Revisiting the Hump-Shaped Wage Profile: Implications for Structural Labor Supply Estimation

Maria Casanova
UCLA

QSPS 2013 Summer Workshop
Motivation

Structural labor supply models rely on accurate estimates of the age profile of offered wages.
Motivation

Structural labor supply models rely on accurate estimates of the age profile of offered wages.

The *deterministic or predictable* component of wages is a key input for the study of:
Motivation

Structural labor supply models rely on accurate estimates of the age profile of offered wages.

The *deterministic or predictable* component of wages is a key input for the study of:

- income uncertainty
Motivation

Structural labor supply models rely on accurate estimates of the age profile of offered wages.

The *deterministic or predictable* component of wages is a key input for the study of:

- income uncertainty
- life cycle labor supply decisions
Motivation

Structural labor supply models rely on accurate estimates of the age profile of offered wages.

The \textit{deterministic} or \textit{predictable} component of wages is a key input for the study of:

- income uncertainty
- life cycle labor supply decisions
- drivers of retirement decisions
Motivation

Structural labor supply models rely on accurate estimates of the age profile of offered wages.

The *deterministic* or *predictable* component of wages is a key input for the study of:

- income uncertainty
- life cycle labor supply decisions
- drivers of retirement decisions
- estimation of labor supply elasticities
Motivation

Structural labor supply models rely on accurate estimates of the age profile of offered wages.

The *deterministic or predictable* component of wages is a key input for the study of:

- income uncertainty
- life cycle labor supply decisions
- drivers of retirement decisions
- estimation of labor supply elasticities

What does this profile look like?
Motivation

Figure: From Attanasio and Weber (JPE, 1995)

Table 1

<table>
<thead>
<tr>
<th>Cohort Definition</th>
<th>Average Cell Used in Cohort</th>
<th>Year of Birth</th>
<th>Age in 1980</th>
<th>Size Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1960-64</td>
<td>1960-64</td>
<td>16-20</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>1955-59</td>
<td>1955-59</td>
<td>21-25</td>
<td>461 yes</td>
</tr>
<tr>
<td>3</td>
<td>1950-54</td>
<td>1950-54</td>
<td>26-30</td>
<td>460 yes</td>
</tr>
<tr>
<td>4</td>
<td>1945-49</td>
<td>1945-49</td>
<td>31-35</td>
<td>426 yes</td>
</tr>
<tr>
<td>5</td>
<td>1940-44</td>
<td>1940-44</td>
<td>36-40</td>
<td>321 yes</td>
</tr>
<tr>
<td>7</td>
<td>1930-34</td>
<td>1930-34</td>
<td>46-50</td>
<td>241 yes</td>
</tr>
<tr>
<td>8</td>
<td>1925-29</td>
<td>1925-29</td>
<td>51-55</td>
<td>255 yes</td>
</tr>
<tr>
<td>9</td>
<td>1920-24</td>
<td>1920-24</td>
<td>56-60</td>
<td>272 yes</td>
</tr>
<tr>
<td>10</td>
<td>1915-19</td>
<td>1915-19</td>
<td>61-65</td>
<td>no</td>
</tr>
<tr>
<td>11</td>
<td>1910-14</td>
<td>1910-14</td>
<td>66-70</td>
<td>no</td>
</tr>
<tr>
<td>12</td>
<td>1905-9</td>
<td>1905-9</td>
<td>71-75</td>
<td>no</td>
</tr>
</tbody>
</table>

Fig. 1. —*a, Log of household nondurable consumption. b, Log of after-tax household income.*
Motivation

Figure: From French (REStud, 2005)

Average Hourly Wage by Health Status, 1987 Dollars

Health Dynamics Over the Life Cycle

- Age
- Probability of Being in Bad Health

Income is assumed to follow a polynomial in age and the log of the wage.23 Because the PSID has poor information on pensions and Social Security, I use spousal income when young to predict spousal pension and Social Security benefits when old.

RESULTS

The estimated inputs into the MSM algorithm can be divided into data on the exogenous state variables and data on decision variables. The data generating process for the exogenous state variables, parameterized by the vector X, includes growth rates for wages conditional on health status, health transition matrices, and mortality probabilities. The decision variables are the set of cohort dummy variables. When I construct the spousal income profile, I set the cohort effect equal to those born in 1940.
1. Data Analysis

- The real hourly wage of the typical male over age 50 increases slightly with age for as long as he is employed full time.
1. Data Analysis

- The real hourly wage of the typical male over age 50 increases slightly with age for as long as he is employed full time.

- Two thirds of individuals transit from full-time work into retirement.
1. Data Analysis

- The real hourly wage of the typical male over age 50 increases slightly with age for as long as he is employed full time.

- Two thirds of individuals transit from full-time work into retirement.

- For individuals who partially retire there is a one-off 34% wage drop at the point of transition from full-time into part-time work.
Overview of Results

1. Data Analysis

- The real hourly wage of the typical male over age 50 increases slightly with age for as long as he is employed full time.

- Two thirds of individuals transit from full-time work into retirement.

