nu_{it} \]

\[\nu_{it} = \nu_{it-1} + \xi_{it} \]
STOCHASTIC PROCESSES

Wage:

\[\ln w_{it} = \mathcal{W}(\text{age}_{it}) + \varsigma I\{d_{it} = PT\} + \nu_{it} \]

\[\nu_{it} = \nu_{it-1} - \delta_R I(d_{it-1} = R) - \delta_{PT} I(d_{it-1} = PT) + \xi_{it} \]
STOCHASTIC PROCESSES

Wage:
\[\ln w_{it} = W(\text{age}_{it}) + \varsigma I\{d_{it} = PT\} + \nu_{it} \]

\[\nu_{it} = \nu_{it-1} - \delta_R I(d_{it-1} = R) - \delta_{PT} I(d_{it-1} = PT) + \xi_{it} \]

where:

\(\xi_{i} \sim N(0, \sigma^2_{\xi_{i}}) \)

For estimation purposes, \(\nu_{i0} \) is a fixed effect:
\[\ln w_{it} = \nu_{i0} + W(\text{age}_{it}) + \varsigma I\{d_{it} = PT\} + \nu_{it} \]
STOCHASTIC PROCESSES

Wage:

$$\ln w_{it} = \mathcal{W}(age_{it}) + \varsigma I\{d_{it} = PT\} + \nu_{it}$$

$$\nu_{it} = \nu_{it-1} - \delta_R I(d_{it-1} = R) - \delta_P I(d_{it-1} = PT) + \xi_{it}$$

where:

$$\xi_i \sim N(0, \sigma_{\xi_i}^2)$$
STOCHASTIC PROCESSES

Wage:

\[\ln w_{it} = W(\text{age}_{it}) + \varsigma I\{d_{it} = PT\} + \nu_{it} \]

\[\nu_{it} = \nu_{it-1} - \delta_R I(d_{it-1} = R) - \delta_{PT} I(d_{it-1} = PT) + \xi_{it} \]

where:

\[\xi_i \sim N(0, \sigma^2_{\xi_i}) \]

For estimation purposes, \(\nu_{i0} \) is a fixed effect:
STOCHASTIC PROCESSES

Wage:

\[\ln w_{it} = W(\text{age}_{it}) + \varsigma I\{d_{it} = PT\} + \nu_{it} \]

\[\nu_{it} = \nu_{it-1} - \delta_R I(d_{it-1} = R) - \delta_{PT} I(d_{it-1} = PT) + \xi_{it} \]

where:

\[\xi_i \sim N(0, \sigma_{\xi_i}^2) \]

For estimation purposes, \(\nu_{i0} \) is a fixed effect:

\[\ln w_{it} = \nu_{i0} + W(\text{age}_{it}) + \varsigma I\{d_{it} = PT\} + \nu_{it}^* \]
STOCHASTIC PROCESSES (contd.)
STOCHASTIC PROCESSES (contd.)

\[E(hc_t | age_t^m, age_t^f) = E(hc_t | age_t^m, age_t^f, hc > 0) P(hc_t > 0 | age_t^m, age_t^f) \]
STOCHASTIC PROCESSES (contd.)

\[E(hc_t|age_t^m, age_t^f) = E(hc_t|age_t^m, age_t^f, hc > 0)P(hct > 0|age_t^m, age_t^f) \]

\[\ln hc_t = h(age_t^m, age_t^f) + \psi_t, \]
STOCHASTIC PROCESSES (contd.)

\[
E(hc_t | \text{age}_m^t, \text{age}_f^t) = E(hc_t | \text{age}_m^t, \text{age}_f^t, hc > 0)P(hc_t > 0 | \text{age}_m^t, \text{age}_f^t)
\]

\[
\ln hc_t = h(\text{age}_m^t, \text{age}_f^t) + \psi_t,
\]

\[
\psi \sim N(0, \sigma^2_\psi)
\]
STOCHASTIC PROCESSES (contd.)

\[E(hc_t|age^m_t, age^f_t) = E(hc_t|age^m_t, age^f_t, hc > 0)P(hc_t > 0|age^m_t, age^f_t) \]

\[\ln hc_t = h(age^m_t, age^f_t) + \psi_t, \]

\[\psi \sim N(0, \sigma^2_{\psi}) \]