- For individuals who partially retire there is a one-off 34% wage drop at the point of transition from full-time into part-time work.

- The hump-shaped profile often found in the literature is a result of aggregation over workers who transit into partial retirement at different ages.
2. Interpretation of results

- The *ex-post* wage profile just described is consistent with 3 different models of retirement.
 - Self-selection model
 - Involuntary retirement model
 - Voluntary retirement model
2. Interpretation of results

- The *ex-post* wage profile just described is consistent with 3 different models of retirement.
 - Self-selection model
 - Involuntary retirement model
 - Voluntary retirement model

- These models differ in the forces driving the retirement decision and in the underlying process for offered wages.
2. Interpretation of results

- The *ex-post* wage profile just described is consistent with 3 different models of retirement.
 - Self-selection model
 - Involuntary retirement model
 - Voluntary retirement model

- These models differ in the forces driving the retirement decision and in the underlying process for offered wages.

- I will test the empirical implications of the 3 models to determine which of them is/are compatible with the data.
Overview of Results

2. Interpretation of results

- The *ex-post* wage profile just described is consistent with 3 different models of retirement.
 - Self-selection model
 - Involuntary retirement model
 - Voluntary retirement model

- These models differ in the forces driving the retirement decision and in the underlying process for offered wages.

- I will test the empirical implications of the 3 models to determine which of them is/are compatible with the data.

- The offered wage profile is nondecreasing in age at older ages.
3. Implications for structural estimation and calibration

- Focus on the intertemporal elasticity of substitution of labor supply (i.e.s.).
3. Implications for structural estimation and calibration

- Focus on the intertemporal elasticity of substitution of labor supply (i.e.s.).

- I develop a life cycle model of consumption and labor supply choices to measure the sensitivity of estimates of the i.e.s. to misspecification of the wage profile.
3. Implications for structural estimation and calibration

- Focus on the intertemporal elasticity of substitution of labor supply (i.e.s.).

- I develop a life cycle model of consumption and labor supply choices to measure the sensitivity of estimates of the i.e.s. to misspecification of the wage profile.

- Using a hump-shaped wage profile as a proxy for the flat offered wage path leads to upward bias in estimates of i.e.s. of 30 to 130%
Data

Health and Retirement Study

- Panel dataset of adults over 50 years of age and their spouses.
- Data collected every 2 years.
- Self-reported information on wages and hours.
- Extensive information on demographics, health and pensions.
Health and Retirement Study

- Panel dataset of adults over 50 years of age and their spouses.
- Data collected every 2 years.
- Self-reported information on wages and hours.
- Extensive information on demographics, health and pensions.

Sample:

Data

Health and Retirement Study

- Panel dataset of adults over 50 years of age and their spouses.
- Data collected every 2 years.
- Self-reported information on wages and hours.
- Extensive information on demographics, health and pensions.

Sample:

- Individuals born between 1931 and 1941.
Data

Health and Retirement Study

- Panel dataset of adults over 50 years of age and their spouses.
- Data collected every 2 years.
- Self-reported information on wages and hours.
- Extensive information on demographics, health and pensions.

Sample:

- Individuals born between 1931 and 1941.
- Males who are working full-time in first sample year.
Data

Health and Retirement Study

- Panel dataset of adults over 50 years of age and their spouses.
- Data collected every 2 years.
- Self-reported information on wages and hours.
- Extensive information on demographics, health and pensions.

Sample:

- Individuals born between 1931 and 1941.
- Males who are working full-time in first sample year.
- Self-employed are dropped.
Definition of Partial Retirement

This transitional period is characterized by part-time work, changes of industry/occupation, low attachment to the labor force. Approximately 30% of workers partially retire before fully withdrawing from the labor force.

In the paper:

Full time work is defined as working more than 35 hours per week. An individual becomes partially retired when he is first observed working part-time. Partial retirement is an absorbing state.
This transitional period is characterized by part-time work, changes of industry/occupation, low attachment to the labor force.
Definition of Partial Retirement

This transitional period is characterized by part-time work, changes of industry/occupation, low attachment to the labor force.

Approximately 30% of workers partially retire before fully withdrawing from the labor force.
Definition of Partial Retirement

This transitional period is characterized by part-time work, changes of industry/occupation, low attachment to the labor force.

Approximately 30% of workers partially retire before fully withdrawing from the labor force.

In the paper:

- Full time work is defined as working more than 35 hours per week.
Definition of Partial Retirement

This transitional period is characterized by part-time work, changes of industry/occupation, low attachment to the labor force.

Approximately 30% of workers partially retire before fully withdrawing from the labor force.

In the paper:

- Full time work is defined as working more than 35 hours per week.
- An individual becomes partially retired when he is first observed working part-time.
Definition of Partial Retirement

This transitional period is characterized by part-time work, changes of industry/occupation, low attachment to the labor force.

Approximately 30% of workers partially retire before fully withdrawing from the labor force.