Survival:
Model

STOCHASTIC PROCESSES (contd.)

\[E(hc_t | age_m^t, age_f^t) = E(hc_t | age_m^t, age_f^t, hc > 0)P(hc_t > 0 | age_m^t, age_f^t) \]

\[\ln hc_t = h(age_m^t, age_f^t) + \psi_t, \]

\[\psi \sim N(0, \sigma^2_\psi) \]

Survival:

\[s_{t+1}^j = s(age_t^j) \]
Model Solution

Extend framework in order to account for continuous decisions.

Extend framework in order to account for continuous decisions.
Households choose a series of decision rules $\Pi = \{\pi_0, \pi_1, \ldots, \pi_T\}$, where $\pi_t(z_t, \varepsilon_t) = (d_t, s_t)$, to maximize:
Households choose a series of decision rules $\Pi = \{\pi_0, \pi_1, ..., \pi_T\}$, where $\pi_t(z_t, \varepsilon_t) = (d_t, s_t)$, to maximize:

$$E_t \left\{ \sum_{i=t}^{T} \beta^{i-t} S_{i-t} U_t(\theta_1) \right\}$$
Households choose a series of decision rules $\Pi = \{\pi_0, \pi_1, ..., \pi_T\}$, where $\pi_t(z_t, \varepsilon_t) = (d_t, s_t)$, to maximize:

$$E_t \left\{ \sum_{i=t}^{T} \beta^{i-t} S_{i-t} U_t(\theta_1) \right\}$$

subject to the corresponding constraints.
Households choose a series of decision rules $\Pi = \{\pi_0, \pi_1, \ldots, \pi_T\}$, where $\pi_t(z_t, \varepsilon_t) = (d_t, s_t)$, to maximize:

$$E_t \left\{ \sum_{i=t}^{T} \beta^{i-t} S_{i-t} U_t(\theta_1) \right\}$$

subject to the corresponding constraints.

The expectation is taken with respect to the controlled stochastic process $\{z_t, \varepsilon_t\}$ with probability distribution:
Households choose a series of decision rules $\Pi = \{\pi_0, \pi_1, ..., \pi_T\}$, where $\pi_t(z_t, \varepsilon_t) = (d_t, s_t)$, to maximize:

$$E_t \left\{ \sum_{i=t}^{T} \beta^{i-t} S_{i-t} U_t(\theta_1) \right\}$$

subject to the corresponding constraints.

The expectation is taken with respect to the controlled stochastic process $\{z_t, \varepsilon_t\}$ with probability distribution:

$$f(z_{t+1}, \varepsilon_{t+1}| d_t, s_t, z_t, \varepsilon_t, \theta_2, \theta_3) =$$
Households choose a series of decision rules $\Pi = \{\pi_0, \pi_1, ..., \pi_T\}$, where $\pi_t(z_t, \varepsilon_t) = (d_t, s_t)$, to maximize:

$$E_t \left\{ \sum_{i=t}^{T} \beta^{i-t} s_{i-t} U_t(\theta_1) \right\}$$

subject to the corresponding constraints.

The expectation is taken with respect to the controlled stochastic process $\{z_t, \varepsilon_t\}$ with probability distribution:

$$f(z_{t+1}, \varepsilon_{t+1}|d_t, s_t, z_t, \varepsilon_t, \theta_2, \theta_3) =$$

$$q(\varepsilon_{t+1}|z_{t+1}, \theta_2)g(z_{t+1}|z_t, d_t, s_t, \theta_3)$$
The Bellman equation can be written as:

\[V_t(z_t, \varepsilon_t, \theta) = \max_d \left\{ \max_s \left\{ u(k, s_t, z_t, \theta_1) + \beta E_t V_{t+1}(z_{t+1}, k, s_t, \theta) \right\} \mid d_t = k \right\} + \varepsilon_t \]
The Bellman equation can be written as:

\[V_t(z_t, \varepsilon_t, \theta) = \max_{d_t} \left\{ \max_{s_t} \left\{ u(k, s_t, z_t, \theta_1) + \beta E_t V_{t+1}(z_{t+1}, k, s_t, \theta) \right\} \right\} + \varepsilon_t \]
The Bellman equation can be written as:

\[
V_t(z_t, \varepsilon_t, \theta) = \max_{d_t} \left\{ \max_{s_t} \left\{ u(k, s_t, z_t, \theta_1) + \beta E_t V_{t+1}(z_{t+1}, k, s_t, \theta) \middle| d_t = k \right\} + \varepsilon_t \right\}
\]

Inner maximization yields choice-specific value functions:
The Bellman equation can be written as:

\[V_t(z_t, \varepsilon_t, \theta) = \max_{d_t} \left\{ \max_{s_t} \left\{ u(k, s_t, z_t, \theta_1) + \beta E_t V_{t+1}(z_{t+1}, k, s_t, \theta) | d_t = k \right\} + \varepsilon_t \right\} \]

Inner maximization yields choice-specific value functions:

\[r(k, z_t, \theta) = \max_{s_t} \left\{ [u(k, s_t, z_t, \theta_1) + \beta E_t V_{t+1}(z_{t+1}, k, s_t, \theta)] | d_t = k \right\} \]
The Bellman equation can be written as:

\[V_t(z_t, \varepsilon_t, \theta) = \max_{d_t} \left\{ \max_{s_t} \left\{ u(k, s_t, z_t, \theta_1) + \beta E_t V_{t+1}(z_{t+1}, k, s_t, \theta) \mid d_t = k \right\} + \varepsilon_t \right\} \]

Inner maximization yields choice-specific value functions:

\[r(k, z_t, \theta) = \max_{s_t} \left\{ [u(k, s_t, z_t, \theta_1) + \beta E_t V_{t+1}(z_{t+1}, k, s_t, \theta)] \mid d_t = k \right\} \]

Outer maximization is random-utility model:
The Bellman equation can be written as:

\[V_t(z_t, \varepsilon_t, \theta) = \max_{d_t} \left\{ \max_{s_t} \left\{ u(k, s_t, z_t, \theta_1) + \beta E_t V_{t+1}(z_{t+1}, k, s_t, \theta) \mid d_t = k \right\} \right\} + \varepsilon_t \]

Inner maximization yields choice-specific value functions:

\[r(k, z_t, \theta) = \max_{s_t} \left\{ [u(k, s_t, z_t, \theta_1) + \beta E_t V_{t+1}(z_{t+1}, k, s_t, \theta)] \mid d_t = k \right\} \]

Outer maximization is random-utility model:

\[\max_{d_t} \{ r(z_t, d_t, \theta) + \varepsilon_t(d_t) \} \]
Assumption: ε follows multivariate extreme value distribution
Assumption: ε follows multivariate extreme value distribution

Conditional choice probabilities:
Assumption: ε follows multivariate extreme value distribution

Conditional choice probabilities:

$$P(k|z_t, \theta) = \frac{\exp\{r(z_t, k, \theta)\}}{\sum_{k \in D} \exp\{r(z_t, k, \theta)\}}$$
Vectors of parameters to be estimated: θ_1 and θ_3
Vectors of parameters to be estimated: θ_1 and θ_3

Estimation takes place in two stages:
Vectors of parameters to be estimated: θ_1 and θ_3

Estimation takes place in two stages:

- First stage:
Vectors of parameters to be estimated: θ_1 and θ_3

Estimation takes place in two stages:

- First stage:

 Estimate parameters which can be identified without specific reference to dynamic model.
Vectors of parameters to be estimated: θ_1 and θ_3

Estimation takes place in two stages:

▶ First stage:

Estimate parameters which can be identified without specific reference to dynamic model.

This yields $\hat{\theta}_3$.
Vectors of parameters to be estimated: θ_1 and θ_3

Estimation takes place in two stages:

- **First stage:**

 Estimate parameters which can be identified without specific reference to dynamic model.

 This yields $\hat{\theta}_3$.

- **Second stage:**
Vectors of parameters to be estimated: θ_1 and θ_3

Estimation takes place in two stages:

- **First stage:**
 Estimate parameters which can be identified without specific reference to dynamic model.
 This yields $\hat{\theta}_3$.