In the paper:

- Full time work is defined as working more than 35 hours per week.
- An individual becomes partially retired when he is first observed working part-time.
- Partial retirement is an absorbing state.
Observed Wage Profiles

Log wage profile:

\[w_{it} = W(Age_{it}) + X_{it} \beta_w + u_{it} \]
Log wage profile:

\[w_{it} = \theta_w I\{PR = 1\} + W(Age_{it}) + X_{it}\beta_w + u_{it} \]
Observed Wage Profiles

Log wage profile:

\[w_{it} = \theta_w I\{PR = 1\} + W(Age_{it}) + X_{it} \beta_w + u_{it} \]

Log hours profile:
Observed Wage Profiles

Log wage profile:

\[w_{it} = \theta_w I\{PR = 1\} + W(Age_{it}) + X_{it}\beta_w + u_{it} \]

Log hours profile:

\[h_{it} = \theta_h I\{PR = 1\} + H(Age_{it}) + X_{it}\beta_h + v_{it} \]
Observed Wage Profiles

Figure: Average Wage Profile, FE

Maria Casanova UCLA

Revisiting the Hump-Shaped Wage Profile
Figure: Average Wage Profile, FE

María Casanova
UCLA
Revisiting the Hump-Shaped Wage Profile
Observed Wage Profiles

Figure: Average Wage Profile, FE

Maria Casanova UCLA

Revisiting the Hump-Shaped Wage Profile
Observed Wage Profiles

Table: Dependent variable: log real hourly wages

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th>FE</th>
<th>FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR=1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>age≥59</td>
<td>-0.019</td>
<td>-0.033**</td>
<td></td>
</tr>
<tr>
<td>(0.024)</td>
<td></td>
<td>(0.016)</td>
<td></td>
</tr>
<tr>
<td>age≥60</td>
<td>0.002</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>(0.024)</td>
<td></td>
<td>(0.017)</td>
<td></td>
</tr>
<tr>
<td>age≥61</td>
<td>-0.019</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>(0.024)</td>
<td></td>
<td>(0.016)</td>
<td></td>
</tr>
<tr>
<td>age≥62</td>
<td>-0.044</td>
<td>-0.036**</td>
<td></td>
</tr>
<tr>
<td>(0.028)</td>
<td></td>
<td>(0.018)</td>
<td></td>
</tr>
<tr>
<td>age≥63</td>
<td>-0.032</td>
<td>-0.025</td>
<td></td>
</tr>
<tr>
<td>(0.033)</td>
<td></td>
<td>(0.021)</td>
<td></td>
</tr>
<tr>
<td>age≥64</td>
<td>-0.080**</td>
<td>-0.037</td>
<td></td>
</tr>
<tr>
<td>(0.036)</td>
<td></td>
<td>(0.022)</td>
<td></td>
</tr>
<tr>
<td>individual-year obs.</td>
<td>7,915</td>
<td>7,500</td>
<td></td>
</tr>
<tr>
<td># of individuals</td>
<td>1,834</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tests of Joint Significance (p-value):

- Age≥52-Age≥60
- Age≥61-Age≥67
Observed Wage Profiles

Table: Dependent variable: log real hourly wages

<table>
<thead>
<tr>
<th>PR=1</th>
<th>OLS</th>
<th>FE</th>
<th>FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>age ≥ 59</td>
<td>-0.019</td>
<td>-0.033**</td>
<td>(0.024)</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.016)</td>
<td></td>
</tr>
<tr>
<td>age ≥ 60</td>
<td>0.002</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.017)</td>
<td></td>
</tr>
<tr>
<td>age ≥ 61</td>
<td>-0.019</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.016)</td>
<td></td>
</tr>
<tr>
<td>age ≥ 62</td>
<td>-0.044</td>
<td>-0.036**</td>
<td>(0.028)</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.018)</td>
<td></td>
</tr>
<tr>
<td>age ≥ 63</td>
<td>-0.032</td>
<td>-0.025</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.021)</td>
<td></td>
</tr>
<tr>
<td>age ≥ 64</td>
<td>-0.080**</td>
<td>-0.037</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.022)</td>
<td></td>
</tr>
</tbody>
</table>

individual-year obs.: 7,915 7,500

of individuals: 1,834

Tests of Joint Significance (p-value):

<table>
<thead>
<tr>
<th>Test</th>
<th>OLS</th>
<th>FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥ 52-Age ≥ 60</td>
<td>0.659</td>
<td>0.059</td>
</tr>
<tr>
<td>Age ≥ 61-Age ≥ 67</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Observed Wage Profiles

Table: Dependent variable: log real hourly wages

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th>FE</th>
<th>FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR=1</td>
<td></td>
<td></td>
<td>-0.337***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.025)</td>
</tr>
<tr>
<td>age≥59</td>
<td>-0.019</td>
<td>-0.033**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.016)</td>
<td></td>
</tr>
<tr>
<td>age≥60</td>
<td>0.002</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.017)</td>
<td></td>
</tr>
<tr>
<td>age≥61</td>
<td>-0.019</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.016)</td>
<td></td>
</tr>
<tr>
<td>age≥62</td>
<td>-0.044</td>
<td>-0.036**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.018)</td>
<td></td>
</tr>
<tr>
<td>age≥63</td>
<td>-0.032</td>
<td>-0.025</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.021)</td>
<td></td>
</tr>
<tr>
<td>age≥64</td>
<td>-0.080**</td>
<td>-0.037</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.022)</td>
<td></td>
</tr>
<tr>
<td>individual-year obs.</td>
<td>7,915</td>
<td>7,500</td>
<td></td>
</tr>
<tr>
<td># of individuals</td>
<td></td>
<td></td>
<td>1,834</td>
</tr>
</tbody>
</table>

Tests of Joint Significance (p-value):

| Age≥52-Age≥60 | 0.659 | 0.059 |
| Age≥61-Age≥67 | 0.000 | 0.000 |

Maria Casanova UCLA

Revisiting the Hump-Shaped Wage Profile
Observed Wage Profiles

Table: Dependent variable: log real hourly wages

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th>FE</th>
<th>FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR=1</td>
<td></td>
<td>-0.337***</td>
<td>(0.025)</td>
</tr>
<tr>
<td>age≥59</td>
<td>-0.019</td>
<td>-0.033**</td>
<td>-0.023</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.016)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>age≥60</td>
<td>0.002</td>
<td>0.008</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.017)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>age≥61</td>
<td>-0.019</td>
<td>0.004</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.016)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>age≥62</td>
<td>-0.044</td>
<td>-0.036**</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.018)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>age≥63</td>
<td>-0.032</td>
<td>-0.025</td>
<td>-0.006</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.021)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>age≥64</td>
<td>-0.080**</td>
<td>-0.037</td>
<td>-0.017</td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.022)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>individual-year obs.</td>
<td>7,915</td>
<td>7,500</td>
<td>7,500</td>
</tr>
<tr>
<td># of individuals</td>
<td>1,834</td>
<td>1,834</td>
<td>1,834</td>
</tr>
</tbody>
</table>

Tests of Joint Significance (p-value):

- Age≥52-Age≥60: 0.659
- Age≥61-Age≥67: 0.000

Maria Casanova
UCLA
Revisiting the Hump-Shaped Wage Profile
Observed Wage Profiles

Table: Dependent variable: log real hourly wages

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th>FE</th>
<th>FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR=1</td>
<td></td>
<td>-0.337***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.025)</td>
<td></td>
</tr>
<tr>
<td>age≥59</td>
<td>-0.019</td>
<td>-0.033**</td>
<td>-0.023</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.016)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>age≥60</td>
<td>0.002</td>
<td>0.008</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.017)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>age≥61</td>
<td>-0.019</td>
<td>0.004</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.016)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>age≥62</td>
<td>-0.044</td>
<td>-0.036**</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.018)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>age≥63</td>
<td>-0.032</td>
<td>-0.025</td>
<td>-0.006</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.021)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>age≥64</td>
<td>-0.080**</td>
<td>-0.037</td>
<td>-0.017</td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.022)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>individual-year obs.</td>
<td>7,915</td>
<td>7,500</td>
<td>7,500</td>
</tr>
<tr>
<td># of individuals</td>
<td>1,834</td>
<td>1,834</td>
<td>1,834</td>
</tr>
<tr>
<td>Tests of Joint Significance (p-value):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age≥52-Age≥60</td>
<td>0.659</td>
<td>0.059</td>
<td>0.080</td>
</tr>
<tr>
<td>Age≥61-Age≥67</td>
<td>0.000</td>
<td>0.000</td>
<td>0.618</td>
</tr>
</tbody>
</table>

Maria Casanova UCLA Revisiting the Hump-Shaped Wage Profile
Figure: Predicted wage profile for an individual who enters PR at age 62.
Figure: Predicted wage profile for an individual who enters PR at age 62
Figure: Average Hours Profile, FE, with and without controls for PR status
Figure: Predicted hours profile for an individual who enters PR at age 62
Figure: Predicted earnings profile for an individual who enters PR at age 62
Offered wage profiles are conditional on labor supply decisions.
Observed wage profiles are conditional on labor supply decisions. In order to characterize the offered wage profile, we need to dig deeper on the process determining retirement decisions.
Offered wage profiles are conditional on labor supply decisions.

In order to characterize the offered wage profile, we need to dig deeper on the process determining retirement decisions.

I consider 3 alternative models of retirement.
Observed wage profiles are conditional on labor supply decisions. In order to characterize the offered wage profile, we need to dig deeper on the process determining retirement decisions.

I consider 3 alternative models of retirement.

- **Self-selection model:**
Offered Wage Profile

Observed wage profiles are conditional on labor supply decisions.

In order to characterize the offered wage profile, we need to dig deeper on the process determining retirement decisions.

I consider 3 alternative models of retirement.

- **Self-selection model:**
 - Offered wages decline at older ages
 - Transition from FT to PT when offered wage falls below some threshold
Offered wage profiles are conditional on labor supply decisions.