- **Second stage:**
 Estimate θ_1 using method of simulated moments.
Data

Health and Retirement Study (HRS)
- Panel data on households where at least one member is aged 51 to 61 in initial wave.
 - Extensive information on:
 - Wealth and Income
 - Health
 - Retirement
 - Demographics
 - HRS data can be linked to Social Security Administration records which provide information on covered earnings and benefits.
Data

- Health and Retirement Study (HRS)
Data

- Health and Retirement Study (HRS)
- Panel data on households where at least one member is aged 51 to 61 in initial wave.
Data

- Health and Retirement Study (HRS)

- Panel data on households where at least one member is aged 51 to 61 in initial wave.

- Extensive information on:
 - Wealth and Income
 - Health
 - Retirement
 - Demographics

HRS data can be linked to Social Security Administration records which provide information on covered earnings and benefits.

Maria Casanova UCLA
Couple’s Joint Retirement Choices
Data

- Health and Retirement Study (HRS)
- Panel data on households where at least one member is aged 51 to 61 in initial wave.
- Extensive information on:
 - Wealth and Income

Maria Casanova UCLA
Couple’s Joint Retirement Choices
Data

- Health and Retirement Study (HRS)

- Panel data on households where at least one member is aged 51 to 61 in initial wave.

- Extensive information on:
 - Wealth and Income
 - Health

HRS data can be linked to Social Security Administration records which provide information on covered earnings and benefits.
Data

- Health and Retirement Study (HRS)
- Panel data on households where at least one member is aged 51 to 61 in initial wave.
- Extensive information on:
 - Wealth and Income
 - Health
 - Retirement

HRS data can be linked to Social Security Administration records which provide information on covered earnings and benefits.

Maria Casanova UCLA
Couple’s Joint Retirement Choices
Data

- Health and Retirement Study (HRS)
- Panel data on households where at least one member is aged 51 to 61 in initial wave.
- Extensive information on:
 - Wealth and Income
 - Health
 - Retirement
 - Demographics

HRS data can be linked to Social Security Administration records which provide information on covered earnings and benefits.
Data

- Health and Retirement Study (HRS)
- Panel data on households where at least one member is aged 51 to 61 in initial wave.
- Extensive information on:
 - Wealth and Income
 - Health
 - Retirement
 - Demographics
- HRS data can be linked to Social Security Administration records which provide information on covered earnings and benefits.
Estimation sample:
Estimation sample:

- The model is estimated using the sample of HRS couples who do not have a defined benefit pension.
Data

Estimation sample:

- The model is estimated using the sample of HRS couples who do not have a defined benefit pension.
- For individuals with no private pension, Social Security provides main age-specific incentives for retirement.
Estimation sample:

- The model is estimated using the sample of HRS couples who do not have a defined benefit pension.
- For individuals with no private pension, Social Security provides main age-specific incentives for retirement.
- The same is true for individuals with defined contribution pensions.
Estimation sample:

- The model is estimated using the sample of HRS couples who do not have a defined benefit pension.

- For individuals with no private pension, Social Security provides main age-specific incentives for retirement.

- The same is true for individuals with defined contribution pensions.

- Defined benefit pensions give very strong incentives for retirement at particular ages, usually different from the Social Security ages.
Table: Preference and Wage Process Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter and definition</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α^m_1 Consumption share, male U function</td>
<td>0.5102</td>
<td></td>
</tr>
<tr>
<td>α^f_1 Consumption share, female U function</td>
<td>0.4295</td>
<td></td>
</tr>
<tr>
<td>α_2 Value of shared retirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male’s wage depreciation per year PT</td>
<td>0.9051</td>
<td></td>
</tr>
<tr>
<td>Female’s wage depreciation per year PT</td>
<td>0.8933</td>
<td></td>
</tr>
<tr>
<td>Male’s wage depreciation per year R</td>
<td>0.8092</td>
<td></td>
</tr>
<tr>
<td>Female’s wage depreciation per year R</td>
<td>0.7795</td>
<td></td>
</tr>
</tbody>
</table>