In order to characterize the offered wage profile, we need to dig deeper on the process determining retirement decisions.

I consider 3 alternative models of retirement.

- **Self-selection model:**
 - Offered wages decline at older ages
 - Transition from FT to PT when offered wage falls below some threshold
 - Individuals who receive positive wage shocks are more likely to remain in FT employment
Observed wage profiles are conditional on labor supply decisions.

In order to characterize the offered wage profile, we need to dig deeper on the process determining retirement decisions.

I consider 3 alternative models of retirement.

- **Self-selection model:**
 - Offered wages decline at older ages
 - Transition from FT to PT when offered wage falls below some threshold
 - Individuals who receive positive wage shocks are more likely to remain in FT employment
 - Testable implication: positive self-selection bias
Involuntary retirement model:

- Offered and observed wage profiles are the same.
- The expected wage profile declines smoothly with age.

Voluntary retirement model:

- In every period, worker chooses among bundles of wages and hours.
- Offered wages profile is non-declining in age.
- Retirement transitions do not occur in response to declining wages.
Offered Wage Profile

- Involuntary retirement model:
 - Transitions from FT to PT happen randomly with some probability that increases with age
Offered Wage Profile

- Involuntary retirement model:
 - Transitions from FT to PT happen randomly with some probability that increases with age
 - Offered and observed wage profiles are the same
Offered Wage Profile

- **Involuntary retirement model:**
 - Transitions from FT to PT happen randomly with some probability that increases with age
 - Offered and observed wage profiles are the same
 - The *expected* wage profile declines smoothly with age
Offered Wage Profile

- **Involuntary retirement model:**
 - Transitions from FT to PT happen randomly with some probability that increases with age
 - Offered and observed wage profiles are the same
 - The *expected* wage profile declines smoothly with age

- **Voluntary retirement model:**
Involuntary retirement model:
- Transitions from FT to PT happen randomly with some probability that increases with age
- Offered and observed wage profiles are the same
- The *expected* wage profile declines smoothly with age

Voluntary retirement model:
- In every period, worker chooses among bundles of wages and hours

Offered Wage Profile
Offered Wage Profile

- **Involuntary retirement model:**
 - Transitions from FT to PT happen randomly with some probability that increases with age
 - Offered and observed wage profiles are the same
 - The *expected* wage profile declines smoothly with age

- **Voluntary retirement model:**
 - In every period, worker chooses among bundles of wages and hours
 - Offered wages profile is non-declining in age
Offered Wage Profile

- **Involuntary retirement model:**
 - Transitions from FT to PT happen randomly with some probability that increases with age
 - Offered and observed wage profiles are the same
 - The *expected* wage profile declines smoothly with age

- **Voluntary retirement model:**
 - In every period, worker chooses among bundles of wages and hours
 - Offered wages profile is non-declining in age
 - Retirement transitions do not occur in response to declining wages
Self-selection model is rejected.
Self-selection model is rejected.

Between 20 and 30% of workers retire for involuntary reasons such as health shocks or plant closings.
Self-selection model is rejected.

Between 20 and 30% of workers retire for involuntary reasons such as health shocks or plant closings.

Between 70 and 80% of workers retire for voluntary reasons such as a wish to enjoy more leisure.
Offered Wage Profile

Self-selection model is rejected.

Between 20 and 30% of workers retire for involuntary reasons such as health shocks or plant closings.

Between 70 and 80% of workers retire for voluntary reasons such as a wish to enjoy more leisure.

In conclusion:
Self-selection model is rejected.

Between 20 and 30% of workers retire for involuntary reasons such as health shocks or plant closings.

Between 70 and 80% of workers retire for voluntary reasons such as a wish to enjoy more leisure.

In conclusion:

- Uncertainty plays a key role in retirement decisions.
Self-selection model is rejected.

Between 20 and 30% of workers retire for involuntary reasons such as health shocks or plant closings.

Between 70 and 80% of workers retire for voluntary reasons such as a wish to enjoy more leisure.

In conclusion:

- Uncertainty plays a key role in retirement decisions.

- Most transitions into partial and full retirement arise as the optimal choice for worker who could have remained employed FT at their previous wage.
Offered Wage Profile

Self-selection model is rejected.

Between 20 and 30% of workers retire for involuntary reasons such as health shocks or plant closings.

Between 70 and 80% of workers retire for voluntary reasons such as a wish to enjoy more leisure.

In conclusion:

- Uncertainty plays a key role in retirement decisions.
- Most transitions into partial and full retirement arise as the optimal choice for workers who could have remained employed FT at their previous wage.
- For most workers, hours and wages are determined simultaneously.
Self-selection model is rejected.

Between 20 and 30% of workers retire for involuntary reasons such as health shocks or plant closings.

Between 70 and 80% of workers retire for voluntary reasons such as a wish to enjoy more leisure.

In conclusion:

- Uncertainty plays a key role in retirement decisions.
- Most transitions into partial and full retirement arise as the optimal choice for worker who could have remained employed FT at their previous wage.
- For most workers, hours and wages are determined simultaneously.
- The age profile of offered wages is non-decreasing in age.
Implications for Estimates of the i.e.s.

i.e.s. measures willingness to intertemporally substitute labor supply in response to their lifecycle wage profile.
I.e.s. measures willingness to intertemporally substitute labor supply in response to their lifecycle wage profile.

Early estimates from micro data found values very close to zero (MaCurdy (1981), Browning et al. (1989), Altonji (1986)).

Recently several papers have argued that these estimates are likely biased downwards due to:
- liquidity constraints (Domeij and Floden, 2006)
- human capital accumulation (Imai and Keane, 2004)
- precautionary savings motives (Low, 2005)

Rogerson and Wallenius (AER, forthcoming) have suggested using retirement behavior to estimate i.e.s.
I.e.s. measures willingness to intertemporally substitute labor supply in response to their lifecycle wage profile.

Early estimates from micro data found values very close to zero (MaCurdy (1981), Browning et al. (1989), Altonji (1986)).

Recently several papers have argued that these estimates are likely biased downwards due to:

- liquidity constraints (Domeij and Floden, 2006)
- human capital accumulation (Imai and Keane, 2004)
- precautionary savings motives (Low, 2005)
I.e.s. measures willingness to intertemporally substitute labor supply in response to their lifecycle wage profile.

Early estimates from micro data found values very close to zero (MaCurdy (1981), Browning et al. (1989), Altonji (1986)).

Recently several papers have argued that these estimates are likely biased downwards due to:

- liquidity constraints (Domeij and Floden, 2006)
- human capital accumulation (Imai and Keane, 2004)
- precautionary savings motives (Low, 2005)

Rogerson and Wallenius (AER, forthcoming) have suggested using retirement behavior to estimate i.e.s.
Model

Follows Chang, Kim, Kwon and Rogerson (AER, 2010) and Rogerson and Wallenius (JET, 2009 and AER, forthcoming)

\[
\text{Agents maximize expected discounted utility:} \quad \max_{\{c_t\}} \sum_{t=t_0}^{T} \beta(t-t_0) \left\{ c_t (1 - \rho) + B_t l (1 - 1/\gamma) \right\},
\]

where:

- leisure is a linear function of hours worked (h_t)
- h is discrete and equal to h_{FT}, h_{PT} or 0.
- γ is intertemporal elasticity of substitution of leisure.

(1) is maximized subject to:

\[
A_{t+1} + c_t = \exp(w_t) h_t + SS_t + (1 + r) A_t,
\]

(2)
Follows Chang, Kim, Kwon and Rogerson (AER, 2010) and Rogerson and Wallenius (JET, 2009 and AER, forthcoming)

Agents maximize expected discounted utility:

\[
\max_{\{c_t\}_{t=t_0}^T, \{h_t\}_{t=t_0}^{R<T}} E_{t_0} \sum_{t=t_0}^T \beta^{(t-t_0)} \left\{ \frac{c_t^{(1-\rho)}}{1-\rho} + B_t l_t^{(1-\frac{1}{\gamma})} \right\},
\]

where:

- leisure is a linear function of hours worked \((h_t) \)
- \(h \) is discrete and equal to \(h_{FT}, h_{PT}, \) or 0.
- \(\gamma \) is intertemporal elasticity of substitution of leisure.
Follows Chang, Kim, Kwon and Rogerson (AER, 2010) and Rogerson and Wallenius (JET, 2009 and AER, forthcoming)

Agents maximize expected discounted utility:

\[
\max_{\{c_t\}_{t=t_0}^{T}, \{h_t\}_{t=t_0}^{R<T}} \mathbb{E}_{t_0} \sum_{t=t_0}^{T} \beta^{(t-t_0)} \left\{ \frac{c_t (1-\rho)}{1-\rho} + B_t \frac{l_t^{(1-\frac{1}{\gamma})}}{1-\frac{1}{\gamma}} \right\}, \tag{1}
\]

where:

- leisure is a linear function of hours worked \((h_t)\)
Follows Chang, Kim, Kwon and Rogerson (AER, 2010) and Rogerson and Wallenius (JET, 2009 and AER, forthcoming)

Agents maximize expected discounted utility:

\[
\max \left\{ c_t \right\}_{t=t_0}^{T} \sum_{t=t_0}^{T} \beta^{(t-t_0)} \left\{ \frac{c_t^{(1-\rho)}}{1-\rho} + \frac{B_t(1-\frac{1}{\gamma})}{1-\frac{1}{\gamma}} \right\},
\]

where:

leisure is a linear function of hours worked \(h_t \)

\(h \) is discrete and equal to \(h^{FT}, h^{PT} \) or 0.
Follows Chang, Kim, Kwon and Rogerson (AER, 2010) and Rogerson and Wallenius (JET, 2009 and AER, forthcoming)

Agents maximize expected discounted utility:

\[
\max_{\{c_t\}_{t=t_0}, \{h_t\}_{t=t_0}^{T \leq T}} \mathcal{E}_{t_0} \sum_{t=t_0}^{T} \beta^{(t-t_0)} \left\{ \frac{c_t^{(1-\rho)}}{1 - \rho} + B_t l_t^{(1 - \frac{1}{\gamma})} \right\},
\]

where:

leisure is a linear function of hours worked \((h_t)\)

\(h\) is discrete and equal to \(h^{FT}\), \(h^{PT}\) or 0.