GMM criterion 0.2058 0.1404
Table: Preference and Wage Process Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter and definition</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1^m Consumption share, male U function</td>
<td>0.5102</td>
<td></td>
</tr>
<tr>
<td>α_1^f Consumption share, female U function</td>
<td>0.4295</td>
<td></td>
</tr>
<tr>
<td>α_2 Value of shared retirement</td>
<td></td>
<td>0.0891</td>
</tr>
<tr>
<td>Male’s wage depreciation per year PT</td>
<td>0.9051</td>
<td></td>
</tr>
<tr>
<td>Female’s wage depreciation per year PT</td>
<td>0.8933</td>
<td></td>
</tr>
<tr>
<td>Male’s wage depreciation per year R</td>
<td>0.8092</td>
<td></td>
</tr>
<tr>
<td>Female’s wage depreciation per year R</td>
<td>0.7795</td>
<td></td>
</tr>
<tr>
<td>GMM criterion</td>
<td>0.2058</td>
<td>0.1404</td>
</tr>
</tbody>
</table>
Table: Preference and Wage Process Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter and definition</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α^m_1 Consumption share, male U function</td>
<td>0.5102</td>
<td>0.5274</td>
</tr>
<tr>
<td></td>
<td>(0.0061)</td>
<td></td>
</tr>
<tr>
<td>α^f_1 Consumption share, female U function</td>
<td>0.4295</td>
<td></td>
</tr>
<tr>
<td>α_2 Value of shared retirement</td>
<td></td>
<td>0.0891</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0079)</td>
</tr>
<tr>
<td>Male’s wage depreciation per year PT</td>
<td>0.9051</td>
<td></td>
</tr>
<tr>
<td>Female’s wage depreciation per year PT</td>
<td>0.8933</td>
<td></td>
</tr>
<tr>
<td>Male’s wage depreciation per year R</td>
<td>0.8092</td>
<td></td>
</tr>
<tr>
<td>Female’s wage depreciation per year R</td>
<td>0.7795</td>
<td></td>
</tr>
<tr>
<td>GMM criterion</td>
<td>0.2058</td>
<td>0.1404</td>
</tr>
</tbody>
</table>
Table: Preference and Wage Process Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter and definition</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha^m_1)</td>
<td>0.5102</td>
<td>0.5274</td>
</tr>
<tr>
<td></td>
<td>(0.0061)</td>
<td></td>
</tr>
<tr>
<td>(\alpha^f_1)</td>
<td>0.4295</td>
<td>0.4334</td>
</tr>
<tr>
<td></td>
<td>(0.0043)</td>
<td></td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td></td>
<td>0.0891</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0079)</td>
</tr>
<tr>
<td>Male’s wage depreciation per year PT</td>
<td>0.9051</td>
<td></td>
</tr>
<tr>
<td>Female’s wage depreciation per year PT</td>
<td>0.8933</td>
<td></td>
</tr>
<tr>
<td>Male’s wage depreciation per year R</td>
<td>0.8092</td>
<td></td>
</tr>
<tr>
<td>Female’s wage depreciation per year R</td>
<td>0.7795</td>
<td></td>
</tr>
<tr>
<td>GMM criterion</td>
<td>0.2058</td>
<td>0.1404</td>
</tr>
</tbody>
</table>
Table: Preference and Wage Process Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter and definition</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α^m_1 Consumption share, male U function</td>
<td>0.5102</td>
<td>0.5274</td>
</tr>
<tr>
<td></td>
<td>(0.0061)</td>
<td></td>
</tr>
<tr>
<td>α^f_1 Consumption share, female U function</td>
<td>0.4295</td>
<td>0.4334</td>
</tr>
<tr>
<td></td>
<td>(0.0043)</td>
<td></td>
</tr>
<tr>
<td>α_2 Value of shared retirement</td>
<td></td>
<td>0.0891</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0079)</td>
</tr>
<tr>
<td>Male’s wage depreciation per year PT</td>
<td>0.9051</td>
<td>0.9258</td>
</tr>
<tr>
<td></td>
<td>(0.0383)</td>
<td></td>
</tr>
<tr>
<td>Female’s wage depreciation per year PT</td>
<td>0.8933</td>
<td></td>
</tr>
<tr>
<td>Male’s wage depreciation per year R</td>
<td>0.8092</td>
<td></td>
</tr>
<tr>
<td>Female’s wage depreciation per year R</td>
<td>0.7795</td>
<td></td>
</tr>
<tr>