\(\gamma\) is intertemporal elasticity of substitution of leisure.
Follows Chang, Kim, Kwon and Rogerson (AER, 2010) and Rogerson and Wallenius (JET, 2009 and AER, forthcoming)

Agents maximize expected discounted utility:

$$\max_{\{c_t\}_{t=t_0}^T, \{h_t\}_{t=t_0}^{R<T}} \mathbb{E}_{t_0} \sum_{t=t_0}^T \beta^{(t-t_0)} \left\{ \frac{c_t^{(1-\rho)}}{1 - \rho} + B_t \frac{l_t^{(1-\frac{1}{\gamma})}}{1 - \frac{1}{\gamma}} \right\},$$ (1)

where:

leisure is a linear function of hours worked (h_t)

h is discrete and equal to h^{FT}, h^{PT} or 0.

γ is intertemporal elasticity of substitution of leisure.

(1) is maximized subject to:

$$A_{t+1} + c_t = \exp(w_t)h_t + SS_t + (1 + r)A_t,$$ (2)
The wage process is given by:

\[w_{it} = f_i + W(t) + u_{it}, \]
\[u_{it} \sim \text{Normal}(0, \sigma_u), \]
The wage process is given by:

$$w_{it} = f_i + W(t) + u_{it},$$

$$u_{it} \sim \text{Normal}(0, \sigma_u),$$

Part time workers' hourly wage is $(1 - \alpha)w_{it}$
Model

Objective is to fit evolution of PT/FT participation probabilities with age.
Objective is to fit evolution of PT/FT participation probabilities with age. To do so, I add two features to the model that are specific to the retirement context.
Model

Objective is to fit evolution of PT/FT participation probabilities with age. To do so, I add two features to the model that are specific to the retirement context.

- Taste for leisure is allowed to depend linearly on age (French and Jones, Econometrica, 2011):

\[B_t = b_0 + b_1 t \]
Model

Objective is to fit evolution of PT/FT participation probabilities with age. To do so, I add two features to the model that are specific to the retirement context.

- Taste for leisure is allowed to depend linearly on age (French and Jones, Econometrica, 2011):
 \[B_t = b_0 + b_1 t \]

- Cost of work \(\phi_t \) is modeled as a loss of leisure (French (2005), French and Jones (2011)):
 \[l_t = L - h_t - \phi_t, \]
Model

Objective is to fit evolution of PT/FT participation probabilities with age. To do so, I add two features to the model that are specific to the retirement context.

- Taste for leisure is allowed to depend linearly on age (French and Jones, Econometrica, 2011):
 \[B_t = b_0 + b_1 t \]

- Cost of work \(\phi_t \) is modeled as a loss of leisure (French (2005), French and Jones (2011)):
 \[l_t = L - h_t - \phi_t, \]
 \(\phi_t \) is a function of age and the number of hours worked:
 \[\phi_t = q_0 + q_1 t + q_2 h_t + q_3 h_t t, \text{ with } \phi_t \in [0, L - h_t] \]
Model

Objective is to fit evolution of PT/FT participation probabilities with age. To do so, I add two features to the model that are specific to the retirement context.

- Taste for leisure is allowed to depend linearly on age (French and Jones, Econometrica, 2011):
 \[B_t = b_0 + b_1 t \]

- Cost of work \(\phi_t \) is modeled as a loss of leisure (French (2005), French and Jones (2011)):
 \[l_t = L - h_t - \phi_t, \]
 \(\phi_t \) is a function of age and the number of hours worked:
 \[\phi_t = q_0 + q_1 t + q_2 h_t + q_3 h_t t, \quad \text{with } \phi_t \in [0, L - h_t] \]

In total, 6 parameters are calibrated.
Calibrated Parameters: Taste for Leisure

Figure: Calibrated $B(t)$ for different values of γ
Figure: Calibrated \(\phi(FT) - \phi(PT) \) for different values of \(\gamma \)
Figure: Baseline model fit for $\gamma = 0.25$
Baseline fit

Figure: Baseline model fit for $\gamma = 0.50$
Baseline fit

Figure: Baseline model fit for $\gamma = 0.75$
Figure: Baseline model fit for $\gamma = 0.95$
Results II

Table: Simulation results

<table>
<thead>
<tr>
<th></th>
<th>$\gamma = 0.25$</th>
<th>$\gamma = 0.50$</th>
<th>$\gamma = 0.75$</th>
<th>$\gamma = 0.95$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_w ((\Delta w_{it}) upon PR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_h ((\Delta H_{it}) upon PR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Declining age-wage profile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_w ((\Delta w_{it}) upon PR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_h ((\Delta H_{it}) upon PR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\gamma}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table: Simulation results