<td>GMM criterion</td>
<td>0.2058</td>
<td>0.1404</td>
</tr>
</tbody>
</table>
Table: Preference and Wage Process Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter and definition</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α^m_1 Consumption share, male U function</td>
<td>0.5102</td>
<td>0.5274</td>
</tr>
<tr>
<td></td>
<td>(0.0061)</td>
<td></td>
</tr>
<tr>
<td>α^f_1 Consumption share, female U function</td>
<td>0.4295</td>
<td>0.4334</td>
</tr>
<tr>
<td></td>
<td>(0.0043)</td>
<td></td>
</tr>
<tr>
<td>α_2 Value of shared retirement</td>
<td></td>
<td>0.0891</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0079)</td>
</tr>
<tr>
<td>Male’s wage depreciation per year PT</td>
<td>0.9051</td>
<td>0.9258</td>
</tr>
<tr>
<td></td>
<td>(0.0383)</td>
<td></td>
</tr>
<tr>
<td>Female’s wage depreciation per year PT</td>
<td>0.8933</td>
<td>0.9219</td>
</tr>
<tr>
<td></td>
<td>(0.0334)</td>
<td></td>
</tr>
<tr>
<td>Male’s wage depreciation per year R</td>
<td>0.8092</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female’s wage depreciation per year R</td>
<td>0.7795</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMM criterion</td>
<td>0.2058</td>
<td>0.1404</td>
</tr>
</tbody>
</table>
Table: Preference and Wage Process Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter and definition</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α^m_1 Consumption share, male U function</td>
<td>0.5102</td>
<td>0.5274</td>
</tr>
<tr>
<td></td>
<td>(0.0061)</td>
<td></td>
</tr>
<tr>
<td>α^f_1 Consumption share, female U function</td>
<td>0.4295</td>
<td>0.4334</td>
</tr>
<tr>
<td></td>
<td>(0.0043)</td>
<td></td>
</tr>
<tr>
<td>α_2 Value of shared retirement</td>
<td>0.0891</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0079)</td>
<td></td>
</tr>
<tr>
<td>Male’s wage depreciation per year PT</td>
<td>0.9051</td>
<td>0.9258</td>
</tr>
<tr>
<td></td>
<td>(0.0383)</td>
<td></td>
</tr>
<tr>
<td>Female’s wage depreciation per year PT</td>
<td>0.8933</td>
<td>0.9219</td>
</tr>
<tr>
<td></td>
<td>(0.0334)</td>
<td></td>
</tr>
<tr>
<td>Male’s wage depreciation per year R</td>
<td>0.8092</td>
<td>0.8609</td>
</tr>
<tr>
<td></td>
<td>(0.0436)</td>
<td></td>
</tr>
<tr>
<td>Female’s wage depreciation per year R</td>
<td>0.7795</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMM criterion</td>
<td>0.2058</td>
<td>0.1404</td>
</tr>
</tbody>
</table>
Table: Preference and Wage Process Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter and definition</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α^m_1 Consumption share, male U function</td>
<td>0.5102</td>
<td>0.5274</td>
</tr>
<tr>
<td>(0.0061)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α^f_1 Consumption share, female U function</td>
<td>0.4295</td>
<td>0.4334</td>
</tr>
<tr>
<td>(0.0043)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_2 Value of shared retirement</td>
<td></td>
<td>0.0891</td>
</tr>
<tr>
<td>(0.0079)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male’s wage depreciation per year PT</td>
<td>0.9051</td>
<td>0.9258</td>
</tr>
<tr>
<td>(0.0383)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female’s wage depreciation per year PT</td>
<td>0.8933</td>
<td>0.9219</td>
</tr>
<tr>
<td>(0.0334)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male’s wage depreciation per year R</td>
<td>0.8092</td>
<td>0.8609</td>
</tr>
<tr>
<td>(0.0436)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female’s wage depreciation per year R</td>
<td>0.7795</td>
<td>0.7841</td>
</tr>
<tr>
<td>(0.0336)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMM criterion</td>
<td>0.2058</td>
<td>0.1404</td>
</tr>
</tbody>
</table>

Maria Casanova UCLA
Couple’s Joint Retirement Choices
Figure: Simulated vs. actual age profiles for total participation, men.
Figure: Simulated vs. actual age profiles for total participation, women.
Figure: Simulated vs. actual age profiles for FT/PT participation, men.
Figure: Simulated vs. actual age profiles for FT/PT participation, women.
Figure: Simulated vs. actual retirement frequencies, men.
Figure: Simulated vs. actual retirement frequencies, women.
Figure: Simulated vs. actual joint retirement frequencies.

![Joint Retirement Frequencies. Actual vs. Simulated](image)
Figure: Simulated vs. actual joint retirement frequencies.
I develop a life-cycle model of couples’ choices which carefully models shared budget constraint and allows for leisure complementarities.
Conclusions

- I develop a life-cycle model of couples’ choices which carefully models shared budget constraint and allows for leisure complementarities.

- Results show that positive complementarity parameters explain 8% of joint retirements...
Conclusions

▶ I develop a life-cycle model of couples’ choices which carefully models shared budget constraint and allows for leisure complementarities.

▶ Results show that positive complementarity parameters explain 8% of joint retirements...

▶ ...while social security’s spousal benefit accounts for another 13%.
Figure: Retirement frequencies for married men and women

- Men - N=2,818
- Women - N=2,339
Figure: Optimal participation choices as a function of E^m, E^f
Figure: Differences in retirement dates by age difference between spouses

- Agediff < 0, N = 247
- Agediff in [0,1], N = 382
- Agediff in [2,3], N = 397
- Agediff > 5, N = 359

Maria Casanova UCLA
Couple’s Joint Retirement Choices
Introduction

Leisure Complementarities

A significant fraction of spouses retires together. Hurd (1990), Blau (1998), Gustman and Steinmeier (2000) have shown that joint retirements of spouses with different ages may be partly explained by interactions in spouses' preferences. Complementarity of spouse's leisure: one (or both) spouses enjoy their leisure more if this is shared with their partner. Reduced-form studies provide evidence that spouses enjoy their retirement more if their partner is retired too. ◀ Coile (2004) ▶ Banks, Blundell and Casanova (2010) back
Leisure Complementarities

Leisure Complementarities

A significant fraction of spouses retires together by interacting in spouses’ preferences.

Joint retirements of spouses with different ages may be partly explained by interactions in spouses’ preferences.
Leisure Complementarities

Joint retirements of spouses with different ages may be partly explained by interactions in spouses’ preferences.

Complementarity of spouse’s leisure: one (or both) spouses enjoy their leisure more if this is shared with their partner.
Leisure Complementarities

Joint retirements of spouses with different ages may be partly explained by interactions in spouses’ preferences.

Complementarity of spouse's leisure: one (or both) spouses enjoy their leisure more if this is shared with their partner.

Reduced-form studies provide evidence that spouses enjoy their retirement more if their partner is retired too.
Leisure Complementarities

Joint retirements of spouses with different ages may be partly explained by interactions in spouses’ preferences.

Complementarity of spouse’s leisure: one (or both) spouses enjoy their leisure more if this is shared with their partner.

Reduced-form studies provide evidence that spouses enjoy their retirement more if their partner is retired too.

- Coile (2004)
Leisure Complementarities

A significant fraction of spouses retires together.

Joint retirements of spouses with different ages may be partly explained by interactions in spouses’ preferences.

Complementarity of spouse’s leisure: one (or both) spouses enjoy their leisure more if this is shared with their partner.

Reduced-form studies provide evidence that spouses enjoy their retirement more if their partner is retired too.

- Coile (2004)
- Banks, Blundell and Casanova (2010)
Leisure Complementarities

Joint retirements of spouses with different ages may be partly explained by interactions in spouses’ preferences.

Complementarity of spouse’s leisure: one (or both) spouses enjoy their leisure more if this is shared with their partner.

Reduced-form studies provide evidence that spouses enjoy their retirement more if their partner is retired too.

- Coile (2004)
- Banks, Blundell and Casanova (2010)