<table>
<thead>
<tr>
<th></th>
<th>$\gamma = 0.25$</th>
<th>$\gamma = 0.50$</th>
<th>$\gamma = 0.75$</th>
<th>$\gamma = 0.95$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_w (Δw_{it} upon PR)</td>
<td>-0.343</td>
<td>-0.341</td>
<td>-0.340</td>
<td>-0.340</td>
</tr>
<tr>
<td>θ_h (ΔH_{it} upon PR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Declining age-wage profile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_w (Δw_{it} upon PR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_h (ΔH_{it} upon PR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\gamma}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table: Simulation results

<table>
<thead>
<tr>
<th></th>
<th>$\gamma = 0.25$</th>
<th>$\gamma = 0.50$</th>
<th>$\gamma = 0.75$</th>
<th>$\gamma = 0.95$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_w (Δw_{it} upon PR)</td>
<td>-0.343</td>
<td>-0.341</td>
<td>-0.340</td>
<td>-0.340</td>
</tr>
<tr>
<td>θ_h (ΔH_{it} upon PR)</td>
<td>-0.563</td>
<td>-0.559</td>
<td>-0.556</td>
<td>-0.555</td>
</tr>
<tr>
<td>I. Declining age-wage profile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_w (Δw_{it} upon PR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_h (ΔH_{it} upon PR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\gamma}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results II

Table: Simulation results

<table>
<thead>
<tr>
<th></th>
<th>$\gamma = 0.25$</th>
<th>$\gamma = 0.50$</th>
<th>$\gamma = 0.75$</th>
<th>$\gamma = 0.95$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_w (Δw_{it} upon PR)</td>
<td>-0.343</td>
<td>-0.341</td>
<td>-0.340</td>
<td>-0.340</td>
</tr>
<tr>
<td>θ_h (ΔH_{it} upon PR)</td>
<td>-0.563</td>
<td>-0.559</td>
<td>-0.556</td>
<td>-0.555</td>
</tr>
<tr>
<td>I. Declining age-wage profile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_w (Δw_{it} upon PR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_h (ΔH_{it} upon PR)</td>
<td>-0.579</td>
<td>-0.576</td>
<td>-0.579</td>
<td>-0.578</td>
</tr>
<tr>
<td>$\hat{\gamma}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table: Simulation results

<table>
<thead>
<tr>
<th></th>
<th>(\gamma = 0.25)</th>
<th>(\gamma = 0.50)</th>
<th>(\gamma = 0.75)</th>
<th>(\gamma = 0.95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\theta_w)</td>
<td>-0.343</td>
<td>-0.341</td>
<td>-0.340</td>
<td>-0.340</td>
</tr>
<tr>
<td>(\theta_h)</td>
<td>-0.563</td>
<td>-0.559</td>
<td>-0.556</td>
<td>-0.555</td>
</tr>
<tr>
<td>I. Declining age-wage profile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\theta_w)</td>
<td>-0.005</td>
<td>-0.003</td>
<td>-0.004</td>
<td>-0.004</td>
</tr>
<tr>
<td>(\theta_h)</td>
<td>-0.579</td>
<td>-0.576</td>
<td>-0.579</td>
<td>-0.578</td>
</tr>
<tr>
<td>(\hat{\gamma})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table: Simulation results

<table>
<thead>
<tr>
<th></th>
<th>$\gamma = 0.25$</th>
<th>$\gamma = 0.50$</th>
<th>$\gamma = 0.75$</th>
<th>$\gamma = 0.95$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_w (Δw_{it} upon PR)</td>
<td>-0.343</td>
<td>-0.341</td>
<td>-0.340</td>
<td>-0.340</td>
</tr>
<tr>
<td>θ_h (ΔH_{it} upon PR)</td>
<td>-0.563</td>
<td>-0.559</td>
<td>-0.556</td>
<td>-0.555</td>
</tr>
<tr>
<td>I. Declining age-wage profile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_w (Δw_{it} upon PR)</td>
<td>-0.005</td>
<td>-0.003</td>
<td>-0.004</td>
<td>-0.004</td>
</tr>
<tr>
<td>θ_h (ΔH_{it} upon PR)</td>
<td>-0.579</td>
<td>-0.576</td>
<td>-0.579</td>
<td>-0.578</td>
</tr>
<tr>
<td>$\hat{\gamma}$</td>
<td>0.321</td>
<td>1.00</td>
<td>1.551</td>
<td>2.203</td>
</tr>
</tbody>
</table>
Conclusions

- The offered wage profile is not hump-shaped, but flat, at older ages.

- Wage and hours declines upon partial retirement are *endogenously* determined for most individuals.

- Assuming that hours choices are a response to an exogenously and smoothly declining wage profile leads to severely biased estimates of preference parameters.
Partial Retirement

Figure: Total/FT/PT participation rates by age. HRS.

Maria Casanova UCLA
Revisiting the Hump-Shaped Wage Profile
Figure: Log Wage Profiles for Different Specifications Using Simulated Data.\[\gamma = 0.5\]